E uninn Frrrm LOCKHEED MARTIN ENERGY RESEARCH LIBRARIES IERI 4 4 3 { 3 445L 0514237 9 S OO ____ LEGAL MOTICE oo This report was prepared 0z an’ nccount of Government sponsered work. Maither the United States, nor the Commission, nof any pe:er)n acting on behell of the Commission: AL Makms any warranty or répresentution, expressed or implied, with respeu‘lz fa the accuracy, completennss, or usefulneis of the information contained in this report, or that the use of any informnrion, appumiufiz, mefhod, or process djisc!ased in this report mny ner infringe privately owned rigiv‘rs; ar : : B. Assumes uny lighilities with 1espect 1o the use of, or for damnges resuiting from the use of cm.'y information, apparaius, method, or process disclesed in this report, As used in the above, '‘person acting on behuolf of *%é Commission’ includes any employes or contraptor of the Commission, or emplnyse of such co;ni“racfor, to the extent that suchk 2mployee or cor}trlx:?or of the Commission, er employee of such ceohinctor prepares, disseminates, or provides uecess fo, any information pursuant to his employwent or controct wifl".; the Commission, or his gmployment with such cantrecter, L da ORNL-TM-3053 Contract No. W-T4O5-eng-26 CHEMICAL TECHNOLOGY DIVISION ENGINEERING DEVELOPMENT STUDIES FOR MOLTEN-SALT BREEDER REACTOR PROCESSING NO. 1 L. E. McNeese NOVEMBER 1970 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennesgsee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION LGCKHEED MARTIN ENERGY RESEARCH LIBRARIES (AR 3 4456 0514237 9 11 Reports previously issued in this series are as follows: ORNL ~4094 ORNL~4139 ORNL-4204 ORNL-4234 ORNL-L4235 ORNL-4364 ORNL-4365 ORNL-"3%66 Period Period Period Period Period Period Period Period Ending Ending Ending Ending Ending Ending Ending Ending December 1966 March 1967 June 1967 September 1967 December 1967 March 1968 June 1968 September 1968 iidi CONTENTS Page SUMMARIES . e o e s . e . . . v 1. INTRODUCTION + ¢ v v o o v v o o o v o o s 0 o o o & o » 1 2. SEMICONTINUQUS ENGINEERING EXPERIMENTS ON REDUCTIVE EXTRACTION 1 2.1 General Operating Procedure . . . . . . . . . 5 2.2 Description of Major Processing Equipment . . . . 3 2.% Extraction Column . . . « .« « .« . . D 2. Jackleg e e e e e e e e e e e e 5 2.5 Feed and Catch Tanks for Salt and Metal . . . . 6 2.6 Treatment Vessel for Salt and Metal . . 6 2.7 Tank Samplers . . . . . . . . . . . o 2.8 Filters, Freeze Valves, and Lines 9 2.9 Instrumentation and Control . .+ ¢« « « « « « + 9 2.10 Gas Purification and Supply Systems 12 %. ELECTROLYTIC CELL DEVELOFENT . . « « ¢« ¢« ¢« ¢ o & o « « « « & 1h 5.1 Experimental Equipment . . . . 15 3.2 Results 16 ., SEPARATION OF RARE EARTHS FROM THORIUM BY FRACTIONAL CRYSTALLIZATION FROM BISMUTH + v ¢ ¢ v o & o o s o o o o o o o s o o 22 4.1 Physical Properties of Materials Considered . . . . . . 27 4.2 Conceptual Design of a ThBi, Precipitator . . . 2k 4.3 Estimation of the Minimum Cross Section for the Precipitator SECEION + o v v+ « o s 4 2 4 v e e e e e e e e e e e 26 h.4 Estimated Length of Precipitator Section . . . . . 28 L.5 Summary and Conclusions . « « ¢« o « + o o o o &+ o« & 37 5. MATERIAL BALANCE CALCULATIONS FOR AN MSBR . . . 35 5.1 Compilation of MSBR Nuclear Data . . « « « « « « « o 33 5.2 Material Balance Equations . « « « « + « « + & 30 5.3 Computation of Neutron Reaction Rates . . . . b1 iv CONTENTS (Continued) Page 5.4 Model for Diffusion of Noble Gases into Graphite . . . Lo 5.5 Model for the Migration of Noble Gases and Noble Metals to Circulating Helium Bubbles . . . ¢« + « « « « o « « o & L5 5.6 Assumed Chemical Behavior of Fission Products . . . . . L6 5.7 Material Balance Calculations for a 1000 Mw(electrical) Sil’lgle"’F].Uid MSBR . . . . . . . . . . . . . . . . . . . )4'7 6. REFERENCES L9 APPENDIX A. LIBRARY OF NUCLEAR DATA FOR MSBR APPLICATIONS . . . 51 APPENDIX B. TYPICAL MATADOR OUTPUT FOR A 2250-Mw(thermal) SINCLE - FLUID MSBR + « = v v o e v e e e e e e e e e e e 67 SUMMARIES SEMICONTINTOUS ENGINEERING EXPERIMENTS ON REDUCTIVE EXTRACTICN Equipment has been installed in Bldg. 5592 to permit engineering studies on reductive extracticn in countercurrent centactcecrs. The system will allow the countercurrent contact of up to 15 liters each of molten salt and bismuth at flow rates of 0.0% to 0.5 liter/minfi Almost all of the componentg that contact sgalt or bismuth are fabricated of carben steel. The contactor presently being studied is a 0.82«in. ~ID, 2-ft-long column (excluding end sections) that is packed with solid 1/4~in. right circular cylinders of molybdenum. The salt and bismuth can be purified by contact with H,-HF mixtures 7 ‘J.,J o followed by filtration thrvough porcus melybdenum filters. The two phases can be gampled at varicus poicts in the sgystem. ELECTROLYTIC CELL DEVELGPMENT The flowsheet under consgideration for processing fuel from the proposed MSBR uses an electrelytic cell. Fluorides of thoriuvm or lithium in a molten-salt stream are rveduced at the bismuth cathode, while metals that are extracted into bismuth are coxidized at the bismuth anode. Preliminary experiments made in static cells con- structed of quartz show that the current variss linearly with the applied potential. This indicates the absence of a limiting current in the range of the experiments for which the highest average current _— 2 density was 4.35 amp/cm . SEPARATION OF RARE EARTHES FROM THORIUM BY FRACTIONAL CRYSTALLIZATION FROM BISMUTH The feasibility of separating rare earths from thorium in a bismuth golution by fractional crystallization of ThBi, was sxamined. A possible 2 Vi equipment configuration was considered, and an analysis was made of factors affecting the fraction of ThBi, that could be potentially re- 2 covered. It was concluded that operation in the envisioned manner might be difficult because of the need for close control of nucleation rates. MATERTIAL BALANCE CALCULATIONS FOR AN MSBR We have developed a computer code, MATADOR, to perform steady-state material-balance calculations that describe the nuclear, chemical, and physical processes occurring in the fuel stream of an MSBR. This code allows us to investigate the effects of chemical processing on the nuclear performance of an MSBR, to determine fission-product inventories and heat-generation rates, and to specify flow rates of streams in the chemical processing plant. The buildup of transuranium isotopes, the production of activation products by neutron capture in the carrier salt, and chain~branching in the decay fission products are considered. The MATADOR code has been used to compute inventories and heat- generation rates in the fuel stream of a 1000-Mw (electrical) single- fluid MSBR; this information is summarized for the reference reactor. e 1. TINTRCDUCTION A molten-salt breeder reactor {MSBR) will be fueled with a molten fluoride mixture that will circulate continuously through the blanket and core regions of the reactor and through the primary heat exchanger. We are developing methods for use in a close-coupled processing facility for removing fission products, corrosion products, and fissile materials from the molten fluoride mixture. Several operations associated with MSBR precessing are under study. This secticn describes: (1) a recently completed facility fer semi- continuous engineering experiments on reductive extraction, (2) exper- iments related to the development of electrolytic cells for use with molten salt and bismuth, (3) consideration of selective crystallization of thorium bismuthide from bismuth-thorium-vare earth solutions as a means for separating thorium from the rare earths, and (I} a computer code that calculates the nuclear, chemical, and physical processes occurring in the fuel stream of an MSBR. This work was carried out ia the Chemical Technology Division during the periced October through December 1368. 2. SEMICONTINUQUS ENGINEERING EXPERIMENTS ON REDUCTIVE EXTRACTION L. E. McNeese B. A. Hannaford H. D. Cochran, Jr. The proposed MSBR processing method is based on reductive sxtraction, uging countercurrent contact of molten salt and bismuth in multistage contactors. Equipment has been fabricated and installed in Bldg. %592 for enginzering studies of reductive extraction in countercurrent con- tactors. These studies will be made using molten salt {72-16-12 mole % LiF-BeF2~ThFA) and 1liquid bismuth metal. Uranium {about ©¢.3 mole % UF4 in the salt) will be transferred between the salt and the metal, using thorium as the reductant in the bismuth. 7The salt and the metal will be contacted countercurrently at 600°C. One planned objective of these experiments is the investigation of mass transfer between the salt and bismuth under different flow condi- tions in various contacting devices. The effective overall mass-transfer coefficient (or, equivalently, the height equivalent to a theoretical stage) will be determined in several experiments with various contactors which include packed and baffled columns. The mass-transfer performance is determined, in part, by the hydrodynamic conditions in the contactor; information on hydrodynamic conditions in packed columns will be inferred from measurements of the pressure drop through the column by analogy to a water-mercury system being studied by WatSOn.l The experiments should answer the following questions: (1) What is the limiting flow rate beyond which the column will flood? (2) Is the bismuth well dispersed, or does channel type flow occur? (%) How much interfacial area exists for mass transfer? (&) Is disengagement of the phases complete in the end sections, or does entrainment present a problem? (5) How severe a problem will be caused by axial backmixing, particularly in the salt phase at high metal rates? A second objective is the evaluation of the performance of aux- iliary equipment necessary to perform experiments of this type. Such information will be used in designing subseqQuent experimental facil- ities. The following components will be included in the evaluation: freeze valves, filters, instrumentation, and supply systems for argon, hydrogen, and hydrogen fluoride. We plan to determine the probable lifetime for freeze valves subjected to repeated freeze-thaw cycles since we expect them to fail eventually under such stress; in addition, we will study the perform- ance of freeze valves containing two fluid phases. The performance of filters with the possible entrainment of a second fluid is also of interest. As a part of these studies, we wish to determine whether carbon steel is a suitable structural material for short-term use in experiments of this kind, and whether graphite is a suitable material in which to hydrofluorinate the salt and metal mixture. In carrying out the experiments outlined above, we will gain oper- ating experience and confidence in handling the process fluids. We will also uncover areas of unforeseen difficulty, where further dzvelopmental work may be needed. 2.1 General Cperating Procedure Prior to an experiment, slightly more than 15 liters of salt and 15 liters of bismuth will be present in the treatment vessel. This material will be hydrofluorinated to return lithium, thovium, uranium, etc. to the salt phase, and to remove oxides from the salt. After suitable sparging with argon to remove HF and H., salt (15 liters) will be transferred to the salt feed tank, leaving amheel about 1/2 in. deep in the treatment vessel. Then bismuth {15 liters) will be transfarred to the bismuth feed tank, leaving an additicnal heel of abeout 1 in. Finally, reductant will be added to the bismuth in the metal feed tank. Samples of galt and metal feed will be withdrawn. During an experiment, salt and metal may be transferred through the column at controlled flow rates from 0.05 to 0.5 liter/min. During this transfer, the pressure drop acreoss the column can be monitored, and samples can be taken from the salt and the metal streams exiting from the column. After an experiment, the salt and the metal may be sampled in the catch tanks before being transferred back to the treatment veszsel. Hydrofluorination would be repeated to return lithium, thorium, and uranium to the salt phase prior to the next run. Thus, there will be a constant amount of each comperent in the system {notably uranium), except for a known amount of thorium which will be added to the system in each run. Material-balance determinations will be greatly facilitated by this fact. 2.2 Description of Major Processing Equipment All componentg that contact molten salt or bismuth are fabricated of carbon steel, except as noted. The major components in the gystem for handling salt and metal are described below and are shown schematically in Fig. 1. ORNL-DWG 68-14347 A FV_1L,{T1~/ FILTER Fv-2 U j - - T v i3 FILTER e 1 V_ p_————— i - 1 2 mTT T 1 FV-4 ———— ! I 1 | SALT AND METAL TREATMENT VESSEL SALT FEED AND COLLECTION TANK METAL FEED AND COLLECTIOM TANK £ and Metal Filowsheet. -~ ied Sal Simplif 1. Fig. T 2.% Extraction Column The four contactors that have been fabricated have the same physical dimensions: 0.82 in. ID x 2 ft long, excluding end sections. In each, bismuth is introduced through a tube (0.259 in. ID, 0.058-in. wall thickness) that projects at right angles into the end section about 7/16 in. above a slotted grid. The grid acts as a distributor and restrainer for the packing. Salt is withdrawn through an overflow line 1-11/16 in. above the bismuth feed port. 1In the bottem end section, salt is intro- duced through a 0.259~in. tube at right angles to the columo 7/16 in. below a slotted restraining grid similar to that at the top. Bismuth flows from the bottom of the end section threough a tube 1-11/16 in. below the salt feed port. Internally, the four columns contain one of the following: (1) 1/h- in. right circular cylinders of molybdenum (void fraction, about 40%); (2) 1/8-in. right circular cylinders of molybdenum {void fraction, about Lo%Y; (3) segmental baffles covering 96% of the column cross section at 1/2-in. spacing; or (&) open column area that could be packed later or could be used as a spray column. On the basis of studies with the water- mercury system, the 1/lL-in. packing looks most promising. Therefore, it will be studied first. 2.4 Jackleg The pressurs drop across the column will be measured with a jackleg by using the following procedure. The salt level in the jackleg will be measured using an argon bubbler. The sum of the pregsure resulting from this head of salt and the difference in the pressures in the gas spaces above the fluids in the jackleg and the column will be equal to the salt pressure at the bottom of the column. The pressure at the bottom of the column will, in turn, equal the pressure drop across the columm. The gsalt head in the column, the bismuth held up in the column, and the vigscous drag in the column will contribute to thig pressure drop. The jackleg can accommodate a head of approximately 4 ft of salt. Preliminary estimates indicate that the pressure drop across the column may be 3 to 6 ft of salt under conditions of maximum flow. The jackleg will be pressurized in order to operate under conditions where the pressure drop is greater than 4 ft of salt. 2.5 Feed and Catch Tanks for Salt and Metal The duplex feed and catch tanks for salt and bismuth are identical in construction. The feed tank, an inner cylinder of 8-in. sched 80 pipe, is designed to operate at pressures up to 50 psig at 600°C. Both the inner feed tank and the outer catch tank will hold about 20 liters of fluid. We plan to use only about 15 liters of salt and 15 liters of bismuth. The top of each feed tank contains seven ports: (1) an inlet port (1/2~in. pipe with a fitting for %/8-in. tubing), which does not extend into the tank; (2) an outlet line (1/2-in. pipe with a fitting for 3/8- in. tubing), which extends to within 1/2 in. of the bottom of the tank; (3) a sparge and pressurization port (with a fitting for 3/8-in. tubing), which extends to within 1/2 in. of the bottom of the tank; (4) a 1/2-in. pipe (with a fitting for %/8-in. tubing) used as a thermocouple well, which extends to within 1/2 in. of the bottom of the tank; (5) a 1/2-in. pipe with a fitting for a 1/2~in. ball valve and sampler and a {itting for 1/4-in. tubing below the valve; (6) a 1-in. pipe with a l-in. ball valve as an addition port; and (7) a 1/2-in. capped pipe as a spare port. Each catch tank has the same ports as the feed tanks except that no addition port is provided. The outer surfaces of the feed and catch tanks are coated with nickel aluminide to retard oxidation. 2.6 Treatment Vessel for Salt and Metal The treatment vessel consists of a 304L stainless steel pressure vessel that holds a graphite crucible. The cylindrical portion of the pressure vessel is 26.5 in. long (1/4-in. wall thickness) and has a standard pipe cap on ecach end. It is designed to withstand H, -HF at 600°C at a pressure of 50 psig. - The inner crucible, machined of graphitej% has an outer diameter of 16.75 in. and is 26.7% in. (overall) high. The wall thickness tapers from 1.75 in. at the bottom to 0.75 ia. at 16.75 in. from the bottom, and is uniform from there to the top. The bottom of the crucible is 1.75 in. thick. The crucible has a 16.75~-in.-diam 1id, whose thickness varies from 1 in. at the rim to 0.5 in. at the center. The graphite crucible rests on a support plate inside the pressure vessel, and the 1id is held loosely in position by three gtuds projecting from inside the top of the pressure vessel. The vesgel has 15 nozzles, which are described in Table 1. 2.7 Tank Samplers The treatment vessal and the feed and catch tanks are each pro- vided with a 1/2~-in. sched 40 pipe nozzle fitted with a ball valve and sampler. These tank samplers hold four fritted filter sticks that extend through a Teflon plug in the top and can be lowered (while the gystem is under argon pressure) through the ball wvalve into the tank below. Samples can be drawn into the filter sticks by vacuum. Four samples can be taken during one run. In addition to the five samplers on the vessels, there are two flowing-stream samplers, which operate in a manner similar to that of the tank samplers. These flowing-stream samplers allow seven samples to be taken from each of two flowing streams during column operation. One sampler is located on the salt return line (between the column and the salt catch tank), and one is located on the metal return line (between the column and the metal catch tank). ¥ No. 8735, Speer Carbon Co., a Division of Air Reduction Co., St. Marys, Pa. Table 1. Description of Nozzles on Treatment Vessel Nozzle No. Used For Description 1 Bismuth charging Z2-in. sched 40 pipe, flanged at the top to accom- modate a chute for loading bismuth. The graphite 1id below this nozzle has a 1.625-in.-diam hole with a removable plug. 2 Bismuth sampling; salt 0.5-in. sched "0 pipe with ball valve and sampler. sampling; gas-phase pres- The lid is fitted with a l-in.-ID graphite pipe sure connection. into which the C.%-in. pipe slips. The graphite pipe extends through the graphite lid and into the crucible for a distance of 1 in. = Returning salt from the 0.5-in. sched 40 pipe nozzle containing a sleeved salt receiver 0.379=in.-0D tube. Below the carbon-steel-to-~ molybdenum transition, the 0.375-in.-0D molybdenum tubing extends 4 in. below the graphite 1id. ly Returning bismuth from the Identical to nozzle No. 3. bismuth receiver 5 Transferring bismuth to 0.5-in. sched 40 pipe nozzle containing a sleeved bismuth feed tank 0.375-in.-0D tube that extends to within 0.5 in. of the bottom of the crucible. The tubing that extends inte the crucible is made of molyhdenum. 6 Transferring salt to the Similar to nozzle No. 5; set so that 1% liters of salt feed tank salt can be transferred rto the salt feed tank, leaving a 0.5-in. heel of salt on top of the bismuath. T Monitoring liquid level® Similar to nozzle No. 5. & Sparging with H,-HF Similar to nozzle No. 5. 9 Adding salt Similar to nozzle No. 3. 10 Spare Similatr to nozzle No. 3. 11 Thermocouple well 0.5-in. sched %0 pipe with fittings for 0.375-in.- 0D tubing 12 Making miscellaneous ad- l-in. sched 4C pipe, with ball valve. ditions, or vessel venting 13 Draining vessel 0.5-in. sched 4C pipe extending from the bottom of the pressure vessel; this line is capped. “Acts as a bubbler type of liquid-level monitor. 9 2.8 Filters, Freeze Valves, and Lines The experimental facility has two filters, one of which is located on each of the lines between the treatment vessel and the salt and metal feed tanks. These filters, made of fritted molybdenum. have.a nominal pore size of 25 py. The permeability of each filter was measured before and after fabrication, and was found to be about 40O cm’ (sTP) em™> (cm Hg)_l at a pressure differential of 1.5 c¢m Hg. Both filters can be bypassed if necessary. Salt and metal flows through the facility are directed by 10 freeze valves in the transfer lines, located as indicated in Fig. 1. These valves are simply dips (in the carbon steel tubing), which are fitted with air cooling linesn Those freeze valves that must be closed before any salt or metal can be transferred from the Creatment vessel were equipped with small reservoirs {about 50 cmB) of bismuth prior to being welded into the lines. The facility, which is of welded construction, contains approximately 200 ft of salt and metal transfer lines (3/8-in. and 1/2-in. pressure tubing). 2.9 Instrumentation and Control The principal cbjective of the instrumentation and control system is to provide closely~regulated flows of bismuth and molten salt to the extraction column. The range of flow rates provided for both bismuth and molten salt is nominally 40 to 500 ml/min, corresponding to experi- ment durations of about 5 to 0.5 hr. Pressures and liquid levels in the six vessels (treatment vessel, feed and catch tanks, and jackleg) of the facility are sensed by Foxboro differential-pressure transmitters, which send signals to miniature pneumatic recorders or controllers. Liquid level is inferred from the pressure of the argon that is supplied to a dip-leg bubbler in each tank. Flow rates of bismuth and salt to the column are controlled by regulating the rate of change of liquid level in the twe feed tanks. The locations of galt-argon and salt- LO bismuth interfaces in the column are not directly measured, but can be determined from pressure measurements. The feed and catch tanks and the treatment vessel are maintained at the desired temperatures by automatic controllers; transf-r-line temperatures and temperatures of small com- ponents are controlled by manually regulating the appropriate voltage transformers that supply power to Calrod tubular heaters. Figure 2 is a schematic diagram of the control system that reg- ulates the flow of bismuth or salt to the extraction column. It is designed to circumvent the flow-control problems that sometimes occur when gas pressure is used to maintain a constant flow of liquid from a heated feed tank. An adjustable ramp generator and an electric-to- pneumatic converter are used to linearly decrease the set point of a controller that senses liquid level in the feed tank and controls the level by controlling the flow rate of pressurizing argon to the gas space of the feed tank. The result should be a uniformly decreasing bismuth level and, hence, a uniform discharge rate of bismuth or salt from the tank. This control system should be unaffected by small increases in back pressure caused by changing column hydraulics, par- tial plugging of transfer lines, decreasing feed tank level, etc., or leakage of pressurizing argon (a small argon bleed is provided to improve pressure control). Small gas pressure oscillations caused by the temperature cycling of a conventional temperature controller will be minimized by the time-~-proportioning controller. Rates of transfer of salt and metal between the collection tanks and the treatment vessel need not be closely regulated; therefore, manual control of pressurization is used. Heating circuits are manually controlled for 11 transfer lines, 5 flowing-stream samplers, the salt jackleg, and the extraction column. On the transfer lines, the Calrodsrated at 230 v are run at 1h0 v or less, and provide up to 185 w per foot of line. Typically, temperatures at three points on each line are recorded. Approximately 100 points are recorded for the system. For obvious reasons the gas bubbler method for measuring static head cannot be used directly in the small-diameter extraction column. 11 ORNL DWG 7O-4574R4 FOXBORO ADJUSTAR RAMP ? STABLE RAMP ! cONVERTER E/P ot RECORDER GENERATOR (E vst) CONTROLLER A 7 A ’ d / P ?{l Ily r.l'( ?.{I t’i’ '_’f’ 7# In{/ )7” 3 CELL ARGON PURGE ] —D Fig 19 electrodes was increased incrementally from an initial value of 2.6 v, in steps of about 0.6 v, and operation of the cell was observed. Neither the salt nor the bismuth electrodes were sparged with gas during the first series of experiments; however, the cathode was sparged with argon during most of the second series of experiments. The initial potential difference between the bismuth electrodes was less than 0.05 v (below recorder sensitivity) before dc voltage was applied to the cell. The cell potential (measured with the power supply turned off ) increased rapidly to 2 v after the passage of 60 coulombs in 10 sec, to 2.1 v after the passage of 625 coulombs in 125 sec, and to 2.25 v after the passage of 9300 coulombs in 61 min. The cell potential remained at about 2.2 v thereafter. The cell potential was decreased when the cathode was mixed via argon sparging, but sparging the anode produced no change in cell potential. This indicates that, as expected, the com- position within the bismuth phase of the anode compartment does not change, but that the bismuth in the cathode contained lithium after the passage of electrical current. The current-vs-voltage plot obtained from the experimental data (Fig. 6) suggests that essentially no limiting current exists in the range covered by the experiments. The slight upward trend seen in one of the curves indicates a slight decrease in cell resistance, which can be attributed to an increase in cell temperature. This effect is con- sistent with values calculated from the published equationl+ for specific conductivity of the molten salt as a function of temperature. The hightest average current density obtained was L.35 am_p/cm2 (Loko amp/ftz). Higher current densities would be expected as the applied potential is increased. During each series of runs, the formation of a very finely divided dark material was noted at the anode. With the first cell, the material was observed to spread slowly throughout the salt during the first 10 min of operation. This cell was operated without externally induced circu- lation; circulation was due only to thermal convection. The salt remained opaque during the remaining cell operation; however, it became transparent after the cell had stood overnight, and only a small amount of dark 20 ORNL-DWG 69-6045 5.0 , 4.5 f=0.10a —F 2 t=540°Cc " [ ] 4.0 J < s Y N € / = R=0.07 /° d E 25 f=550-+650°C _¢" 7 3 ’ /' > //./ = 4 & S 25 R=0.06 & L] F=715°C Y7 o/ — / z 20 S & -~ /f=500°c © {5 s -2 0/ / 9 5 10 = 7=540°C A A:/ R=0.102 L* v 0.5 / 0 2 4 6 8 10 {2 14 APPLIED VOLTAGE (V) Fig. 6. Variation of Current Density with Applied Potential for Quartz Cell Experiments. material was noted at the salt-bismuth interface. After the second cell had been operated for 10 sec (i.e., 60 coulombs had been passed), the salt immediately above the anode appeared to be light brown. At this point the cathode was sparged with argon; the salt remained clear. Then the anode was stirred by an argon sparge, which resulted in disper-~ sion of the material above the anode throughout the salt. The forma- tion of black material at the anode continued for an additional 125 sec (passage of 625 additional coulombs). After the cell had stood over- night, the salt became clear and contained only a small amount of black material. No further formation of black material was noted throughout the cell operation that followed. During thig time (i.e., a period of several hours), circulation of the salt was promoted by an argon sparge in the cathode chamber. Gas was evolved from the anode during the electrolytic process, even at an average current density as low as 0.15 amp/cme. There was no evidence of fluorine evolution. A starch solution, through which the cell off-gas bubbled, remained clear throughout the cell operation although it did become slightly tinted at the end of the experiment when the cell was internally shorted and arcing was noted between the electrodes. Mass spectrometric analysis of the collected off-gas indicated that the gas evolved from the anode was SiFu and that the SiFljr concentration in the samples increased as the current density of the cell was increased. The gas was produced on the anode side of the quartz divider which separated the bismuth anode and the cathode. It was produced only during, or immediately after, the passage of current. These observations strongly suggest that the gas evolution was the result of a reaction of BiF5 (produced at the anode) with the quartz divider. Sparging the cathode with avgon improved the convective heat transfer in the cell and kept the temperature low in the vicinity of the quartz divider. This allowed operation with a higher average current density 2 (L.35 amp/cm with sparging vs 2.5 amp/cme without sparging). 22 The concentration of bismuth (probably present as BiF5) in the salt increased with the number of coulombs passed through the cell, although the concentration was only 10 to 50% of that which would result if only BiF were produced and it all remained in the salt. 5 The following conclusions have been drawn from the experimental results: 1. There is no evidence of a limiting current. Operation of the cell at a higher current density will depend on the availability of a suitable means for removing the heat that is generated by the internal cell resistance. 2. A suitable electrical insulator that will withstand the cell environment is needed. Attention is being given to the use of frozen salt, which is a sufficiently good electrical insulator. 3. The current efficiency for the cell can be measured only in a flow cell. Use of a static cell results in rapid attainment of steady state, where the net effect of cell operation is the transfer of bismuth from the anode to the cathode. L. A more-detailed study of the heat-removal problem should be made. L. SEPARATION OF RARE EARTHS FROM THORIUM BY FRACTIONAL CRYSTALLIZATION FROM BISMUTH J. R. Hightower, Jr. L. E. McNeese As presently envisioned, removal of the lanthanide fission products > from an MSBR™ will be effected by a multistage reductive-extraction system 5 from which there will be a daily discard of about 0.5 ft” of salt con- taining 0.69 mole % rare-earth fluorides. The metal stream leaving the lower contactor of the rare~earth removal system will contain appreciable concentrations of thorium and the rare earths. Since the solubility 23 of thorium in bismuth is significantly lower than that of the rare earths,6 much of the thorium could possibly be separated from the rare earths by selectively precipitating thorium {(as ThBiE) from the metal stream. Ideally, the precipitated thorium would be redissolved in bismuth for return to the rare-earth rvemoval system. The potential benefits of such operation are twofold: (1) the required capacity of the electrolytic cell used in the system would be reduced, and (2) an appreciable separation of the rare earths from thorium might be achieved. Although the physical chemistry involved in the above procedure appears favorable, the practicability of the operation has not been established. However, we have attempted to evaluate the feasibility of such an operation by considering possible equipment configurations, the bismuth holdup required, and anticipated areas of difficulty. L.1 Physical Properties of Materials Considered Bismuth melts at 271°C. At 350°C it has a density of 9.97 g/cmj and a viscosity of 1.37 centipoises; at 600°C it has a density5 of 9.66 g/cm§ and a viscosity of 1.0 centipoise. Thorium is believed to exist in a bismgth solution as dissolved ThBig. The density of ThBi2 is‘ 11.5 g/cmj at 25°C; its density has been estimated6 to be 11.4 g/cm5 at 550°C. Thus, ThBi, particles should settle in liquid bismuth. 2 When a thorium~bismuth solution (containing 5 to 10 wt % ThBip) is cooled rapidly from 1000°C (complete solution) to 600°C, ThBi, precipi- tates in the form of fine platelets having diameter/thicknessaratios greater than 50. If these platelets are heat-treated for 20 min at 800°C, or for 5 min at 900°C, dispersions of ThBi, particles having maximum dimensions of about 100 y and diameter/thickness ratios equal to or less than % are produced. In batch precipitation experiments with a Th~Bi solution that was rapidly cooled, the rate of nucleation on the vessel wall was not detectably greater than that in the bulk of the solution. However, when the Th-Bi solution was cooled slowly, ThBi, plates nucleated at 2 the wall and tended to remain there. This tendency can be reduced by vigorous agitation. 4.2 Conceptual Design of a ThBi, Precipitator 2 A possible design for a ThBi2 preciptator is shown schematically in Fig. 7. Bismuth that is fed to the precipitator is assumed to contain rare earths and to be saturated with thorium at 600°C. The precipitator consists of three sections. The feed enters the precipitation section (section 1 on the diagram) at 10 gpm, and is cooled to about 350°C. Particles of ThBi2 start to grow, and are carried upward until they grow large enough to have a terminal velocity greater than the velocity of the upflowing bismuth. Thus, for a given bismuth flow rate, the cross section of the precipitator determines the size of the ThBi, particles 2 that will settle out. The length of the precipitator section will be determined by the growth rate of the ThBi, particles. 2 The precipitated Th312 particles produced in section 1 pass through section 2 against an upward flow of lanthanide-free bismuth. The purpose of the upward bismuth flow is to minimize mixing between the feed stream, which contains a high concentration of lanthanides, and the stream into which the ThBi? is redissolved. The velocity should be sufficiently high to preveng backmixing but must be lower than the settling velocity of the particles. The section must be of sufficient length to provide the desired resistance to backmixing between the two streams. In the final section, the ThBi2 particles are dissolved in bismuth; this section will probably consist of a length of pipe at about 600°C. An analysis of the precipitator section is made in the sections that follow. The analyses of the other sections will be made at a later date. 25 ORNL DWG 70-4589 Th Ln T SECTION 4 Th-Ln~B8i - Feed Solution FALLING PARTICLES SECTION 3 SECTION 2 RISING BISMUTH Fig. 7. Conceptual Flow Diagram of a Thorium Bismuthide Precipitator. 26 4.3 Estimation of the Minimum Cross Section for the Precipitator Section The fluid velocity in the precipitation section must be less than the terminal velocity of the ThBi. particles that are produced. These 2 particles were assumed to be right-circular cylinders with a diameter/ length ratio of 20. This ratio was assumed to be constant during the entire particle growth period. For circular cylinders, the "sphericity" (i.e., the ratio of the surface area of a sphere having the volume of the particle to the surface area of the particle) can be showm to be: o(3 /)23 ¥ = 2/% 1 ) (1) AT (l + i_ ) where ¥ = sphericity, A= DP/E’ £ = length of the cylinder, Dp = diameter of the cylinder. For a cylinder with a diametev/length ratio of 20, the sphericity is 0.339. The drag coefficient for a particle having a sphericity of 0.3 can be estimated from the curves in ref. 8, as follows: ~ 10 CD = N 2 (2) Re where CD = the drag coefficient, D p NRe = the Reynolds number of the particle = —7?~ ) v = velocity of the particle, p = density of the fluid through which the particle is moving, L = viscogity of the fluid through which the particle is moving. 27 When a particle is falling at its terminal velocity, the downward force on the particle exerted by gravity is equal to the force produced by the 9 drag of the fluid, and the following relation holds; HB“S;' = g(l - D/OS)} (3) where v, = terminal velocity of the particle, { = density of the particle, i Pg g = gravitational acceleration. Substituting Eq. (2) into Eq. (3) and solving for the terminal velocity yields: glp, - o) v, 7 et Di (4) 2251 This equation is valid when NRe < 1. Using the values Py = 11.4 g/cmj, p = 9.97 g/cmB, and L = 0.0137 g/cm.sec, Eq. (’4) becomes: 2 v, = 1948 Dp , (5) where v, :as units of cm/%ec and Dp has units of cm. This equation provides a sufficiently good estimate of terminal veloc- ities of single particles having diameters of less than 100 u. Assuming that the precipitation of 100-p-diam particles is desired (larger particles would require a longer column, whereas smaller particles would require a larger cross section), the minimum cross section will be the cross section that results in a fluid velocity equal to the terminal velocity of 100-p-diam particles. For a bismuth flow of 10 gpm, the minimum precipitator cross section necegsary for the D production of 100-p-diam particles would be 3.4 ft~, which corresponds 28 to a precipitator diameter of 2.1 ft. The cross-sectional area calcu- lated in this manner must be regatrded as the minimum area since, in the event that the particle concentration is sufficiently high, the terminal velocity of the particles will be a hindered settling velocity instead of the single-particle terminal velocity. For very thick slurries, the hindered settling velocity could be as much as two orders of magnitude less than the single-particle terminal velocity. 4.4 Estimated Length of Precipitator Section The length of the precipitator section will depend on the growth rate of the Th312 particles since the particles must rvemain in this section until they are large enough to have a terminal velocity greater than that of the upflowing bismuth. The longer it takes a particle to grow to this size, the longer the precipitator section will be. A rough estimate of the required precipitator length is made below. Crystallization from a solution takes place in two steps: nucle- ation and growth. We will assume that the nucleation rate can be con- trolled. However, this assumption may be unwarranted. Consider a single crystal that is growing in a solution containing y mole fraction of a solute. Let Y be the mole fraction of solute at saturation and y' the concentration of the solute at the interface between the crystal and the liquid. If supersaturation occurs, this will allow y' to be greater than Yo In this case, the rate of mass transfer from the bulk liquid to the interface is given by: dm ido - 50 -9 (6) where dm is the number of moles of solute transferred to the crystal across an area A in time d@, and ky is a mass-transfer coefficient. Assuming that the rate of reaction is proportional to the extent of supersaturation at the interface, the following equation applies: 29 dm N Fao = k0 - ) (7) where k is a reaction rate constaat. Eliminating y' from Eqs. (6) and s (7), one obtains: dm (v -v) Ado (L/k, +1/k]) - (8) Mass~transfer coefficients for crystal growth, ky, have been correlated by the equation k DM D vp 0.6 0.5 LB o) e K , (9) eD U D ’ where ky = mass~-transfer coefficient, D = diffusivity of solute in solvent, v = velocity of particle relative to liquid, D = particle diameter, | pp = density of liquid, fi = average molecular weight of liquid, L = viscosity of liquid, @ = a constant (assumed to be 0.2 for this study). If we assume that v is the previously estimated terminal velocity of the single particle and D is 10_5 cme/sec, and if we use the values 209 g/g-mole, 9.97 g/cmB, and 1.37 centipoises (corresponding to a temper- ature of 350°C) for fi,p, and p, respectively, in Eq. (9), the following expression for the mass-transfer coefficient is obtained: = Oo 5 —5 0.8 ky (2.051 x 10 )Dp , (10) 30 where ky has the units of g-mole per square centimeter per second per unit mole fraction, and Dp has the units of centimeter. Values for the surface reaction-rate constant ks are not available. Therefore, we will assume that the surface reaction takes place infi- nitely fast. This may be a poor assumption; however, it will place a lower limit on the length of time required to grow 100-p-diam particles. Equation (8) then becomes: dm ias Ny (y - v.) (11) Equation (11) will be used to estimate the growth rate of the ThBi, particles, as follows. The surface area of a cylinder with a diameter length ratio of A is given by: 2 A= (1/2 + ngnp, (12) and the volume of a cylinder with a diameter/length ratio of A is given by: 3 y V = (m/MA)Dp, (13) Thus, the number of moles of ThBi, in one particle is obtained from: 2 o m = fi% Di fii’, (14) where Py = the density of solid ThB:’L2 = 11.4 g/cmj, M = 650 g/g-mole, I . the molecular weight of ThBi2 Differentiating Eq. (14) results in: . 0D T S 2 5\ Ms Dp de, (15) dm = 5 Substitution of Eqs. (12) and (15) into Eq. (11) gives the following equation for the rate of increase of particle diameter: A M 5+ 1 5;‘ ky (v -v.), (16) o] . Q¢a° N[ A1 where Dp is the particle diameter in cm, ¢ is the time in sec, y is the mole fraction ol Th in Bi. The reduction of the bulk golute concentration as ThBi_, is precip- 2 itated must also be taken into account. Some simplifying assumptions are necessary. We will assume the system is at steady state, with a constant concentration of nuclei (N per cmz) in the incoming bismuth stream. We will further assume that (1) as these nuclei grow into larger particles, the concentration of particles does not change; (2) only mass transfer to rising particles is important; and (5) mass transfer to falling particles can be neglected. Although these assumptions will produce an error in the nuclei concentration necessary to decrease the thorium concentration to an acceptable value while 100-p~diam particles are growing, the sensitivity necessary in controlling nucleation rates can be seen. The required column length calculated in this manner will be indicative of that required in an actual precipitator. A ThBi2 balance over a differential section of the precipitator yields the following differential equation: V dy = k NI dg y 1 1 ._..+-- - T where N = number of nuclei per cmi, y = mole fraction of ThB12 at point §, E = distance above feed inlet point in precipitator, A = cross section of precipitator, V = molar flow rate of bismuth in precipitator, k = mass-transfer coefficient to growing crystal. Substitution of Eq. (10) into Eq. (17), with the condition that A = 20, yields the following relationship: NA d - - > ) a'}é = -(5.54L x 107°) ~ Df) 5 (v - vy, ) (18) 32 Equation (18) can be transformed from an equation in & (spatial coordi- nate) to one in 6 (temporal coordinate) by using the following relation- ship: T-F % (19) where £ = O is taken to be the bottom of the precipitator section. In dg do itator walls and is given by: this case, is the velocity of a particle with respect to the precip- d S=U -, (20) where U = velocity of the fluid, < fi velocity of the particle with respect to the fluid (which is assumed to be equal to the single-particle terminal velocity). Substituting Eqs. (18) and (20) into Eq. (19), and using Eq. (5) for v t) yields the following equation: NA dy -3 c 2.8 P q5 = ~(Gokx107) = D, (U - 1948D ) (v - v,), (21) Ppi" where U = velocity of the fluid = MA . . . Bi ¢ . V = flow rate in precipitator, g-moles Bi/sec, - e AC = cross=-sectional area, cm , € = time, sec, N = nuclei=cm§, y = mole fraction of ThBi, in bismuth, 2 55 density of bismuth, g/cmz, Ogn. = "Bi MBi = molecular weight of bismuth = 2009, Yo = mole fraction of ThBi2 at saturation. This equation must be solved simultaneously with Eq. (16), using the conditions y = 0.00165 and Dp = O when 6 = 0. As the particles move in the precipitator, the distance from the feed inlet can be determined by integrating Eq. (20) to obtain: o £ = j U - v [Dp (6)] do. (22) - Equations (16), (21}, and (22) were solved numerically; results are -1 shown in Figs. 8 and 9 for a V/AC ratio of 0.5776 g-mole cmvg sec , which represents a fluid velocity equal to the terminal velocity of a 100~y ~-diam ThBi2 particle. The initial ThBip concentration was 0.00165 mole fraction, and an operating temperature equivalent to Yo 0.00003 mole fraction (i.e., about 370°C) was assumed. Under the assumptions of the previous calculations, the nuclei concentration necessary for a specified recovery of thorium (from the bottom of the precipitator) as ThBip platelets of a specified diameter can be determined by material balanée. A material balance on thorium yields the following relation: 34 ORNL DWG 70-4593 1000 - 500 |- c S 200 F e O l... < - o o 100 B - | s " _ O - I L | 2 = 50 - wd 20 - 10 ] | ] 104 2 5 10° 2 N, NUCLE! /cm Fig. 8. Effect of Nuclei Concentration on Length of Precipitator Required to Grow 100-p-diam Particles When Fluid Velocity Equals Settling Velocity of 10C-p-diam Particle. N A ORNL DWG 70—-459¢ 100 ; 30 80 70 Ll 50 30 20 THORIUM RECOVERED (%) O e 9 L 8 - 7 - 6 L 5 - 4 | 3 .. 2 | i | | ] L 1 104 2 3 5 7 10° 2 N, NUCLE!l / cm Fig. 9. Effect of Nuclei Concentration on the Fraction of Thorium Recovered as ThBie Particles from the Bottom of a 272-cm-long ThBins Pre- cipitator Producing 100-p~diam Particles. 36 where R = percent of initial thorium recovered, y, = inlet thorium mole fraction (0.00165 in this case), N = nuclei/cmi, and the other quantities are as defined previously. The maximum amount of thorium that can be recovered in a precipitator which cools bismuth containing 0.00165 mole fraction of thorium to 570°C (the temperature at which the bismuth contains only 0.0000% mole fraction of thorium) is 98.2% of the initial thorium present. If one desires to recover 99% of this value, or 97% of the initial thorium 5 5 present, then, according to Eq. (23), one needs 1.109 x 107 nuclei/cm in a precipitator producing 100-p-~diam particles. From Fig. 8, the length of the precipitator necessary to produce 100-p-diam particles and give 9T% thorium recovery is 272 cm. Equation (23) shows that, in order to recover a higher fraction of the initial thorium, one must have a higher nuclei concentration, N; Fig. 8, in turn, shows that the precipitator must be longer. To obtain the maximum recovery possible, one would need 1.122 x 105 nuclei/cm5 and an infinitely long precip- itator. In order to obtain a high thorium recovery from the precipitator, one must be able to control the initial concentration of nuclei pre- cisely. Figure 9 illustrates the sensitivity of the thorium recovery to the nuclei concentration in a 272-cm-long precipitator producing 100-p-diam particles. The optimum operating point in this case is just at the peak of the curve. 1If the nuclei concentration in the feed were to decrease (because of imperfect control), the recovery of thorium as ThBi, would decrease proportionally, according to Eq. (23). 2 However, if the nuclei concentration should increase, no recovery could bt occur because there would not be enough thorium to allow the increased number of particles to attain a diameter of 100 u; the smaller particles would be swept through the precipitator. Thus, it is obvious that control of nucleation rate will be extremely important. In commercial crystallization operations, nucleation is controlled by seeding the supersaturated feed solution. This type of nucleation control is not likely to be possible in the present case since solids handling would be involved. Programmed cooling of the feed to the precipitator might be used for controlling the extent of nucleation. However, no satisfactory method for predicting the rate of nucleation from solutions11 ig available at the present time. It is obvious that control of the nucleation rate must be considered further. L.5 Summary and Conclusions Even without examining the seccond and third sections of the pre- cipitator-redissolver complex closely, one can conclude that the op- eration of a ThBi2 precipitator in the described manuner will be dif- ficult. The estimated bismuth holdup in the precipitator section 1is about 30 ft5 , and additional volumes will be held up by the other sections. The economic penalty associated with this holdup could be significant. Three factors that could make the process unsuitable are: (1) the requirement for precise control of nucleation rate, (2) the im-~- possibility of rapid particle growth at low temperatures due to a temperature-sensitive surface reaction, and {3) coprecipitation of the thorium and rare earths. Further study will be required to com- pletely assess the feasibility of selective crystallization for sep- arating thorium and the rare earths. 38 5. MATERIAL BALANCE CALCULATIONS FOR AN MSBR M. J. Bell L. E. McNeese A computer code, MATADOR, has been developed to perform steady-state material-balance calculations that describe, in detail, the nuclear, chemical, and physical processes taking place in the fuel stream of an MSBR. Such calculations are necessary to determine fission-product inventories and heat-generagtion rates, to specify flow rates of streams in the chemical processing plant, and to investigate the effects of changes in chemical processing on the nuclear performance of the MSBR. MATADOR also takes into account the buildup of transuranium isotopes, the production of activation products by neutron capture in the carrier salt, and chain-branching in the fission-product decay schemes not i . . . . . 12 included in earlier investigations. 5.1 Compilation of MSBR Nuclear Data In order to perform the steady-state material-balance calculations, we have compiled a library of nuclear data for MSBR applications. This library contains half-lives and radioactive decay schemesg, three-group neutron-capture cross sections, and beta and gross gamma disintegration energies for 667 nuclides. Of these, 178 are isotopes of elements that comprise the carrier salt, graphite, and structural materials and their activation products; 461 are fission products and their daughters;and 48 are isotopes of the actinide elements and their daughters. Each isotope in the library is identified by its chemical symbol, its atomic weight, and its isomeric state (a blank for the ground state and the character "M" for an isomeric state). Several nuclides appear in more than one place in the library; for example, 5H is included in both the fission products and the activation products. The radioactive decay schemes allowed include beta and positron emission (to isomeric states and ground states of daughter nuclides), alpha emission, and isomeric transi- tion. These decay schemes are based, primarily, on the compilation of 13 Lederer et al. The three-group cross-section library consists of a thermal cross section, a resonance integral, and a fast cross section 29 : i : : . 14,15 which was generated by averaging over MSR spectra given by Prince for E > 1 Mev. In addition to the total neutron-absorption cross section, the library also contains, for each group, the fractions of neutron cap- tures that lead to fission and to (n,y), (n,@), (n,p), and (n,20) reac- tions. These data are based on the compilations of Stehn et al., and N The fission-product library includes a compilation of direct 2 235 238 232 55U, ij, 2 U, 2 Th, and Drake. fission yields from five figsile speciesg - 259Pu — based on the data of Katcoff.l The beta disintegration ener- gies were calculated by using the computer ccde SPECTRA. This code was written by Arnold, of ORNL, to compute the average energy of a beta particle by integration of the Fermi beta-ray spectrum, taking into 19 account changes in spin and parity. A listing of the computer library is presented in Appendix A. A computer code that reads the data in the nuclear library from cards has been written. The code also prepares an array of transition coefficients to be used in the material balance calculations described below. 5.2 Material Balance Equations For many purposes, it is adequate to consider the recirculating fuel salt in a proposed MSBR to be a well-mixed fluid at steady state. In this case, the average concentration of a nuclide i is defined by the equation afi O = Ve, ., A, + 0V f_ 0. +Ag. . +Ah _+0Vy .0..) N, _ ( 13°] c ij ] g%ij b1 ClefJ) j j + FN, -(AV+0,0V_+F +AG, +AH +P )N, (2h) io i i“ e g i bi i i where Ab = surface area of circulating bubbles, cm?, A = surface area of graphite, cm?, F = volumetric flow rate of fuel salt to the reactor, cc/sec, Gi = coefficient for loss of species i by diffusion into graphite, cm/sec, Lo H, = coefficient for loss of species i by migration to bubbles, cm/sec, N, = concentration of species i, moles/cc, Nio = feed concentration of species i, moles/cc, i effective chemical processing rate for species i, ce/sec, = volume of fuel salt, cec, o ¥ volume of fuel salt in core, cc, i3 = fraction of disintegrations by species j which lead to formation of species i, fij = fraction of neutron captures by species j which lead to formation of species i, gij = coefficient for production of species i by diffusion of species j into graphite, cm/sec, hij = coefficient for production of species 1 by migration of species j to gas bubbles, cm/sec, yij = fission yield of species i from fission of species j, Ri = radioactive disintegration constant of species i, secbl, Ui = average neutron-capture cross section of species i, cm , 0., = average fission cross section of species 1, cm?, d = average neutron flux, cm"2 secml. This equation states that, under steady-state conditions, the rate of input of species i to the fuel salt by direct feed, fission, and radio- active decay and neutron capture in the fuel salt, graphite, and circu- lating bubbles must equal the rate of loss of species 1 from the salt by radiocactive decay, neutron capture, diffusion into the graphite, migration to gas bubbles, salt discard, and chemical processing. For the conditions of interest, Eq. (24) is a simultaneous system of N linear algebraic equations in N unknowms: 0 :2\J a X +b, i=1,2,..,N. =1 To solve this system of equations, MATADOR employs the Gauss-Seidel successive substitution algorithm, which is a well-known iterative 2 technique for solving systems of equations of this type. 0 (25) b1 5.4 Computation of Neutron Reaction Rates A oumber of quantities must be computed by the code for use in Eq. (2&). Most important of these are the neutron flux, the average neutron cross sections, the coefficients for diffusion into the graphite and migration to the gas bubbles, and the chemical processing rates. The average neutron cross sections are computed from the 2200-m/sec cross sections, Infinite dilution resonance integrals, and fast average cross sections contained in the nuclear library by using a modification of a convention discussed by Stoughton and Halpe:a:in.g1 In this treatment, the spectrum-averaged neutron reaction rate of an isotope is: R = nv [THERM x o(th) + BES x RI + FAST x o([)]. (26) Here, THERM is defined as the ratio of the reaction rate of a 1/v absorber with a Maxwell-Boltzmann distribution of neutrons at tempera- ture T to the reaction rate of the absorber with neutrons whose velocity is 2200 m/sec (i.e., T TO/MT); RES is the ratio of the resonance flux per unit lethargy to the average thermal flux; FAST is the ratio of the neutron flux with energy greater than 1 Mev to the average thermal flux, and RI is the resonance integral of the isoctope corrected for self- shielding. Also, o(th) is the cross section of the isotope for 2200- m/sec neutrons multiplied by the Wescott correction for non-1/v behavior, and o(f) is a neutron cross section, averaged over a fission spectrum, for reactions with a high-energy threshold. The value of THERM is readily computed from the reactor temperature. Values for nv and RES are obtained from the output of the ROD reactor design code for a given reactor configuration and processing scheme. (ROD is a wultiregion, nine-energy-group diffusion code used for the primary design calculations for the MSBRJE% ROD supplies, for the important neutron absorbers, average neutron reaction rates that take into account deviations of their crogss sections from 1/v behavior and resonance self-shielding. For these materials, the MATADOR cross sections and resonance integrals have been adjusted to yield the same average reaction rates predicted by ROD. The value of FAST was estimated by numerically integrating typical MSR _ « 1,15 spectra reported by Prince. Lo 5.4 Model for Diffusion of Noble Gases into Graphite Coefficients for the loss of noble gases by diffusion into the graphite moderator and for the production of daughters by radioactive decay and neutron capture are computed in MATADOR, using a model devel- oped by Kedl and H.outzeel.25 The model replaces the graphite prisms of the moderator with semi-infinite solid cylinders of the same total area and surface-to-volume ratio. The surface of the graphite is assumed to be coated with a low~permeability material to a depth of 1 mil. Dif- fusion of gases to the bulk graphite is assumed to occur through an external liquid film and the coating, using a lumped-resistance model. The concentration of a noble gas isotope in the graphite moderator under steady-state conditions is described by the following time-independent diffusion equation in cylindrical coordinates (z, r): vy - (A + o0y, (27) \ Here, D is the diffusion coefficient of the gas in the bulk graphite, 0- 2 r oL, = in cm?/secJ and Vs is the concentration of the gas per unit volume of voids in the graphite. Equation (27) must be solved subject to the conditions of zero concentration gradient at the graphite center line and equality of flux across the outer surface of the graphite cylinder of radius R. One obtains the following solution: hi (mR) kx y. (r) = 2 - i hI_(mR) + Dem I,{mR) ~ (28) where X, = concentration of noble gas i dissolved in the fuel salt, moles/cc, = void fraction of the bulk graphite, k = Henry's law constant for the gas in the fuel salt, mole/cc of void mole/cc of liquid > A, + 0,0 1/2 m = characteristic reciprocal length E‘ - D - Ip(x) = modified Bessel function of the first kind or order p, Dlelhl h = lumped surface-film resistance = ETETE“:“ETE 3 cc of void 5 2 sec (cm of graphite) D' = diffusion coefficient of the noble gas in the graphite coatings, t = thickness of graphite coating, €' = porosity of graphite coating, h' = mags~-transfer coefficient through the salt layer at the graphite surface, cm/sec. In obtaining the expression for h, both layers are assumed to be suf- ficiently thin that the effects of curvature and nuclear transmutation within the layers are negligible. The rate at which a noble gas isotope is lost from the fuel salt per unit area of graphite surface is equal to the flow rate of gas i to the surface of the graphite: dy Demhk Il(mR) X, dr R © T h IO(mR) + Dem Il(mR) | (29) The poisoning per unit surface area of graphite by a noble gas isotope that has diffused into the graphite may be computed by multiplying the concentration of noble gas by the average neutron reaction rate per absorber atom in the graphite (assumed to be constant at the same value as for fuel salt) and integrating over the radius of the rod as follows: ehk Il(mR) X, h IO(mR) + Dem t[](mR)' vy (r)dr =% (30) <0 Similarly, the deposition of a nonvolatile daughter of a noble gas per square centimeter of graphite surface is: by R A, chk Il(mR)xi £ - X . Ai R ' yi(r) dr = m h Io(mR) + Dem Il(mR) (51) o The concentration of a volatile daughter in the graphite can be obtained by solving the diffusion equation with a distributed source, $ dy . } b a [ 9 | - T YT | - +~ g & = - v r dr \r dr ) (kj POgE) vy = et (), (32) ' subject to the conditions of zero flux at the graphite center line and continuity of flux at the outer surface, & -De & I = h[yj(R) -k Xj)- (33) 'r = R For the concentration of the daughter as a function of position, one obtains: Q; . h k[ %, + xJ] Io(fir) Ohk IO(mR) X, Yj(r) = 4% I_(#R) + Des T, (4R) ~ & I_(mR) + Dem I, (mR) - (3k) where ¢ is the characteristic reciprocal length for species j defined by £ . - A, ~0,0). j i i (Aj + OjQ)/D), and & is the dimensionless ratio & = —ejiki/(hj + The flow rate of material j across a unit surface into the fuel salt is given by: f hoka T (£R) h°ka I (mR) | h [y.(R) - kx.] = « 2 - 2 " x i i 1 h IO(ER) + Def I, (4R) h I_(mR) + Dem Il(mR); i “ hkDe£ I, (£R) “ | - & I_(#R) + Def I,(4R) | Xy -J. (35) S J4.5 The quantity in the first bracket on the right-hand side of Eq. (35) is the coefficient for the production of species j in the fuel salt by diffusion of species i into the graphite, introduced as gji in Eq. (24); the quantity in the second bracket is the coefficient for the loss of material j by diffusion into the graphite, Gi- Expressions for the poi- soning by material j And the deposition cate due to the decay of species j {which has diffused into the graphite) may also be obtained by integrating the concentration as a function of position over the volume of the moderator, but they are not presented here. MATADOR uses these expressions to compute: (1) the concentrations of the noble gases in the fuel salt, and (2) the poisoning and the deposition rates, in the graphite of the noble gases and their first-generation nonvolatile daughters. 5.5 Model for the Migration of Noble Gases and Noble Metals to Circulating Helium Bubbles A model for the migration of noble gases and noble metals to helium bubbles that are circulating in the MSBR fuel salt has been developed for use in the MATADOR code. This model is an extension of the model proposed by Kedl and Houtzeel to treat xenon poisoning in the T.VI,S'RJ‘:?;E3 it treats the bubbles as a separate well-mixed volume in contact with the fuel salt, and makes use of Kedl's results,gh which demonstrate that the concentration of noble gas in the bubbles is sufficiently low that it can be neglected when calculating the rate of transfer of noble gases from the fuel salt to the helium. It is assumed that a fraction of the bubbles is stripped on each complete pass of the fuel salt through the primary salt loop. Nonvolatile daughters of the noble gases and noble metals are assumed to return immediately to the fuel salt. With these assump- tions, one may write: 1 O =hAX, + 5—.*‘ (eijhjvb + fijchI)Vb)Nj ] i - (\V, + o0V +EQ) N, (36) L6 where Ab = surface area of circulating bubbles, cme, ES = efficiency with which the gas bubbles are stripped of i, Ni = concentration of species i in the gas bubbles, moles/cc, Qb = volumetric flow rate of the gas bubbles, cc/sec, Vy = volume of bubbles, cc, xi = concentration of species i in the fuel salt, moles/cc, hb = film coefficient for mass transfer to the bubbles, cm/sec. The other terms have been defined earlier; the prime on the summation sign indicates that the sum includes only the noble gases and noble metals. There is one equation of this type [i.e., Eq. (36)] for each noble-gas and noble-metal isotope; and, since the equations are linear, the system can easily be solved by standard techniques. 5.6 Assumed Chemical Behavior of Fission Products The MATADOR code treats the chemical processing of the fuel salt by combining the figsion products into groups of elements of similar chemical behavior. Each group of elements is assumed to be processed on a characteristic cycle, and individual elements are assigned a | removal efficiency. Thus, with this procedure, the removal time for each element is equal to the cycle time for its characteristic group divided by its removal efficiency. The principal groups of chemical elements and their processing cycle times are given in Table 2. The efficiency for each element except europium (efficiency, 0.222) is, at present, equal to 1.0. W Table 2. Chemical Groups and Process Cycle Times in Reference MSBR Chemical Principal Processing Groups Elements Cycle Time Noble gases Kr, Xe 50 sec Noble metals As, Se, Nb, Mo, Tc, ] Ru, Rh, Pd, Ag, Te o0 sec Seminoble metals Zn, Ga, Ge, Zr, Cd, In, Sn, Sb 200 days Rare earths Y, La, Ce, Pr, Nd, Pm, . Sm, Eu, Gd, Tb, Dy, Ho, Er oL days Halogens Br, 1 50 days Active metals Rb, Sr, Cs, Ba 5000 days 5.7 Material Balance Calculations for a 1000-Mw (electrical) Single-Fluid MSBR The MATADOR code has been used to compute inventories and heat- generation rates in the fuel stream of a 1000-Mw (electrical) single- fluid MSBR [which is equivalent to a 2250-Mw {thermal) single-fluid MSBR]. The reactor is fueled with 1461 ft5 of salt having the nominal composition TL.7-—16.0—12.0-~0.% mole % LiF -BeF —ThFM—UF Protactinium 2 ' is removed from the system on a 3~day cycle, and fuel salt is discarded on a 3000-day cycle. The fission products are removed as described in Sect. 4.4.6. Typical MATADOR output is given in Appendix B. Table B-1 includes pertinent input data (such as reactor power, thermal neutron flux, spectral indexes and parameters for diffusion of noble gases to the graphite) for the calculation. Removal times for the chemical elements are given in Table B-2. Table B-5 gives the molar density, mole fraction, neutron absorptions, activity, specific heat~generation rate, specific gamma power, and molar processing rate for each isotope in the fuel salt. This table concludes with summaries of the specific heat -generation rates, neutron absorption rates, and chemical processing rates for the elements. Table B-4 lists: (1) the 25 most important L8 fission products and heat sources in the fuel salt, (2) the most con- centrated isotopes in each of the streams of fission products leaving the primary salt circuit, and (3) the most important heat sources in each of the fission-product streams. Table B-5 gives the flow rates and heat-generation rates of each of the fission-product streams. Table B-6 includes a material balance for thorium consumption in the reactor. 10. 11. 12. 15. 4. 15. 16. e 6. REFERENCES M. E. Whatley et al., Unit Operations Section Quarterly Progress Report, July-September 1968, ORNL -Lz 7 | L. E. McNeese and M. E. Whatley, MSR Program Semiann. Progr. Rept. Feb. 29, 1968, ORNL-425k4, p. 248. J. C. Hesson, H. E. Hootman,and L. Burris, Jr., Electrochem. Technol. 3, 20k (1965). J. W. Cooke, ORNL-TM-2316, p. 1lhi. L. E. McNeese, MSR Program Semiann. Progr. Rept. Feb. 28, 1969, ORNL-L296, p. 273. J. A. Lane, H. G. MacPherson, and F. Maslan, Fluid Fueled Reactors, p. 275, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1958. J. Brynner, Progr. Rept. Nucl. Engr. Dept., May 1-Sept. 30, 1957, BNL-LT7T. A. S. Foust et al., Principles of lnit Operations, p. 450, Wiley, Evwen r— New York, 196L. Tbid, p. 451. W. L. McCabe and J. C. Smith, Unit Operations of Chemical Engineering, p. 815, McGraw-Hill, New York, 1956. C. S. Grove, Jn, et al., "Crystallization from Solution," p. 22 in Advances in Chemical Engineering, vol.3, ed. by T. B. Drew et al., Academic, New York, 1962. J. S. Watson, L. E. McNeese, and W. L. Carter, MSR Program Semiann. Progr. Rept. Aug. 31, 1967, ORNL-~4191. C. M. Lederer, J. M. Hollander, and I. Periman, Table of Isotopes, 6th ed., Wiley, New York, 1967. B. E. Prince, MSR Program Semiann. Progr. Rept. Feb. 28, 1967, ORNL-L4119, pp. T9-83. B. E. Prince, MSR Program Semiann. Progr. Rept. Aug. 31, 1967, ORNL-4191, pp. 50-53. J. R. Stehn et al., Neutron Cross Sectioms, BNL-325, suppl. 2, 2d ed. (196L4), pp. 1-111. M. K. Drake, Nucleonics 24, 108 (1966). 18. 19. 20. 21. 22 . 0%, 2l . 50 S. Katcoff, Nucleonics 18, 163 (1960). E. D. Arnold, Handbook of Shielding Requirements, ORNL-3576 (196k4), p. 21 ff. L. Lapidus, Digital Computation for Chemical Engineers, McGraw-Hill, New York, 1967. R. W. Stoughton and J. Halperin, Nucl.Sci. Eng. 6, 100-118 (1959). 0. L. Smith, W. R. Cobb;and H. T. Kerr, MSR Program Semiann. Progr. Rept. Aug. 31, 1968, ORNL-h34L, p. 68. J. Kedl and A. Houtzeel, Development of a Model for Computing 155Xe Migration in the MSRE, ORNL-4069 (1967). R. J. Kedl, MSR Program Semiann. Progr. Rept. Aug. 31, 1968, ORNL- Wshl, pp. T2-75. APPENDIX A. LIBRARY OF NUCLEAR DATA FOR MSBR APPLICATIONS NUCLEAR TRANSMLTATICN DATA NUCL = NUCLIDE = 10000 * ATGMIC NO + 10 * MASS AC + ISCMERIC STAYE {C CR 1) DLAM = OECAY CONSTANT {1/5ECi. FB, FP, FA, FT = FRACTIONAL DECAY BY BETA, POSITRCN {(OR ELECTRON CAPTUREJ}s ALPHA, INTERNAL TRANSITICN, FB = 1 - FP -~ FA - FY F81, FPl, FNGLl, FN2N! = FRACTION OF BETA, POSITROM, N—-CAMMA, N-2N TRANSITICONS TO EXCITED STATE OF PRODUCY NUCLIDE SIGTH, SIGNG, SIGF, SIGNA, SIGNP = THERMAL CROSS SECTICNS (BARMS) FOR ABSCRPTION, N—-GAMMA, FISSICN, N-ALPHE, N=PROTON. SIGNG = SIGTH * (1 - FMA —-FAP)s SIGNA = SIGTH ¥ FNA. SIGNP = SIGTH * FMP. FNA, FNP = FRACTION THERMAL N-ALPHA, N=-PROTON. RITH, RING, RIF, RINA, RINP = RESONANCE INTEGRAL FOR ABSCRPTIOM, N-GAMMA, FISSIOM, N-ALPHA, N=-PROTON, RING = RITH * {1 = FINA ~ FIiNP)e RINA = RITH * FINA, RIAP = RITH * FINP, FINA, FINP = FRACTICON RESONANCE N~ALPHA, N-PROTON. SIGMEV, SIGFF, SIGN2N, SIGNAF, SIGNPF = FAST CROSS SECTICNS (BARNS}) FOR ABSORPTICGN.FISSIONy N—2Ns N-ALPHA, N-~PROTON. SIGN2N = SIGMEY #* (1 - FFMA = FFNP}. SIGNAF = SIGMEV * FFNA., SIGAPF = SIGMEY * FFNP. FFMAs FFNP = FRACTIOM FAST N=ALPHA, N=-P. Y23, Y25, Y02, Y28, Y&9 = FISSION YIELD {(PERCENT! FROM 233-U, 235-U, 232-THe 238-U, 239- Pu, QO = HEAT PER DISINTEGRATION, FG = FRACTICON CF HEAT IN GAMMAS CF ENERGY GREATER THAN 0.2 MEV, EFFECTIVE CROSS SECTIONS FOR A VOLUME AVERACED THRERMaAL (LT 0,876 EV) FLUX ARE AS FOLLOWS. N=GAMMA -~ SIGNMG % THERM + RING * RES, FISSICN = SIGF * THERM + RIF % RES ¢ SICFF *x FAST,. THERM = 1/V CORRECTION FOR TRHERMAL SPECTRUM AMD TEMPERATURE. N-2N - STGN2N % FAST. RES = RATIQ OF RESONANCE FLUX PER LETHARGY UNIT TO THERMAL FLUX. N=ALPHA = SIGNA % THERM + RIMA # RES + SIGNAF ¥ FaST, FAST = RATIC OF FAST (GY 1.0 MEV) TO THERMAL FLUX. N=PROTCN = SIGNP * THERM + RINP * RES + SIGNPF % FaS§T, FLUX = 1.50E 13, THERM = 0.4360. RES C.0805, FAST 0.C762C FCR 235-U FUELED MSRE AT T.5 MW{TH) FLUX = 2,7T0F 13, THERM = 0.4660y RES = £,1100, FAST = 0,043 FCR 233-1 FUELED MSRE AT 7.5 MW{TH} FLUX = 3.70F 14, THERX = (0,379, PRES = G,1027, FAST = 0.05 FCR TWC REGICN MSBR AT 556 MW{TH) FLUX = 4,90F 14, TFERM = 0.2791, RES = 0.1027, FAST = 0.05 FCR ONE REGION MSBR AT 4444 MWITH) FLUX = 2,315 14, THERM = D.306, RES = 0,0693, FAST = 0.05 FCR STANGLE FLUID MSBR AT 2250 Me{TH)s CASE HK-G-30 REFERENCES HALF LIVES, DECAY SCHEMES, AND THERNMAL POWER £ M LEDERER, J M HOLLANDER, AND I PFRLMAN *TABLE OF [SCTCPES - SIXTH EDTTION® JOHN WILEY AND SONS, INC {1967} B § QIHELEPOV AND L X PEKER 'OECAY SCHEMES OF RADIOCACTIVE NUCLEI* PERGAMMCN PRESS {1961 D T GCLDMAN AND JAMES R ROSSER 'CHART OF THE NUCLIDEST NINTH ETITION GENERAL ELECTYRIC €O (JULY 1566) £ D ARNOLD *PROGRAM SPECTRA® APPENDYIX A OF CRNL-3576 {APRIL 1964} CROSS SECTICNS AND FLUX SPECTRA B F PRINCE *NEUTRON REACTION RATES IN THE MSRE SPECTRUM® ORNL-4119, PP T79-B83 {JULY 1967) B E PRTNCE 'NEUTRON ENFRGY SPELTRA IN MSRE AND MSBR® ORNL-4191, PP 50-58 {0EC 1967) M D GOLDBERG EY AL YNEUTRCN CROSS SECTIONS® BNL-325, SECCKD ED, SUPP NO 2 (MAY 19564 - AUG 19560 ALSD EARLIER EOITIONS B T KERR, UNPUBLISHED FRC COMPILATION {FEER 15568) M K DRAKE tA CCMPTLATION OF RESONANCE INTEGRALSY NUCLECMICS, VCL 24, NC 8, PP 108-111 {(aUG 19661} BNWL STAFF * INVESTIGATION OF N-2N CROSS SECTIONS® BNWL-G8, PP 44-G8 {JUNE 1965) H ALTER ANLC £ ¢ WEBER *PROUODUCTION OF H AND HE IN METALS CURING REACTCR IRRADTATION® J NUCL MATLS, VOL 18, PP 63-73 {1965) Lt BENNETT YRECOMMENDED FISSION PRODUCTY CHAINS FOR USE IN REACTCR EVALUATION STUDIES' CRML-TM-1658 (SEPT 1955} FISSICN PRDEUCY YIELDS S XATCOFF * S1SSTCA PRCOUCT YIELDS FROFM NEUTRON INDUCET FISSICAN® NUCLEONICS, VOL 18y NO 11, (NOV 15609 4 H GOODE *HAY CFELL EVALUATION OF THE RELEASE OF TRITIUM AND 85-KR DURING PROCESSING OF U02-THO2 FUELST GRNL-3956 {JUNE 19661 A4 ANG ACTIVATION PRODUCTS MBTERIALS CF CCOANSTRULTILCN, LIGHT ELEMENTS, 53 < o o« P~ O ~ g~ (=} 3 G000000000000200000060Q69004030990032000.%05500000001000 Go.l-.cooooo.l-ooooo..o.-o-o.oo--o.occuo.oo-o.c.coo.oo LWOOOOQOQOO oo OOCOoOOOoOOOQOOOCOOOoROLOOOQORLOOOQCOoOOoRLIICOOO o0 0 [ Qun L= L4 Qo O o < o o O O QO 4 @ D O o i oo < < w o ~N o~ o, £ U o oy 3 o O I~ 0 OO0 OO IO DDNNOLODOYTSONVDOGORO~OOQQOQRMCOIAQUNMOOONORO~O0O0 e 5 8 & % & @ & 8 % & 2 B B & 8 0 B B & 4 & 8 2 8 p s % 48 0t B e b gt e " B S S F S et E e OO0 DOOODOODONOOVDDOOMMODOAORODOGONODTODONQIFAODODONIDIAMNQOOOOOGYAOCQ o 3D OO ™ 3 0 0 ~0 -+ o j] b O il C F M » » - » - - & L . a2 4. o . » a » & . % & 0 e & b & 5 & & 5 ¥ 00100050&3603500300310090052060001011000105300570535390 AN F N T OO EDOO D NN ND O GC OO NOM PN GO0 @U@ G Ot et N O Y L A T et et d gt et el el gt e e e e e et O O N B D O N O ) OGO R OO O RO 0T e M e = T T T L WU we e = MW W O OO TZTELOOQOW M WKW WG IO OWNE W)~ G A 00NNy T E T od owd od €000 0O Z2PFIEIIFEEXAMGANIW PRODULCTS AND ACTIVATION MATER[ALS CF CCNSTRUCTICN, LIGHT ELEMENTS, 54 a0 o o oOwm <+ T o D 0 m S 00700050000020002753300000?0?0879060G0002000557 G.l'......‘i........!“..l....'..I...‘.ll.."ll. WLOOOODOoOOoOVOOOIQOCOOOO0RLODO00OQOoOoNORLRILROOGQOoGOO o =] &5 < & .u. & QOO P~ ™ 0 0 O OO0 OO0 OO0 5 0 - O 4 o VO N < ~ o W - @0 00050301080205000723040001040033@59600000160068.& s & & #%# & ¢ & & s I..I...l'..l.....l'...llll......'..l.. 00390030OGGO2900.&.1300000091040213040@0001900215 a & ~ © o " MW < Qe DO ~ Zz o~ ~0 5 Q P WO o nOWn 3O D UL QOO AOLOQOoODOO0QLQOIOINIYLOCOOLUOCOIQRROMGrDODODOCD 00 i & #2 & @ * & & % 8 @ B & 8 B W @& F 922 6 6 & A e P 2 @ & » S 9t * 8 & & & & = 8 0 8 b B A 000@00000000000000000000000000GGOGQGOOOLOGOGDOO I O L o &~ wn 00NN fl. CoOT o ¥ z ~ MW o o N i F O D o LOQANDQODDOMODODOOO 100000165?30000030000002020 QOQOQC AL » &% & % & & » 8 & & » a 4 @ & » 3 8 & % ¢ 8 & T 4 9 e " 5 9 & @ & % » 4 & ¢ & & & 00 COO00DOQOo0O0~ T Q0 00000000000000009@050@00003?JGOOGO =l z 200000000000000000000090JOOOODOOOOOODUQOQOODODOO N'u....'l...ll..'.lt.l.. 4 o B & 8 & & ¢ @ * % 8 & 8 ¥ o & 4 & & 8 O FOGOOCOOOOODOOOODQOOGOGOUOGG00000000000000000000 o " — o o~ o N e < oo Wn < > (=] o 2 o o QO Q @ QOO0 Ca o w ] | 1 1 1 [ i Fror b | x w wow W Lt W W 7] L L LWL W D od ~ o Q P~ O 0N D NN OO o o I.OO02040100000?0000030515006002000G0377550300900 Vi & 8 & @ % » & ® 3 & & 8 & 2 % 8 & 4 ® " & & & ® & & & 9 4 9 B p & & W B & a4 & & » & & B DOG?.OlOlOOOOG&OOOOOBO.Q?10000010000@126120005000 o 200000000000 QO0QOO0R0CO0ONOOROQOLOOQUOOOODOORDLDIDOO0O0O0OCC0 w 3 @ @ ¢ 9 % @ & w " & B P @8 B & ¢ & 9 4 & & g » P I 4 & " P S e 8 " B " B g e e " B 0 LOOOQooOooOOoOOCQoOOA0R000000Q0ROCO0QCQOOD00O000000aD00 o EOOOoO0D00O000OOOO000OLO0O0O0ONOOEOROCVOL2OoOLTOOOOLLOLOO . g4 & 8 # 4 & & 9 e« &« B & p 9 & 4 & ¥ s % 4 ¢ * 2 B & & & & & B S » A VT & * 8 4 ¢ * 2 ¢ * 4 FOOOOUO00000000000000000030000000900090000000000 ed - O o 1 X L Lt - o o —HOODDOQOO0OOOMNOOMODODoOOOCOLODOCVLL OO0 QCOQCOVDOOQOOCQ X e 8 » @ 8 @& # & § % 4 5 & & 2 B AR B B 4 8 P eV & ¥ 4w B B S A S S RN A o oy o OOOMOOO0OCODODIOAQOCOoOoOOCOO0DOOQOMRDODOOoO0O0DOOCCQODOCR a ~F o Q 5 2000000000 QOQOTOOROOQUOOQOL OO OOQOoOOURLoODOLo0O0O Fl-....0-...-..ll.l...IODOOOOOCOO'Itl..l.l.....l OO OCOCOOOOOO0OooOLOCoOODOCODOOOOOODAQOCOOQOOOO0 ong Q L < . Own Tyl W~ -t O N o ™ ™M O O O OMNOOOCA~CNOo00OVONLONOMOOOCLUO MO NAMOROOC OO0 TOoOOor-N » & 8 a4 ® & & 9 5 & 4 5 & 4 % & 4 e & & B 4 4 & & B S S F 4 B B g P 4 @& 4§ B " a4 s " O ONOMROMNMOMMOO0 OO~ ONCOOG O O-DIPNGIN OO OO NI oM AN~ EC OO O N O NN X GO OFDTODE X0 D e 00Dt OO M.31,3.5:;1;31.3qfl1_4.«qJ4 A A N AT LTI ITT IS G IETTITETII T DN GO G BN ZWVV YV ) ad o) ol Oy SO N X N MW L o o wl ol o ol ad () QA CD ) T et et e W D D T T e D IO O e T o] T T VDOOLUOLOLLOOUMMAOWVUL Y &b ~ ~ QOQOCOWD e 8 a8 8 s s s QOQCOOOROo LAl <0 ¥ 5 D QOO ONMO . 8 ot o 8 s 0 DO O e O w0 O OO [\l o ey e OO 0 O EOOOOm e 5 8 & a e & o D000 Q0QO0 2 OO wn o~ ooy o SO QLPPOO e *» 5 8 & 8 8 8 @ QDD OIOOO0 QOO0 OQOQC L] - & & 0% & 4 @ OO0 OO0 o & N SO0 0U0oOO 0L CoOULOUALLOoOo0OOCOO0GC00000O0T0 OO0 & 8 ® & g B @ * S 5 s & Tt & T P S B & T B L T e e O N F TS RPI S ST S S 8PS S o s 2 4 8 e 6 ¥ 3 s 2 & B % g * & & F 4 e = & u ¥ 2 & w a & & & ¢ p & & & & 3 B B & » 2 + 8 ¥ 8 DUOQLUUOOOOLROODO 20,0000 DIOOTOODTINLODAIOITIIOTOOOQD . 4 " 8" 2 e @ 4 * 5 2 % & 4 88 @ [ OO0 OI0000200Co00ODOVOoOU 0000000000000 0CGOVOOO00C0C0O000 [efoReloReNaoRoRaReRoRrRsRoNoReReRr RN eR el RoReRoR o ReReReRoReRole R lole R ieNal«NoNe RoR ol =R No ke By DO OO0 LT COODORTOUCUTULOAONOCUODOoOLOOO0000 OO0 OGO OO0 OO0 COCGOOMmMOCOCOACAOIIAOOCoaO0D0 & 4 8 &4 0 5 5 B # T e B S F A BN R A e s E R e T Y TR o - * 1.¢0C Ge 1.0C0 0.0 0.C 1.000 Ca 0 C.0 1.000 1,000 1.00¢ MO IWOONOMNBEI O OO~ ONOMOOOOCO OO « = < [ ™M it VN OO + Qo m mom mmrmimin w m *® & & ¥ 3 & a » * & 8 9 & & 2 2 @ . @ 4 &4 @& 9 o % & 2 8 & » ¥ 2 *® ® N DCDO#JC}D-qC>m\nnaocnc>0‘bc:gcaunc:o\nfi)erc:nr}otfiC)OCDH m < o o & moom m 1.02E 3,.55E 6e33F 2.00E G0 1.66E 2. 0CE Oe 0 1.80E Ued e 3.C0E 2..50E 1.00¢ G 02 01 01 01 01 0o 00 02 01 o2 03 2z 02 01 03 03 c1 c2 o1 ] 2 & o m 43 O b= mm 02 o m 02 Mo m 02 ODOFAFODOORFTOQOOODODOCOODARN 02 01 ¢2 g2 02 02 02 03 gz c3 02 03 02 ACTINIDES FNG1 0. 0 Ge 0 C.0 0.0 G0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Qa0 1 C.0 0.0 Ca0 1 0.0 0.0 o Ce8512 © ¢.Q 0 0.0 0 0.0 7 C.0 £ C.0 0 2 C.0 5 0.0 0 00 G Ce 0 0 0.0 G 0.0 0 C.C 3 Je0 1 0.0 0 T 0 1 G.0 i 0.0 C.0 0.0 C.0 €. 0 0,162 0.0 0.0 D943 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.0 0.0 0.0 0.0 Ce O 3.20E (1 Ce 0 3.0 1.7T1E 03 0.0 l.68E O3 3.50E-02 0.0 3.13E €O 6, 00% 2.90E 03 44.508-01 0e0 2.30F 03 0,0 5.93¢ 02 2. T0E 00 — n 0t 02 5E 02 OE 02 0E Qa1 9 Q3 QE €2 0€-01 0E 00 NOoOQOQRODOOLFrRLMFNOOOUDOLLDLOWODNW20QQ0Q0O0OCOORODIOCCGOCOR NODOOOWMDODOCOCORCdUNDOOCOOROQCOOHMONNCOOOOCQQOOOOOOLCODOOOoOoOOO D ® & 4 @ & & ¥ 0 8 % g ® 5 & 4 9 € @ B 9 P s 4 " B P E " ¢ 8D s & & 4 4 5 & » 8 B e & 4 v 8 0g 01 GFE a & o o 2 P B 9 8 s b OOOOOOOOOOOONQOOQOOOOU\ONO\GI‘OOOG-‘*OO‘OQNOOOOC}OOOOC}OOOH m =) < SE-01 (] m o < 9t 00 TE-01 TE-D1 3g 00 * QOO0 QROLOLQOOONOOUROUOCOWRLIOANODDODmMODHOD QO OOCODOOOQO0 GN2N OO0 YO OO QOLLOQLOOLOUOCO T.003E-03 5+20E-C3 8434E~03 7T+ 00£-C3 Ge0 4 H0E-03 Ca.0 l. 105‘03 2.40E-03 2.20E-03 0.0 1.50E-Ca 5.60E-03 { =] QOO0 O T a8 v w8 OO CQOoOOoWw z et s 8 5 ® & 8 ® & B B P & 0 4 " ¥ oo P OC0OCOONOOCOROOOoCOLOOQROO0ODoC OOl LDOoDoOO0OOOQON CO0OO0OOQAOOCOCOOoOC OO0 UOOCOLCeCOlOO0000000GOmM 2 B & ¥ 8 8 & 8 B " s 8 B 8 e £ 0. G 2.308 0.0 04299 2,710 B. 940 6.899 6.398 S.782 5.525 541090 4.T767 0.233 44080 G420 1.380 5.148 0.560 D.408 0.849 1.700 Se%14 4,909 4.856 4.5680 40573 O.362 4,268 Q.400 Cetd75 0.0 G.268 0.500 5.870 5.587 $a243 S5.055 0.007 4e 380 G.240 5,600 J.048 0.22% 5.009 0.4600 1.130 6,217 5,141 5,800 N O OOU&OOOOOOOOOO@OO o 48] LG D ™~ CDOOQOUOO0OOCOOODCDODCOODOLODO w» ® & & s 4 v 2 & 5 2 s B T B N & & @& B S s % s o0 B ¥ o DOOWOQLOOOLOHOCLQOIPrRO D~ H IN GA GE GA GF GA Gt GA GE GE AS GA GE AS SE GE GE AS SF SE GE AS AS 5F AS SE SE 8R AS 5¢ BR BR KR AS SE SF BR KR KR SE BR BR KR SE SE BR KR KR S8 B8R BP KR SE BR NUCL 7om aow 81M 81 a1 814 81 82 a2m a2 83M 83 83 B3m 23 34 B4w 84 8% 8% oLam 1.798-09 4-‘45'06 1.,27E-05 0.0 3.93E-05 0.0 1-"6&"03 0.0 5.7BE-03 1eh4E-02 1.41E-04 0.0 2.17E-02 0.0 Te27E-05 C.0 1.28€8-02 1.70E-05 4, 98E-06 3.96E-02 0.0 1031E"04 14+93E~-03 G.0 1.286-03 2.96E=-073 3,28E-13 0.0 4.53F-02 9.0 4440E-05 6. RHE~ D4 0.0 2.10E-02 ZQOSE"O‘Q 6,21E-04 0.0 S.33E~02 0.0 %.90E-03 4.62E~04 7.99E-05 1,04E-04 0.0 3.50E=-03 1.93E-03 A.63E-04 0.0 1,78E-02 1,85€-02 Fal 0.0 C.0 0.0 Qo002 T s s B T s s S e P s e 4 B B & % & & s * & & 5 ¢ & 3 & B B s B P S s Bk 400 OOOMOOO0DODL0DOO0L a0 OO0 ODEO0OUOOUL00DROOOCOCROCCO W * =S OOO000HFOo00O0O 0000 oo 00O 00000 OO0 0000 . * s @ i " m » " 4 & ® & & ® & 8 0 @ " w s 2 » 2 - OO0 O0O~O0 00 O0OQOQOQ a8 % & * 8 9 % & & & ¥ F 5 s H (=] o ) O o OO0 IVOO0ODO OOV TOLOTOQLDO s 5 4 COoOO00QOQUUOODOOOOLOOLLAACLUOICOTONORYHLTOOoOLOO0DCLOO0OIOO0QRT < Q OO OOINOOOCHFPOANCODWIOIOO= OO LPrOTODOOOHr,OO0O Q o > & & & 3 OO OUOCOO0C 0o 0OONOODOROUOOO00 OO0~ o o QOO0 OoROAOUOOUOOLEUORLO0CIILO0 o O . . & @ QE-Q2 - COUOCONOODORLHIOHOOOONOO QOO VNOO0D~O-EOODOOWMOO FISSION PRODUCTS RING O.D 1.45E 01 6. 70E-01 0.0 -6GE-02 " & e a B O «a & & % P 8 B B ¥ ® B % " 2 & ° & P ¥ B s & @ ODOVLQLOODODOOOLEOODRQOVOOTILNOOCCROLOPR,FOROOLPICLONOOO O dOOOLDO @ (o [= < < — oo m(DOidH\uOC)O'QO\MC)N(DOanCJO\flOCDC - o Q S 8 85 B P P P 8 B 4R P e e g e e e OCOOCOONICOHLOCOHOO000000000COVMUNOMNLOONTdTOUNODCROLRLOODOOOCOO COUOOOOCDUOWRO00UOICOCOVUOLLOOOLlOOCONOC00COC0O0QOrLOO0OO0 «Q © ® & & & & 5 % 3 ¢ B ¢ B & 2 B P OB B B Y23 2-80E‘01 1.1D0E-01 0.0 2,27 00 CeD 2.30E-04 Qe 0 0.0 4.56E 00 0.0 -0 TE 00 2E 00 o f“ O o 5€ €O 4 = 8 » »> & . & o DE~O1 1E 00 OE 00 0E-01 0 0 «3 0 ¢ 0 & 0 0 4 0 & O 8 0 0 0 21 + 9 e b e « 0 «b0E=01 2. 06E QO 3.78E 09 0.0 8, 00E-01L 0.0 £.20E-01 6. 08E 00 J.,0 0.0 2. 80E~01 0.0 C.0 Le 00F=-C1 2.51€ 0D 3.,03E 00 0.0 1e04E QO 1.50F 00 2.95E 00 1.60F 00 Q.0 Y25 1.43€~01 5. T0E=02 0.0 2.02€ 00 0.0 2.908E-05 0.0 9¢ 00 * e LOoOXLIPOQUONOOLOOVMOCRIODOO HC .y m o < *. & o B 9t 00 0E-01 0E 00 w m | o [ 5 o¢ 8 00 GE-01 QoW WOOONNOVMONOOQOFOQOWOCLIOOMND > & & % & & & & ¢ B B B 3.00E-02 1.87€ 00 3. 432E 00 0.0 T«30E-01 0.0 4480E-01 5.562E 00 NeD Qe 3.50E-01 0.0 0.0 1.06E~01 2.40E 00 2.90E 00 0.0 1. 00E 00 1.55E 00 3.008 00 T.68E 00O 0.0 Yo2 T.SOE'GZ 3.00E-02 0.0 £.C0E 0D J. 0 8. 60E-05 Q.0 O 0D QE 00 2E 00 O " = < gg-01 7E 00 5E 00 0E-01 ODOIMNIPOOODLCOROCONOOLDOIPOOOROOOO OO 4 % 8 % o F 8 % 9 4 9 & &P 4 W b+ 8N e 4 CO~NPNOOOwwD GPCbzg COHFOOO0OJOOODINO m | o s 4. 00E=-02 2.23E 00 6, 10E 00 Ba. TOE-01 0.0 5.30E=-01 S417E GO Qe O Ua 0 3.80E~-01 G.0 0«90 le10E-01 Z.HZE Q0 3.17€ OO G.0 1.99E 00 l. 71€ 00 3.30E 00 1.81E 00 2.0 Y28 2. 20E-01 8,90E-D2 0.0 l1.38E 0Q 0.0 2.C0E-04 0.0 0.0 1.80€ 00 «9 a * @ & o O\J O‘Q(D|U|D < ~I¢IC2C)U1C}C>O 0t 00 8E G0 0E-01 TE 00 0£-01 CLOPHrOorC h‘C)C)thJC)C}ru Qoo « » B & g -« = & % & & & & & 9 2. 38E 00 1.34F 00 2'60E-01 J.q 0.0 4.00E=D2 1.40& 00 2. 56 Q0 Q.0 5.40E-01 0.0 3-705-01 4. 35E 00O 0.0 0.0 2.705-0‘ 0'0 0.0 8,80E-02 2.10E 00 2.54E Q0 0. C 5,806-01 Le4%lE OO 2.73E 00 1.50F Q0 0.0 Y49 50905—02 Z2+60E-02 0.0 T.60£-01 0.0 2.30E-05 0.0 0.0 9,20£-01 2t 00 8F 0O » * a e @ . ® & a & & @ » 2 5 ¢ & & o & 4+ g & & 3 . - OE~-01 » DONOQWROWOWIHFOCOHERQOONOO~NODHOOOmOOOoO DO OQPOOODERQONN~NEFOCOTWHITOOOWDAIOHODPOOOPICDODO * 0 & 9 9 & » T.C0E-02 1.6BE GG 2.03E 090 0.0 7.00&'0& 1.24E 0D 2.4tE 0D 1.328 GC 0.0 Q 0.407 0.271 0.0 3.230 0.0 Ce560 De 794 0. 5.650 2+ 430 0.110 0.388 0.0 4.050 2.030 2+690 0.0 3,270 2. 740 2.990 0.607 3,0 3.110 4,700 0,220 U. 685 De865 0.0 1.570 24950 1.740 0. 551 Oe 8642 G.0 2.250 3. 490 1.460 1.780 Q.0 3,680 24750 3.220 1.380 2.020 . 030 0.0 2.510 4.170 24250 2.720 Ual 3.420 Z. 500 2.020 0.883 FG 0.172 0. C08 0.8 0.C J.0 1. 000 0. 116 0.0 0.670C o440 0'0 1. 000 0.0 0.0 0.830 0.210 Qe € Qe J.475 C. 800 Ce 0 Ge O Ceb70 0., 6930 0.0 1. L8O 0.0 0.0 t.C 0. 305 0. 620 1.3000 0. 006 0.0 0. C GeC Co 8RO 00210 Ce 0 J.0 Ge € Ca629 0.200 Ce C D. & Je PRV Ged 0a &30 O« 369 C.C Ce O 0. C t.210 Ca 821 65 NUCL TC102¥ TZ102 rRUu102 Main3 gie3 RU103 RH1G3Mm RH102 MO104 TC104 U104 RH104M RH1O0& PR104 Maies TC05 /U105 RH1Q5M RH105 POLOS TL106 RULDG RHL06M RH108 PL1O4 DL AM 2.14E-06 2.29E=-07 1016E‘02 1.60F=-04 0.0 1.,1£5-02 5.785-03 2.275‘0“ 0.0 4,81E-07 2.B7TE-D6 3,215-05 ¢ 1.04E-13 80255-04 0.0 1.05E-03 2.57E-03 1.,398-01 O.0 1.12E-02 1.39;-02 2-035'07 2.03E-04 0.0 8,89E-02 6,42E8-04 0.0 2.,82E-03 1.41E-02 0.0 1.73£-02 B,66E-02 L ,34%-05 1.54E=-02 5-362-06 C.0 1.B75-02 2;19&’0&‘ B.,89E~-D5 2.31E-02 0.0 N | o ot Q o MNMQOQWO = ONMQRQUOUACOOLIrOS- OO0 OOOWOQODNODONO-NDOODF OO OOLODO OMO o ™ o " s % & 8 8 a @ COOOIDVITOCOLILOCUOD2TOD0L0DVOCOOOOOAD IO LRI OII0O0LDCLOODOV 2 e e @ QOODOCOLOLOCOCLILOCOLLOOLOROLOLAQRIACEOICOCOOALLICLCOOOCCODDOOO 2 o ® 4 * 8 % @ Q o - < =} & - - - - . - * « & ¢ 8 @ e OO0 C O COORIOOROLCUO000CLL OO RA0RCOO0LODLOLOOOOROOOD0 D~ [ o« « % = 5 e L) < o Q [o] a & & @ 4 ® & % 8 4 s . o O o < *« & & 3 + e @ o < - Qoo QoOoNOOCoOOoO0000000LDOWMODoD0CDODEOOMO0OLON0ORACOOAO00® SO0 O0O0OULHOOLOODLOLCLLOOODLRLO0CULOCILTLOCDIODOUIOLODODOODDO0D * % & & & ¢ 5 ¢ ¢ & & & g € % s B 5 @ T S B 8 B P 4 " P B S F 2 ¥ 8 s P st 8PP g s s s e oe s s s T OO0 QLOCOLOCUDODOOC2O0O00O0CND OO0 0CIOCCOOAOROOOUDOODOCOCOGOOR0 COOOQOST R OO0 DWm D000~ 0000000020000000 000000000000 0000 DK - - « & & 9 o . 8 & & » —t o z o " 04 £ 01 wm o 0E-02 0t 990 * & JE 00 OCO-NCOUOO0DO0OOLFOCOCODOTOHFROLIHMNOOOVMADONODODONIOWOH OO 0e-01 £ 01 o0 m o 1 & o m | o vt m [ < (=] m © € * & & & * 3 2 & ¢ & % 9 B & 0 " 2@ > 2 4t 0C CE 02 o 32 t QO D= O000QOOQm DO o ) ® % & w a & ¢ s & % & ¢ 9 & & @ OO0 COIOIO OO0 COO0OOOna CO0CD0LLOCUOLOOVOoOOoLOQoOLOOCOQ SIGNG 0.0 0.0 0.0 1.C0E 01 3.50E L1} 0.0 w m 01 o m 01 o L 01 TE-01 0 01 0E-01 o m o 1 0E 04 0E 01 ® & ® ® & & & ¢ 3 B & & B T B B "B S 8 & B S F = € + 5 9 » a 4E-01 0E-01 - ” L ] * & 9 COOMNOOHOLOQOIRDMOODMIOFNOODOLOWAOAONVNOQOODAQONDHNODD DO QDM O . OO 00 PoO 000000 OaNOOFR OO0 OO0 WODMOODOODDONG =) ™ { o N . & * * & QE-03 <9 m < m RN m . % 2 ¢ e @ . @ . e . 2 9 (%] m ¢« 8 & 0 ° 3 « 8 3 SFOONOIODLSrACOOC OO ODNQWOOAOWMOOOAWOOMNO FISSICN PRODUCTS 01 02 cl 01 01 02 03 01 DOOWOMSNOOOOO0000O0~NGOCO0ONOO000000G0O0OOROOO0M0DDO0OOCOD0 Lo e o o N 0 CCOUrAQOOOHMOOUOQOOONNOOOQWOOQOQPIrOOGO NGO DK - ~OQOOOCODOLODOO OO0 COAOCLOOFOO00OOLOOD o000 L0 0 ® & 8 & » g b & ¢ & B 2 P oF F s % 2 g e ko E e P A s s AP EF P s T Y23 . 60E-D1 Q0E-02 *® » ® 0E-02 0E-02 E=-04 E-02 *® s 4 @ o Q DE-02 0E-02 0E-02 . " ® - QOO UOOHRNOOACTTO OO0 PO OO PLPIOINDCOOD 2.10E-02 0.0 Oe O 1.80£-02 O 0 0.0 0.0 0C 0.C ¥25 1.90&’01 De0 0.0 0.0 0.0 6.50E-02 OO OCOQOOOTO00O0O0 COCOUEFDIOOOCOOWROIOOORAORORWOOHDOUCAMMMOOOONODTOOWODQO " 8 8 & & 4 B & B 2 2 P & 8 8 8 8 P B P %A e R E S PSP R PE T T N s OD0000LOQAOOOOLLONOCDOOLOHMOOODOOOCW 0E=02 0E=02 F0E~04 0E-02 gE-p2 4E-02 OE-02 4E=-02 wm m i o N Yo2 6.C0E-02 0.9 0.0 0.0 0.0 5.90E-02 0.0 o i I ] N 0g=-02 E-04 E-02 OO 0E-O2 3g-02 gE-02 CE=-02 & » @ ® & & & o B * & & 2 0 * & & & & B » * & 2 " " B & & ® 8 & ® o 8 * 0E-0Q2 COCSVOCOOQOOONOCLLOACVMIDIOOOOWOOUMOODDVMUIOOOOWVMOSOOOWNm SOOCNMOO0CODOVOCOUOOVARDOIVOTLOO0OONNODOOOWVMOCOOO W - ¢ & Y28 2.00€ 00 o0 . GO O0OMOOOOONODOOODaSDOOOD 0E-01 0e-901 0e-01 COCN~NQOQOOLOOOWROO0OrOOO B 8 % 4 & % & » & B B2 & 3 & B S 4 B 8 W 5 @ 0.0 0.0 3.45E-02 0.0 0.C 0.0 0.0 0.0 %, Q0E=D2 0.0 3.70E-02 4 & # ® 8 8 @ = < mn 1 o N DO WOULOODOOL OCOOOEOOOOOODOD . 8 0E=04 0E-G2 3.5%0F GO 00 o m O m {0 < m | < w OONOOOQgWOOOOOOOOOQFOGOCJLflQOO O m ™m | 1 < Lo} -2 -t * & » DE-C2 QeE~-Q2 COOoCWOOoODODD2OHOCOCOO OOV OLOLOOHOOO00 * @ » 4 & 4 & 8 b B P B e @ C 1.490 0.719% 0.210 GeOLl4 0.0 0.501 2.159 0.0 0.623 0.0 1.850 0.188 Geatl3 0.088 0.0 0.080 24320 0.0 2.720 1.224 0.0 04373 G848 0.070 0.404 D.396 0.0 0.096 2.315 0.0 1.250 0.830 1.350 0.223 Ge0 0.0 1.250 2.280 0.0 0.240 C.794 0.0 24000 1.360 1.999 O.687 0.562 0.335 D.1938 0.9 2.700 0.0 2.830 1400 e C Fi D134 0,360 1. €00 0. C 0. ¢ C.0 0. 1460 ¢.C 0.018 B.O 0. 530 CG. C C.C 0. ¢ 0.0 G.0 O.024 G. 0 {0+ S60 GC.G27 0.0 0.0 0.0 C.C €.¢C D.624 D0 0.0 C.422 0.0 C. 0 C.0 0. 740 0.C01 0.0 Ge 0 0.3 0250 T.0 Ge 240 0. 001 Ge 0. C U & 0. 570 C. 147 Co 3404 CeG51 Q.0 C. 0 Q. C 0.8 De8958 0. 009 0.0 19 NUZL AG117 CD1Y7W crliz IN117M IN117 SNI1TM SN117 £oits IN11BM INtYR SNI18 €£D1l1gmM tDhir9g IN11OwM INIle SN11GM SNl19 cot20 IN120M IN120 SN120 £o12:% IN121 M 1N12] SN121m SN121 Sg12? Ix122 5N122 SBI22m s8122 TEL12? IN1Z3M iN123 SN123M ShM123 SR123 TE123M TE123 IN124 SN12s S8izaM saiz24 TEI24 SN125M SN125 $8125 YEI25M TE125 SM126 SBL26M 58126 TE126 SN12TM SN127 DLAM 1.05E-02 5e56E-05 8.02E-QF% 9,98E=-0% 2.63E=-04 5.T3£-07 0.0 2.26E~04 2.63E-0%3 1.29£8-01 0.0 4.28E_03 1 0165"03 6.‘02E-D" 5.50E-03 3,215-02 0.0 1el8E=02 2.17E=01 la51E-02 0,0 3.30E~-02 3.73E-02 2.,21E-02 2.89F=10 7T.13E~Q¢ 2.0 8.665-02 0.0 2.75E-03 0.0 1.93E-02 5493E-02 5.42E-08 2.89%=04 0.0 b.84E-08 0.0 1.T3E-01 0.0 0.0 1-19F-03 3,53E-07 3,148-09 1.38E-07 0.0 ZIZOE-I 3 6.08E-04 6.42E-07 Cel 2.B9E-0% Q.1 TE=-C5 Fal 0.0 O, 240 1.00C .0 Ce D 0.0 =] o . 8 e g & @ =] O W D QOO0 ULOAOLTLOOO » D000 OOO~N~MOO00 . o o ® ® & 0 & * o 5 ¥ e & & 8 DO ADAAQAOTONDIODNO OO0 o o QOO 2O0OARNDOODDODEODITIIOIOOISO y (o] CROO0O0O00Q0—~OCCTOOAOLCO S~ QOO0 00DODO . N d o o o OO~ QU0 O F QQLVOOOO » & ® 8 5, & o s 9 e OOQUOULOOO0O0TDO0T OO0 ® ¢ 2 B e b g * ® ¢ ¥ 9 & @ *» * v s O OODC‘.‘IUDOOCJQOOC}OOGOOOO(DOODOOOC}OOQQO’D OO0 000O00 GO . n CcGOv o LI ) ] O o o * . a » * & @ .« & & M VOUAO0O00CO00COLOOCT OO CLrOD D A% . 3 < < & & & * @ & 3 . o OOV OCDOOOGCOQRGOOD=O0000 * & & 8 @ COCOOOO0OLORODOoLUOoOLUTORDOOOOLLEDR 4 s e+ @ » * 9 * . - - . €0 2 s s & @ * s g ¢ s g OO QUOYWLOoOOCLQUAOOOHDOoOOOOLOLDOAOOOF OO DO . 02 Q QUOQOUOODVOOoODDOOOEADOOC DO OO - OWOODOO0OOLOTDIOOOD COCOoOCLOOLUIORUROLOOLOOTOOLRCLOCDOCRCLOO0DTROROD0OOODODoOVDOO .« ® & 8 * % & » s & * o w v s * & @ . 9 L *® » o » . * @ . b . & ” # . . * » 8 @ - D000 LCOQOULULOOOLNOLORIVLIOO0000C OO0 DODIO0NCODTOCOOROOCOOOOQ QOO O0ONDO0ODOOOOO0O00OD00OSOUROODOD O . - Qo .« e o < G.0 2.0 2.80FE 01 0.0 2. 10€ 01 0.0 0.0 0.0 2. 50E~-01 G. 0 1+80E 01 3, 00E QC . < RING 0.0 0.0 -4 A O m Ey m o m Joat Al COOWOOOOOOONIODODO VOO0 B3 S & & S % 6 R e s e s P s S e e s S 2 P e e " e OO0~ OO0000 00000000 a0 OGO -0 o . # & ¢ 8 % u 8 & = 9 [« 1 CODOFEO~-=O0O0FLOOC0O QOO OO FNOOC CE- FISSICN c2 - 01 01 01 00 o2 0e c1 G2 0o ENGL 0.500 0.C 0.0 D.0 e 4 » @w QQUOoOOOOOO0 w =) * % e 3 8 s B S 2 e P L s s B s s e s s Y e P S P g b oo a OOV OoO 00O OO MOOW oo GOa 3 60 * QOO VDO DO OD0O Moo OO OO0 O00OLO OO0 OO0V CROLLOLOD00 PRODUCTS YZ3 0.0 0.0 0.0 0.0 1.10E GO 0.0 1,10€-01 0.0 9. 00E-05 0.0 2.00E 00 0.0 0.0 0.9 Ce0 C. G Ca T.00E-0% 2.60E GO 0D 4.90£-01 4.40E 00 C. 0 0.0 CeC 1.40£-01 > 0.0 3.38£ 00 1e956€ 00 C.0 4e 50 E=01 0.0 C.0 Ce 0 5.09E 00 0.0 £.60E-01 1.90E-01 Y2& 0.0 0.0 0.0 G. 0 3.7GE-01 0.0 3.90E-9Q2 . < 0E-05 DE-D1 E=04 £ 00 DOONPSFOOOQDOOREC WD SO *« 8 = & » v 3 . * 2 9 & @ - OO0 VUL OO0OLDOOCLODOOOCO «Q m t BeBeBeResNol+ReNaNoRoNoNeNeRnNoRe oo loieNo e lleNeleoNbloRoloNeNalele NeRuloeRoNoleNoRalaNaRulle e s NaleNoNole oo - . * & & 9 9 « * * 9 ¥ B 4 & e 8 ® s v s & s b 8 e » r L oo OO0V UVOOOT0OLULOURNALIGLOCLLOOODLDOOOoOVLLOLDOOOOCLRROODOOCOC * = ¢ & a2 0w 2 » » N & &5 9 « ¢ 2 o o 9 ¢ « e s 4 & @ . & [ o * - DOODOIO0OOCCOOOLOULOUOOoOUODOUOLHOOCODOORO0 . * . *® o 3 s B " 3 8 s » ® » = 8 » & & » 2 e ® e & * » F w = * ® & o & ¥ a2 e B s * - O 0 PP PR E s S E ST e S 0 g AR LS N s e s T B g e G & B e @ & E e s ke s s o8 e oA s s SOOOoOGQOCO0COoUoOEROUO0RLUUIOULoOLCOLOOoOoRAOLODODCOGOOIOOOGU T OO0 oQROLUOOTOCODO0OOLLOC OO0 OHONODOLO0 OO0 IOCOORITnO0OaO0COoOOOD0OO0D000000000DOOCTO00 S IGNG Te 0 0.0 1.00F O} 0.0 0.0 0.0 2¢35F 02 B, 7T0E 01 0.0 Cal 2.90E 0C 2.90F 04 2.00FE 03 9.C00E CO Ce 0 0.0 1. TCE 03 Bal st 04 3. 008 0¢ 0.9 1.02E 02 0.0 Qe C 5.92E 02 B,80E 03 0.0 2.10F 02 0.0 QO nom 2 ~N o m 02 0t Go CE 03 GE G2 E 04 B 04 ! m 01 5 M 05 o M 40 0OE 01 OE-01 OO POOWONOCM OO R O = N0 0w OO0 I EEEEEEEEEEEEEEEEE I QOO oV OoOVMO O~ ISOHPS,OoOODVMVNO OO OO RO FISSION PRODUCTS RING J.0 0.0 2.50E 01 0,0 0.0 0.0 3.22E 03 T.08E Q2 0.0 G.0 1.87E 01 3.5CE 04 4, BOE 04 5,00t 01 0.0 0.0 J.C «22E 03 1.4C€ ¢1 0«0 2.27€ 02 0.0 £ m o s P m o [ Lad " Q [EA] m o1 02 c2 ¥ orQ mm 03 ¢3 wr M O m o P [=] n G2 o1 =) m m i 02 . 0 « = B ¥ a8 # & & % % ¢ % = s 4 . & ®» % 5 & 4 » * = &« o » & COONOOLV LoD WOSOGRHI W HAINODILEDADOHODOO O PO CQOCODONO YO ONODOEHWMOARMNOD OO0 COCDLOQOOOOCQLLOO0QOOONOO0CORDOOOOOOCGHIWOOOAGOO0OO OGO OOOha0 ® & 4 & 3 & ¢ & p 0 & 9 0 & ¢ b9 s P BB g F P A PP S ST T st oA s s s s COoQLOCLOLLULOCOLOOOROOOLDOVLOCOoOUOLDOLLCUIOALCOCODIRNTOIAOD ¥23 2.63E OO 0.0 Qs 0 1,98 00C 0,6 0.0 Ce O 0. C 1.34E GO D-o .0 Q0.0 0.0 0.0 T.50E-01 0.0 Ga O 0.0 85.60E~01 Ou C. 0 3.35E-01 Q.0 0.0 0.0 2e20E-D1 0.0 0.0 Q.0 Qe 0 1.10E-01 2- Qo E-GZ (J.O 0.0 44 S0E-02 Qe 0 0.0 O. 0 2,30E-02 0.0 Ua O 1. 10E~Q2 0.0 0.0 4,50E=-03 0.0 0.0 1.50E-03 0. 0 B.00E-04 Qe G 0.0 2. 00E-04 0.0 0.0 25 3.07E OO0 - ™, o m G0 02 - m 04 w m QE~-01 FPOCLdOCODOOOOCOTNLO00O0QOWDO CE~01 st £-01 OE-D1 QE-02 0E-02 CE-02 0E-02 o i 1 (] (e < m 1 o LS ~ m | o 13 < n | o ~ * * @ % 4 * » » * & ¢ 8 & » » B g B & = & & & a & & g & a & & & & & & * ° & & ¥ "8 “ & @ ®» * & » 8 . COWOOUFONODO-NNOOCOOLWILIOONDIWwmQOOONOAOLPOCTEOAOS=mO0OOO=O000ONO O COQOQOOOoOOEO0PrROUWOOO JOOLYNOOOOWOOO voe 4,008 00 0.0 0.0 2.80E 00 . & 0E=-01 *« & p » 0E-01 0E-D1 0€-01 o m ~62 E-02 E~03 Q0 QE~Q2 OE~03 0E-03 DE=~G4 [] m ? < > QE~C4 OE~05 COWRORONQONOONCODPODOODONMOCOOUROOD=OOoONOULUOVMDDIOQOUVoOOQ e 4 0 ¢ b 2 & 4 w9 COOOOWOoOWOOUVWOOODOOUoOVMOOoOUOOLOOQXRCOoOOOWMODOO-UCr oo o0 o00oC Y2 4,208 QD D.C 3.50EF 00O o o Ty QEQOOOONDOQO < - » OO OCOoCOoODWVLOLW OE-01 DOoOC®O QO SO0 OocoON Del 3.60E-01 4e TQE~02 00 De 0 2«50E-01 Q.0 0.0 0.0 1.30E-0} G. 0 0e Q0 T+ 10E-02 0.0 Ca D 3« S0E-02 0.0 0.0 le30E-02 0.0 aJE=D3 B8 O 0 3.50E-03 0 0 OO WD D 00 Y45 2.50E 00 el mn 0¢ \EV m 0o [\ m ce e m 090 0E~-01 GE~01 E~-01 E-Q02 S0 QE-01 QE~-01 0E-C1 QE-02 GE-32 1GE-02 QE=-03 DD OOOMNLHFVDOROOOOANOOON OO PWOHOODrPOOOBOOOCOOC000MO000CNDO * & & 9 » e & 3 s & & g & P s s ¥ & p B B 4 ¥ B 5 8 s F W 3 0 & B e % B B & & B BB E B FP B OF B OB Y w0 CQOCHOLOOLCODOUHOCOWOOSO VDD A-NOOOONDOOOO0ODOOUOWOOCODNOOOOO000 C 0.6T7& 2.110 Js G 2.000 1. 060 Oe4T2 0. 087 G.0 2.009 2080 CuC 2.142 1.3280 0.0 2.000 0. 866 0.421 G.0 D¢ 0 2,270 0.0 l.220 Oublt D294 0.0 24260 0.0 t.19C 2.060 0.0 0,825 0.373 0.0 0,243 L.010 Q.0 1.586 3.0 Je 680 Jel42 G.D G.321 1o 780 0.0 0.921 0.728 Ge D 2«20 C.0 1.350 De4lD 0.0, 1490 0.0 lag20 FG 0+ 450 Ce520 C.0 Q. 0 0.210 0.C43 O & 0.0 0.0 QJe 14D Ja 0 D.910 Q. 4560 Cel 0a0C Ce 390 C. 020 0.0 Ge 0 e 65690 0.0 JeC O.430 0.C e C L. 550 O OO0 COOGSOL O < U [sHeRoNoNaNoRoNoNelsNololeNel 2 o g9 FISSICN PRODUCTS NUCL DLAM F81 FP FP1 FT S IGNG RING FNGL Y23 Y25 Yoz Y28 Y49 C FG 0¥160 0.0 0.0 0.0 0,9 0.0 5.50E 01 1.16f 03 0.0 0.0 0.0 0,0 0.0 J.0 g. 0 0.0 GD16Y 3,12E-03 0.0 0.0 0.0 Ce0 0.0 0.0 0.C L, 00E-05 T7.60E-05 1.00E-05 1,60E-03 2.90£-03 1.030 0.390 TB161 1.16E-06 0.0 0.0 0.0 0.0 Ce 0 6.0 C.50C 0.0 0.0 0.0 0.0 0.0 0.275 0,063 OY181 0.0 0.8 O 0 0,0 0.0 6« C0E 02 1.67E 032 0.0 Je 0 2.0 0.0 0.0 0.0 0.0 0.0 G162 2.20E-08 1,000 0.0 0.0 0.0 0.0 Ge0 0.0 2.7T0E-05 3.,90E-05 7.Q00E-06 8.00£-04 2.00£-03 0,574 C. 0 TB162M 1454E-03 0.0 0,0 0.0 0.0 Q.0 0.0 t.C Q.0 GC.0 0.0 0. 0 0.0 1,130 G.0 TB16? B8.75E-05 0.0 0,0 0.0 0.0 G0 0.0 0.C 0.0 0.0 0.0 Q. 0 0.0 1.130 ¢, 0 bYle2 0.0 0.0 0.0 0.0 0.0 1.60F D2 3.32E 03 C.0 0. ¢ 0.0 00 0.0 0.0 C.Q 0.0 TB143M 1.,65F-03 0.9 0.0 0.0 0.0 0.0 G.0 0.0 1. 20E-05 1.80E-05 0.9 1.B0E=-04 4.50E-04 0,825 0.3190 TB163 2.96E-05 0,0 0.0 0.0 0.0 0.0 0.C 0.0 J. 0 0.0 0.0 1., 80E-04 4.50E~04 0.825 0,310 DY1s63 0,0 0,¢ 0.0 0«0 Q0 1.258 €2 1.%56E 03 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0 78164 B.2AT7E-04 0.0 0.0 0.0 0.0 0.0 0.C 0.C Je0 5.00E-06 0.0 1.20E-04 3.00E-04 1.%580 0.C nyYies 0,0 0.0 0.0 0.0 0.0 2.TOE 03 3,77€ 02 0.74C 0.0 G.0 0.0 0.0 0.5 0.0 C.O DY165M 2.,17£-03 0.0 0.0 0.0 0.0 0.0 0.0 Q.0 a0 Q.0 0.0 B, 60E-05 1.30E-04 C0.569 0,022 DY165 B,30E-0% 0.0 0-0 0.0 0.0 4. T0FE C3 0.0 0.0 C.0 C.0 0.0 0.0 0.0 0.53% 0.027 HO165 0.0 0.0 0.0 0.0 0.0 6. TCE 01 8.&0E 02 Ce015 Gu0 G0 3.0 0.0 C.C 0.0 Cel DY166 2.36E~06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0e 0 0.0 0.0 2e TOE-C5 £.B0E-05 0.143 8.0 HOl66M 1,.828-11 0,0 0.0 0.0 0.0 0.0 0.0 C.0 0.0 0.0 C.0 0.0 G.0 1. 817 (.88 HO166 T.16E-06 0,0 0.0 0.0 0.0 0.0 Q.0 0.0 0.0 D40 0.0 0.0 0.0 06739 (a0 ER166 0.0 0.0 0. C C.0 0.0 4.5CE 0C 9.CO0E 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.0 ER167 0.0 0.0 0.0 0.0 0.0 7.00E 02 9.0 G.0 0.G 0.0 0.0 0.0 0.0 0.0 D0 99 67 APPENDIX B. TYPICAL MATADOR OUTPUT FOR A 2250-Mw (thermal) SINGLE-FLUID MSBR 68 Table B-1. Sample Conditions for a Typical MATADOR Calculation for a 2250-Mw (thermal) MSBR Mean thermal neutron flux, cm-gsecm1 6.62 x 1057 Power, Mw (thermal) 2250 Salt feed rate, g-atom/sec 0.02148 Thermal spectrum factor 0.5 Resonance spectrum factor 0.108 Fast spectrum factor 0.075 Graphite area, cm2 2.57 % 10T Salt volume, e’ b1 x 107 Graphite rod radius, cm 3.1 , . id Graphite porosity, %%—%%—é%i;%zgg 0.1 Mass transfer coefficient for Kr to graphite, cm/sec 9.2 x lO“Pr Diffusivity of Kr in graphite pores, cmg/sec 3.1 x 10_’5 Solubility of Kr in fuel salt, _l, (moles/cmd of salt)/(moles/cm® of gas) 5.0 x 10 Ratio of graphite volume to salt volume in core 2.0 Mass transfer coefficient of Xe to graphite, cm/sec 9.2 x lO-rr Diffusivity of Xe in graphite pores, cmg/sec 2.5 x 10'5 Solubility of Xe in fuel salt, ) (moles/cm® of salt)/(moles/cm5 of gas) 2.0 x 10 69 Table B- PO OQO OO0 3. 23062E-23 0.0 OIO 0.0 Ca 2 Je 4C99&E-05 0. G Je & 0.0 0.3 0.0 ACTIVITY CURIES 0.24445E 00 4.0 0. 6054GE C8 C.0 C.42332E 04 C.578B0SE 0% GIO C.83905€ 08 C.80302E G4 C.216556~03 0.3G582E 02 G.C C.9%556E 08 C.32611E G6 C.104C7E 7 C. 0 C+1052CE 09 G.1537¢E 08 C.29589E Q8 Cu.&4202E8E G8 CaC G.53015F 08 G.B8247E {8 C.17211E 08 C.B89971F Ot L. 15989 OB C.0 C.4EBS18E OB G 97577E 08 0.1055£4E 09 C.6221€E OB C.39117E 08 G. 0 0.35764E 08 C.11GC3E 09 Cull0432E (9 0.125C1E 29 Ce0 0.928¢5E 07 0. 1246£E 09 C.12472E 0% 0.12321¢ 09 C+32BELSE Q2 ,265408~0% G.0 C.1B2H4E 07 C.%45440FE 08 C.I06B%E N9 0.10681E 9 C.G C.,2E587% 08 0. 84741 08 0.11520F 09 0.78435E 08 Q0. 167TTEE 03 POWER DENSITY KH/LITER 0.30721E-10 0.0 0.2%019E-01 O'O 0433962E-C6 D.65759E-06 0.0 0.67917E-01 0,664 1BE=03 0.341B9E~14 0.22003E-C8 040 0.57788E-01 0.30193E~03 0.40109E-03 0.0 G.49325E-01 0.15541E-01 0.16953€=-C1 0.3741BE~C2 0.0 0.39315E-01 0.59421E-0C1 0.54247E~C3 0.88295E~09 0.22105E-02 0.0 0.13810E-01 0.41233€-01 0.26313E-01 0.49113E-02 04359 78E-C2 0.0 0.12489E-01 0.55024E-01 0.23099E~01 0.31879€-01 0.0 5.51713E-02 0.49113E-¢1 0.57537E-01 0.24360E-01 0.94168E-10 0.365016-16 Cu0 0.79165€-03 0.29536E-C1 8.36444E-01 0.41621E~01 0.0 0. 14007E-01 0.30351E-C1 0.33339E-01 0.99223E-02 0.18073E-07 GAMMA HEAT KH/LITER 4577E=-12 2 0 o o 3 T o 45504E-01 29224E~03 o 2 ¢ 0 2 8 0 0 5060E-03 422BE-04 T3IBLBE-02 0.1356TE-0L 0.0 0.0 0.26344E-C1 0.61000E-01 6.0 0.88295E-09 0.9 0.0 0.0 0.12578E-01 C.16314E~01 CetS113E-02 0.215687E~04 0.0 0.0 8.0 .19403E-01 D.66946E~02 0.0 0.0 Q.0 0.35673E-01 0.48720E-C2 * 1639E-C1 4151E-01 SOOI OONO0 L I T S S R I ) DT DO OR 0.70012E-02 0.,81462E-G2 0.18073E-C7 PROCESS RATES MOLES/DAY 0.12924E-01 0.,10152E-02 3.57955E-05 0.22137€ 00 0.7B0O3QE~11 3.27533E-06 0.30473E~-04 0. 81798E-05 J.41421€ 0OG Ce10112E~01 G.11913E~10 0,207SCE=-06 0,28246E~05 Ja49965E 0C 0.32838E=-07 Gu85261E=-02 3. B298B8E-06 0. 32363E GO 5. 1080TE~QS 0.57T110E~-02 0.22833& GO 3.80933E-01 O.45384E-08 0. 45087E 0O J.1TTSBE~OS O &5299E-02 0.84861E=-01 0.868&2E-02 0. 207546E-0¢ 0.10856E-03 0.32085E-03 0.3522%E 00 G.287T73E 00 Ca&22G4E-03 0.17231E-07 G.31828E-04 U, 2B159E-G2 U.663%4E GC 0. T2703E-04 3,20623€-07 C.1T768T7E~0S G.B0197E~-Q2 Gy 58937TE 00 Go LT444E=-04 0,450T6E~113 G, 1060TE-05 0.42386E-(8 0.26823E-06 3+ 230&0E-03 J.6742BE 0C 0.21113E~08 0.12C17E-Q6 0, 13355E~03 0,1951%E 0C 0.83233E=02 ¢l STEANY STATE VALUFES FOR THE FISSICN PRCDUCTS NUCLIDE CONCENTRATICN MOLE FRACTION POISCNING ACTIVITY POWER OENSTITY GAMMA HEAT PRCCESS RATES GM—-ATGM/CT ABS/ABSTFUEL) CURIES KW/LITER KW/LITER MOLES/ZDAY NB 95 0.57023E-11 0.1C965E~-09 0.390361F-09 C.H580CS5E 03 0«32673E-C6 0,3087&E~-C5 0. 407587 0C M es D.B88733F=13 0.16484F-11 0.33151E-10 Je9 0.0 0.0 Cueb1435E~-02 Y 96 Js 216456F=10 0.60846E-093 0.0 0.10712% 09 0.77037E-01 0.52926E-01 Ce262C2E~-04 F A Je 27464E-05 0.52006E-04 0,19G20E-05 0.0 0.0 0.0 C.56851Ff 0C NB 96 0.8FG02F~-14 D.1653%4F-12 0.0 C.48513E 02 0.58013E-07 Ca52211E-07 0.61462E-03 MO 96 0.36045F-17 De69304F-16 0.26159€-15 C.0 0.0 0.0 O.82465E~06 Y =7 Ne12890E=11 0.24784E-1G 0.0 0., 1003¢E 09 D.32350E-CL 0.0 0.10&673E~05 IR a7 0.13082%=-07 0,25152€-0¢ 0. C 0.39852E 0% 0.17231E~-C1 0.99071£~-C3 0.27080E-02 MR 9TM N.45080E-11 0,86676E-10 0.0 0.3509¢ckE 08 0.73945E-02 0.73969E-(2 0.142038 00 NB 97 0,28771c-11 0.55318F~10 Q.0 J«31109E 0% ND.26147TE-C2 0.15165E-02 e 37950 00 MO 27 0,225235-12 D.43313€=-21 0.13587€-1C 3.0 0.0 0.0 0e22816E~01 IR 98 0s3122319E~-10 0.23£93E-09 0.0 C.35126¢ 08 0.74955E-C2 0.0 Te2%5293E-05 NB 98Mm NeS4T6LE-T1 0.105295-09 0.0 0.21316E 03 0.,14611E-C1 0.0 C.23955E Q0 NB 98 De26605E~12 0.51154E=-11 0. C.4l€13E 05 0.51811FE-04 0.27460E-04 G« 18570801 40 98 3.18845E-11 D.304K6F-10 Qe 2694 7E-1C C.0 0.0 0.0 0.266C2E 00 NB 99 0.565%9E-11 0.,10682E-09 2.0 C.18022E 08 0.72403£-02 C.0 0425987 OC 2 99 0. 12369FE-11 0.257C5F-10 0.0 C.25892F Q4% 0.17892E=-0% C.51886E~05 0.23316E 00 TC 99M 0.16686E-15 0.22082F-14 0.0 0.3408B5F 01 0.110866E-C8B 0.0 D.T75793E~-04 TC 99 D.282&41E-16 0.4853nE~15 J.11252E-12 «1T624E-08 D.43752E-18 0.0 Js11655E~04 Ry 99 0.13074£-27 D.251415-256 0.153]18F-25 0.0 0.9 0.0 O 14218E-15 NB100 0.53716E~71 0.1032BE-09 0. T.13G39E 08 0.15199£~01 0.273585-C2 0.26993E o¢ M3100 0.10342E-11 G.15884E-10 0.1837¢E-10C Ca0 Ja.0 0.0 0.18832E O¢C TC100 0.578B23E-24 0.,1111RE=-27 Ded Ca15889E-04 O.82373E~13 C.0 Ge3329%E-1¢ RUIODOQ 0.117R82-23 0.22665E-22 0a14862E-21 00 0.0 C.0 0.16777¢-11 NBIOY Ne273445-31 0.5257T4E~-190 0.0 f.21288: 08 0e69082E-C2 2.0 O.86146E-91 Mglnt Cus15192E-11 0.29211E-10 0.0 0.81012F 06 0.121462E-02 0.97296E-03 C. 200698 0C TCiol 0.57722E-73 N.11098E=-11 0.0 C.22099E 05 D.42644E-04 Ua17684E=-08 0.16759E=-01} RULOY 0.22815F-14 C.457P7GE~-113 0. 50876E=-12 Ca0 0.0 0.0 0., 19675€E-02 MOIn2 0.21607E-11 0.6077LFE-10 0.0 0.22370E 07 0.46864E-03 0.0 0.2027CE 0G TClo02M 0.73543E-12 Os141402-11 0.0 «12723E 08 0.35498E-C3 D.25551E~02 0.13232€-01 TCia2 0.10462E-172 3.20116E~-12 0.9 0.37746E 06 0.87463F-03 0.0 Ge TE65TE-03 PUl02 0,81960E-12 0.15758E-1% 0,32301€E~11 C.0 0.0 c.0 0.21250E-01 MO103 0. 17140FE-11 J.32954F-10 Ja0 C.12914EF 08 O,44105£-02 Q.0 0.54990E-C1 TC103 0.565856F=12 0WYQRROE-10 J.0 C.5286€E€ 07 0.267C9E-02 0.0 0.42816E-01 RUTO? 0.29222€-12 0.75612e-11 0.0 C«535%0E 02 0+351€6E-07 0.30946€~-07 0.93348E~C] RH1Q3M De39332E-17 NeTT623E-14 0.0 0.53720F 00 0.5868%E=-10 0.C Oal2310LE-0S RHE1012 0,39856E~19 0,75631E-18 0.160826-15 C.0 0.0 0.0 0e54382E-07 MO1n4 Ne3G4A/KF-12 C.19128E-10 0.0 C.59577F 07 0.32709E-02 (.31400€-02 V. 3599LE-C1 TC10e Ne&2827F=-12 0.R”2345E-11 Dal) C.18522E 06 0.64946E-03 Ce50008E-03 0.61478E-CL rUto4 0u13743F-13 0.26%423°-12 0.214168-12 0.0 Q.0 0.0 De53232E-02 RHLO4M J.162CRF=26 0.21162E-25 0.0 L.28612E-08 0.44266E-17 0.0 De42592E-14 RH104 N 1300566-25 0.25007E-24 Ga G 0.16129£-06 0.,:2721E-14 J.15265E=16 0.25971E-13 PO 04 0. 10431E-25 0.20055E-24 Celi221E-23 Ce0 0.9 J.0 Q46566813 ¥OiI05 0.40019E-32 C.76946E-11 Ce ) Ce4ueT35E 07 0.25881E~C2 D0 0.,98512€-92 TC10%5 0.65027E-13 0.12503E-11 0.9 C.3797CE 07 0.15517E-02 Cs 0 0.22249£-02 RUT OGS 0.23110F=12 0.540%7F=-11 0. 6E5032E-12 C.82151F 04 0, 73772:-C5 Jets7214E-05 D.411319E-01 RHIO5M Qe 34432F=-15 Debb2T2E-14 0.0 0.38742EF 04 0.54948E-06 0.0 0. 81939E-04 RH105 0. 26509E-45 D.50068E-14 0.1%14CE~09 C.95813E 00 D.601125-09 0.21039E-09 Ga.15767E=-013 P31 05 0. TIORKE-19 0.13668E-17 0.20751E-1¢& G.0 G0 0.0 C.98106E~07 TCL06 0.19596F~12 0,3767TTE-11 Us0 0.24740E 07 0.15230E=-02 C.30460E-03 U.45801E-02 RULOS 0.1R355E-12 0.3529%LE~-11 0.1129€E~11 C.27040F 0% 0.18523E-10 0.0 G.22859E-C1 RH10AM 0.72458F-20 0.1%026E-12 0.0 Cat3691E-03 0.86006E-11 CeTH26BE-11 Ja 10CL4E-0T aHIns N.100€65F-18 0.19252¢€-17 0.0 Ce15673E 01 0.29808E8-C8 0.35769E-09 D.22384E-07 PLIOG 0.,116%1E5-18 0.223263F~17 0,19556E-17 0,0 0.0 0.G D.67T8B50E-07 RUIOT 0.21991€E-32 0.42262E~11 0.3 Ce&40T63E Jb 0.2339BE~-C3 042135353804 D.12075E-01 STEAQY STATE VALUES FOR THE FISSICK PRCDUCTS NUCLIDE RH107 fOIOTM pPDIOT rRUIO8 RH108 PI108 RH1QO pPRIOSM pR10S AG1D9M AGLOS 41D pCiic AGLIOM AGLID colsg PDI1ILIM P11 AGTTIM AG111 CD1llm cDlly epLIY 2 AGll2 cnlvz PL11R AGLLIZM AG113 cCo1lam (e B N1 3 PD1 4 AGI14 (D114 TNYIT4M IN11& ANt S PC1L5 AGLYSHM AG1YIS CO115M £o1ls INT1SM IN115 SN11s AGlla CoLls IN11GM IN11§ 5N114 AG1L7 COLLITNM o117 IR1IITM INIYLY CONCENTRATION CM~-ATOM/CC 0e29469E-13 0.560085E~-16 0.71361E-15 0u.101248-12 0. 4276£2E~14 0.87178E-12 G.32353FE-13 0.12350€-22 De37349E-13 J.14302E-16 0.12392F-16 G.56217E~-14 0.38957E-13 0.31473F-24 0s32919FE-23 3+ 33510E-16 0.34809E-15 0.33STBE-13 0.60765E~15 0.28457E=-15 Ge¥0018E-23 0.57152E-12 0.22859E=13 G.10448F-16 0.BT3DSE-13 5.19170E-13 Ju53390E=15 0.710508-14 0. 12960E~15 ¢.295388-10 0233026F=17 D.21373E-13 G.64B5TE-15 0,44920F=08 0.87315E~19 0. 21367E-23 0.34868E-18 0.146380E-13 0.12925F~14 G.88231E-14 3,93703€-11 0.3£634F~10 Y. AQT?T2E-11 0,14265F8-08 0. 11378E-09 0.20056E-13 (s 39353£-09 Coel6245%=-12 0. 18TT§E~1F Q. T£355E=09 0.15403F-13 0,1B1528~-14 3.407415-11 0.22750E-11 0.58497€-12 MOLE FRACTION 0.565660F=12 0,11553¢F-14 (. 13721F-13 Vs12465E=-11 0.8221%F=13 0. 167T62E-12 0.562205E-12 0,2374568~21 G.7181lE~-12 0.27498E~15 0.23825€~15% G.108098-12 Ga74021E-12 0.,60512E-23 Os63203€-22 Cab4&20E-15 G.6EF2FE-14 D.65331E~12 0.,116832F=-13 C.56TIEE~1S O,192¢1e-22 Gal201vE-11 Su%3951E-12 C,20038E~15 0.167858-11 0.25857E-12 0.10268E-13 0., 12561F-12 0,2664%E=~14 0.5&TG3E-09 G.635C08~16 G.411028=12 Q.12672FE=23 0.,883275-07 0,1678BB8E-17 0.41082€-22 C.67040E-17 Q.314%4E=12 G.24851E~13 0,15974E-12 0.18016E-09 Q. T0436E-09 0.538155E8~-10 C.27428¢€-07 G.21872€-C8 0.38634F-12 8.,75T41 E-07 0.31427F-11 C.356105E~14% 0.14681£=-07 0.298158-12 D.24302E~13 0.78334E£-10 0.562968E-10 POISONING ABS/ABS(FUEL} 4163€-12 < 2 @ & ¢ & 0 ¢ & W & A 22946-11 3045E-13 WO OO MO IO SO OG D 0o 595 0E-12 O, 0 . g% ] i o W > m i P i 54608E-11 £3B1E-11 3344E-05 36226~14 4670E-05 T125E-1E HOOOOOOWOSONODDRGEODIOONMDOONDSDOO0D 41776-04 OO OGO OOODAC OO0 DEO 0D O ¢ # 4 & B B e ® ¥ ¥ % B O F 4 B ¢ B @ e & & @ @ F F H B B ‘= 0.C Os 3BFBHE-CT Ga O Oa O 0. 24£32E=-07 0.0 .0 0.0 D, 34E7CE-CS 0.52284E~-10 ACTIVITY CURLES C.10428F 05 C.12758E 04 0.0 C.1T514E 06 Q.117S0E Q6 0.0 0.50377E Q6 C.2045TE-04 C.35978E O3 C.167C2€ 02 0.0 0.52521F 06 .0 0,67258F-11 0.563022E-04 .0 C.B2123E€ 01 C.12024E QS 0,38358% 04 £.20515¢€ 00 C.16047E-06 G.0 C.14124F 03 C.43364E 0O .0 0.106&CE 06 0a34837E 04 0.17395E 03 C.l4655E-03 G.0 Ce O £.6G53458 D5 C.50602€ 05 0.0 0,244 &E-05 Uue12BE63E-00 G‘O C,17C04E G5 0.3C189E 05 0s34364E 04 G 117B2E 0% t.83B50E 05 L.8B72CE 05 .0 0:0 C,625T73E 0B 0.0 C.23565%E 05 0.626%7E 04 C.0 0.1C901F 06 £.632778 D2 0.22027E 06 C.22018E D6 C.1035CE 06 POWER DENSITY KW/LITER 0. 795CCE=-GS 0.336413E-C6 0.C 0.34137E~-C4 0.12639E-03 0.0 0.181368E=03 U.97365E-14 0.97L16E-07 C.14297E-C7 0.0 0.1%220E-03 0.0 0294517E-19 0.23005-12 0.0 0.14006E-C8 0.44991E=05 0,20745E-C6 0.15273E~CS 0.9103%E-17 0,0 0e56211GE-G8 0.11245E~-C8 0.0 0.,41105E-Ca 0.16038E~05 0.19254E~(56 0.46B8156~14% C.0 G.0 D.30281E-Ca 0:53052E~-L4 G0 0.324£4E-15 0.15769E-14 0.0 0.88502E-04 Oel105T1E~Ca 0.4TO83E-CS 0.11596E~C6 0.T1538E-05 D.%2585E~(C5 J.0 OO0 0 » B9505E-C4 +0 0.95541E=05% 0.12567TE-C5 0.0 0.39450E-C% 0216475€-C7 0,56172E~04 0.16813E-04 0.16472E-04 GAMMA HEAT KHALITER 0.31005E-C5 0.33413E-0b 0.0 0.0 0.20222E-04 5120E=-04 7568E-05 0T16E=-19 2114E-14% 6809E-17 a & & @ 8 3 & b » o 8 @ ¥ v @& QOO JOr-OOOCPr~000Lr00VToRo0 O PRQOO0 00 T454 =07 L4748E~06 6B19E-17 3263E=-04% SidE=16 T69E-17 COoODOCOLOOHOLCOVOODOoOOOODOOOOOCOULODLODO o=y ¥ & 4 v % 6w w s ¥ & & b g oy 268541E~05 0.17046E-07 0.24609E=-05 L.404938E-05 0.0 5605€E~05 1310E-07 DO OOo QOre®mOOQ 2 a 2 * » ® - 0.93910E~-0B 0e40444E-04 C.aTQTTE-D5 0s82492E~05 PROCESS RATES MCLES/DAY 04544 T7E-02 0+ 15055E-04 Q. 354G£E~03 Co 564 TSE-D2 04 346526~03 0.21778E-02 0.65353E-03 0. 86950E-11 0.43261E~02 0226926505 0.60190E-05 0424 T5CE~Ch 0e31651E-02 0.35884E-12 0s21213E-11 0.69365E~11 0. 24807E-04 0.22981E-02 0. B6BO0E~-C4 0, 10978E=-03 3.20736E-18 0.13900E~C7 0.163368-02 0+23793E~(5 0.18072E-07 0., 71888E-03 0.50242E-04 0a109126-02 J.28690E~10 0,61144E~05 04868364E-12 5.99%92E-03 0.35437E-04 £.930056-02 0. 1BO0T4E~-13 0.44229E-18 0uT2176E-13 0.43491E-03 0.62090E=-04 0.10927€-02 0.19356E-05 0uT75832E-05 G.B36IBE-06 0.29529E~03 0235475~ 04 0,35306E=03 0+ B1544E-03 0+ 32834E-07 0. 38B71E~10 0.15805E-03 0.51128£=-03 0.375375E=-05 0.84335E-06 0.67732E-06 0.12109€-C6 Gl STEADY STATE VALUES FGR THE FISSICN PRCOUCTS NULCLIZE SKh117#m SNIL1TY CD11R TN11BM™ TN1LE SN ig CD11gm cDlle TNILGM TM119 SNI1OM SNile cpi20 INT20M IN120 SN120 cD12% INIZ2'M iN121 SN121M SN121 sSg12? iNi22 SN122 SB1Z2M SRiI22 TEYI22 TNYL23M INi23 SN323M IN123 $8123 TE123M TE123 iM124 3MN124 Salz2am Salz2s TE124 SN125w SN125 58125 TELZ2GM TE12% SN126 SPR12¢em sB12¢ TE126 SNi27M SN127 $B127 TE127H TE'27 1127 SNl2@ CONCENTRATION GM-ATOM/CC 0.12193E-12 0.5627T2E=04 0.15927F-11 De 254441518 0. 33888F=-14 0., 8137TE=-0R 0551654813 D, 2042T7E-12 0.7352Ye-12 0.62R02F -1 4 De131445-110 0.B1230E=-CF 0.422A3E=-117 0. 1153¢&E-14 0. 16%583F-173 C.8&527F-08 0.15275FE-12 0.12529%~12 0. 33080F-24 0.10G4%1E=-12 0. 70139F-10 C.B4611E-C8 0,9427T4F=-14 0.,1&119:-07 Ne32241E-15% N,2159R84%=-11 0. 4699525-18 N.62512€-13 C.1C179F-14 De LOBYZ2C-08 N.41T7T38BE-~-11 C.?1816E-07 NeB29863FE-24 0.166%18F=23 0.107T7T3E-12 0,32255F-07 0.52629F=-1¢ D0.82692F-10 De5856THE-1 5 0.71457F-12 O 153T7YE-QR De3269T7TE-07 N.B51870E-14 0.811i3Nc~14 0.454891E=-07 Dy &3503E-11 0. 3T4L3E=-]R G.12148F=12 D.8%610E=-1¢6 0.17252E-09 D.T4&325E~0R Os 16925E=12 Qs SQ99S0E-12 D.168426-09 O« L 4963E-09 MOLE FRACTINN 0.234037-11 D.10820E-06 0.38313E-10 .46994E-17 D.£5186E-13 D.15646FE-05 C.105604F~11 0.39274F-11 0.141325-19 C.R266£9F-173 C.252725=-09 G.15618E-06 C.83191E-12 0.2218YE-13 0.218858-12 0.16637E-36 0,2936RE-11 C.26012E-11 0.63503E-23 0.21036E-12 0.134R6E-08 0.15268E-06 0.19126E-12 0.27146E-06 0.,73827¢c-14 Q.65187E-10 CeIENL45T~14 C.1203A£-11 Ja368765-113 0.209425-07 0.8025CE-10 D.L13685-06 O.,1589518=~22 0.31951E-22 0.20712F~12 0.6201~E=-06 0.10119E-14 0.15899F-08 D.107T0SE-13 0,137395-10 0.29170E-07 0.62868E-06 0.99730E-113 0.1559%¢€-12 0.87851 E-06 U.83655E~10 De71992E-07 0.23357E-11 0.18660E~14 0.32170E-08 Je14290E-06& 0.32544F-11 0,11527€e~10 0.22382E-08 0,2RTTOE~08 POISCNING ARS/ABSEFUELY 0.C 0. 26885E-06 C.212177E=1C C.0 0.0 Q. B6E4E6E=-0C 0.0 0.0 De 782Q2E-11 O.45¢7TCE=-112 0.0 0.22652E-0¢ D.0 Os15919E-15 0,22883E-14 0.2510%E~Q7 Oa 0 0.0 C. 0 0. C 0.0 0, 336836-0% 0.0 0., 27059¢F-07 0.0 C.0 Oe 15956E-12 0.7 0.0 Ne 0 Ca 0 C.9662%E-05 Ce0 0.70774€E-2C 0.0 C. 4BCBLE-07 0.0 Js45643E-05 Os41496E=-12 0.0 Oe? 0.586T72F~-08& 0.0 0.582578E-12 O. 15838E-C& Gae 0 e 0. 36330E-11 Ga.0 U.0 J. 0 GeO U0 0. 7667TE-Q7 PR ACTIvVITY CURIES Ce4TCBTE D2 0.0 0.31£€6CF 06 Coel4324€E Q0 Q.3166CF 0% Q.0 C.1%5903E 06 C.15902% (6 C.31803F 06 0.1E9C1F 0Ff C.2842&F% 03 C.0 0.33621L 06 Cs1£840E 06 0.16840E D& Cetd C.239T€E D5 0.33975F 0% C.51509E-05 0.21310E-D2 C.237CBE 056 Cs0 0.55048E 06 £.0 C.7C8RSE 03 C.66483F D4 Qe D.81245E 06 C.BSS5SLE 085 0.47112% 05 C.B1234E 06 0.0 C.38328£-10 c.0 Cl.1258CE 07 UsQ C.26435E 03 J.74514EF 04 U.C Je«5T351F 06 D.87260F Gb 0.1792¢&E 06 C.4B8352E 00 .0 0.5763¢€E 01 C.17828EF 07 0.18165%F 07 0.0 C.l8862E (3 C.10660F 08 Cel037CE 08 G.8395BE 0Ot 0.82755¢€ 04 0.0 C.1G744Et 08 POWER QENSITY Kn/LITER 0.21384E-(8 0.0 0.12065E~-C4 0.20322E-09 D 870ATE-Q4 0.0 Oe24175E-C4 04341 74E-C% 0.51020E=C4 N.33488E-C5 O.36245E-C8 g.0 0.60316E-04 0.51522E-04 0.87006E~-C4 0.7 0.26377F-C4 0., T4dT12E-C4 CelS202E-14 C.54028E-13 0.54086E-CE o «32492E~03 -0 +16452E-07 C.10651E-C5 0.0 0.37247€=-03 0.41073E-C4 0.,38R09E-0% CG.T93TIE-C4 Gae0 C.10951E~19 Qa0 0. 79844E~-C3 0.0 0.15664E~C7 D.24339E-55 0.0 0.97528E-04 0.12764E-03 0.,14536E-04 0.32141E~10 0.0 0.87208E-10 0.25030F-C4 U.42924E-03 OIO Ce2B8910E-CT Ce27642E~-02 C.13772E~C2 Ce35T95E~G9 0.10417E-CS 0.0 J.23933E-02 GAMMA HEAT KW/ LITER 6450E-09 3603F-05 133E-06 T53E-0% w o 2450£-05 B354E-04 22B3E-C4 8407E-15 68946E-03 5801E-06 6445E-03 9lb62E-04 7846£-03 164E-~07 IBBE-05 COoO00OCOGOOUOUO0O00OCO0000O0COOIDON0COOOONDOOD O 4 & & 5 8 & 9 & 4 % & % 8 B * & P B E 8 & W A K B A e BRSO A Ao SCrHOWOQOQLOMMNOPFTOHOOQTOYOWMPOOTmANOOGTHOOO Ge29063E-04 CallblSE-CH 0.79949E-C5 0.0 G0 0.0 0.95114E-05 0.24896E-03 00 Dei2C62E~07 0e14650E-32 0.69825£-03 0.0 0.15526E-07 0.0 0.1555%£-02 PROCESS RAVES MOLES/OAY 0.25239E-07 0.11649€6-02 0.41248E-06 0.50594£-13 04 70147E-D6 0.16845€-02 0.11417€-07 0.42283E-07 0.152216-06 0.88787E-09 e 2T208E-05 0a16815E=02 0.89554E-08 0.23880€-09 0.34327E-08 0.17911E-02 031618607 0.28004E-07 0. 654 75E=19 D.22648E-08 0.1451GE-04 0.17515E-02 0.195156-08 0429226£-02 0e79160E~10 0. 764 8TE-0¢ C.35726E-04 0.129615-07 0.3$7C0E-09 0.22547E-03 0.863%7E-06 De44537E-02 0.189G2E-12 0.380642E~12 0.22299€-08 0.6ETETE-02 0.10894E-10 0.17117E-04 0429830504 Je147S1E-06 0. 31404E-02 0.6 T6E84E=02 0.37106E-03 « 58040E-03 0.94581E~02 C.90064E-0¢ 0.77507E=D3 J.86905E-02 0.17721E-10 0.357131E-04 0.15385€-02 0.12109E~01 0.42792€-01 0.1%945E-03 0. 30974E-04 9L STEADY STATE VALUES FOR THE CONCENTRATICHN NUCLIDE ssiz2aM spi22 TELZE 1128 Xgize SN129M sRa129 TEIZ29M TEl12% 1:2% XEL29M XEL28 SN13D 581i30M 58130 TE130 11304 11390 XE12D0 SN131 58131 TELALM TE12L 1121 XE121M XE131 SN122 58132 TE132 1132 XEL122 $B132 TE133M TELI33 1133 XE133M XE133 £5133 SBi%4 TE134 1134 XEL34 £3134# L5134 BAl134 TEL35 11358 XEI25M XET2S C51365M Cs135 BAI3SH SA12% 136 XE136 GM-ATOM/CLC 0,27059€=-10 0. 17776Z-09 G.16110F-11 0.57228E~14% 0.1238GF=-15 0,27791E-09 0,11935-03 D.96192£-12 0.16959€~-11 0.38539E~083 D.23992E~-21 O, 3&695E=15 0.160566E~10 G.21626E~10 0. 10164809 0.356RTE~11 Cs259%4F~14 Ds13662E-11 0, 10607E~14 N, 23885E~-10 C.17538BE=CS 3.607T60E-12 0s33655E~11 Gy 3G26TE-O8 0,1 5433E~-14 0.329506-12 0. 232347E-10 0.22285E-10 0.6128TE=11 G &TLI68E-10 D.19T7T81€E-12 0e346656F~10 D.612%95~11 5.12847E~11 (e 21001E-GA G.23200E-13 C.91809E-42 D.56453E=-C9 0.31527E-12 C.7ta58E-11 Dal5259E8~-11 De 30354E~1% Q.1Z148F-09 0. 33501E-09 0.32586E-11 0. 43184E-C8 0. 18953E=-11 Da521558-11 0, 13737E-14% 0. T4SE1E-CT 0. 26851E=15 2. 29034E6~11 0, 62234611 G6.98524E-11 Na52027E-D9 De24] 798=-03 0.,30975E-10 CaliO03E~-12 0.23820F-14 0.53435€£-08 0.22947E-07F 0,184%5E-10 C.3260TE~L T Ca74137E-07 0uas6129E-20 CalB207E-12 0.30890€E=Nn9 0.41581E-09 0.19500€~03 D:6R616E-10 0.E1902E8~13 0.,2682576-10 0,20394£-13 D.45866E-09 0.33721€-08 Qe11682E-10 0.64727E=-10 D.TELSRE-DT 0254673112 0.15949£~-10 0.4%883E-09 0.4284BE-0% 0. 11TB4E=DI Q. 806°0E-09 0,330328-11 0.66852E-09 0.117T73E~Q9 Qe 24701 E=LO 0.,40651£-07 D.845607E-12 0.176528-190 O.10470E-07 Q.60612E-11% 0.13815E~09 J.220322E-03 0, 2933CE-1 0D B.58382E-113 0.23386E-08 Oub4412E-33 D6 2653E~10 0. 83030E8=07 0.20578E~10 G.1C025E-~-09% Da26411E-113 0.14340E-05 0.51049%=-14 0.55823F~-10 0. 12158E-09 0. 18942E~09 FISSICN PRCOUCTS MCLE FRACTION POISCNING ABS/ABS (FUEL) 0.0 3.0 0 35567E-1C 0«0 Oa 3B8121E-11 Qald GO 0e0 D O Da1ESHEE-D5 0. 91792E~-17 0. 203895E~-05 0.0 0.0 0,0 D.115216-1C OIC O, 2E1R3E=05 0. 224638E-1C 0.0 Oe ) Ce O 0.0 0, 10151E=0¢ 0. 5749%E-05 0.24161E-05% 0.0 Ce O Ga 0 0.3 Os 14867E-08 Ce 0 Cs O 0.0 Gs 0 O'a C.14853E-05 0. T5528E=-0¢8 3.0 G, TE508F-~11 a0 0w 98143E-08 Ce B4031E-13 0,191 76E=-06 Ca358TCE=CB Qs O 0.9 CalllBEE-02 C.39G958FE-C2 q. 0 Ou2CT16E-04 0.0 Ce 15457E-0% o Uq 28393E~07 ACTIVITY CURIES Cel9151f 08 C.2562%E Q7 0.0 0.17321E 04 0.0 0.36062EF 08 0.36015E 38 C.152%¢€ 03 C.1G138F Q6 C.33575E-02 C.16214E-06 0.0 Ce%8106F 08B 0.24052F 08 C.24043E 08 0.0 0.22843E 04 C.1429¢E 05 0.0 Cue54£22£ 08 D.54615E 08 0. 26280E 0% C.1C4B3EF OY 0. 26373E 07 C.7CT11E QO C.0 C.82€17E 08 0.82614E C8 0,10195€ 0% C.26610¢ Q7 C.0 QV.64258E 0B C.95383EF Ga C.BCO14E 06 C.13032E 08 Ce55502E D2 0.94189E 03 0.0 C-98182¢ 08 0.13319E 07 O.168S¢6E 05 0.0 Cel33828 03 Q.BTTLITE 03 GC.0 D.B248%E C8 C.83834E 048 D.75354E 06 Ce.7354CE O35 0,2C178F 032 C.3580CE OO0 0.,120C4E N G.O 0.,35580€ 08 OO POWER OENSITY KW/LITER 0.75808E-C2 0.1306GE=-02 0.0 0.24485E-C6 0.0 0.99711E-02 D.70172E=-02 0,23422E-07 0.53019E-0% 0a35114E~13 0.1T576E-16 0.0 0.0 0.1144CE-CL 0.11439E-01 0.0 0.327256E-07 0.306312E-05 0.0 0.156516~C1 214475E-C1 D.19725E-(5 0.53433E~C3 0.26221€=02 0.53162E~10 0.0 0.23872E-C1 0.3S769E-01 0.10748E=-05 0.10293E-02 0.0 0.25408E-C1 D.10101E=02 0.6663TE~03 0.20537€~62 0.55271£-C8 0.78580E-07 0.0 0.517863E-01 0.167£2E=02 0.75154E-02 0.0 0.297TCE-CB De22243E-06 0.0 0. 3L T66E-01 0.27318E-C1 De18182E=-C3 3.19261€-04 G,46853E-(7 0.43232E-11 0. 46089E=10 0.0 0.21670E-C1 040 GAMMA HEAT K/ LITER 0a45257E-Q2 0.11206E=02 0.0 Ue®235%E~07 J.0 C.56835€6~C2 C.320876E-02 0.28106E-08 C.7G529E~05 GT3E-0C2 (63E=Q2 M 3644E-C5 3823E-02 5879E-C5 3358E-C3 5051€=-03 B44E-06 288E=-03 Q@ 1616E~G3 5313E-03 0474E-02 o B ¢ & ® & 3 & & & 9 2 v 3 e € P b p b W ¥ & & COFMRCPFOOCOUmS OO POOODHEFOONOON-DOE0 64431 E-02 175E-09 TYOE-0O COOOOLODLO0O0ADCOOH0RODADOOCEDOOIOOIOO0 O D e ® & 3 & € « b6 2 b @ 0.2294BE~01L 0s18182E8=03 QeBREIRE=CE 0.46853E6~07 D.0 D.45089E~10 00 Qe11268E~01 Qa0 PRCCESS RATES MOLES/DAY 0.56013E~05 0, 3678TE~D4 0.,11525E 00 G.4T3B5E~0D8 0,88429E-05 « ETH2BE~04 O« 24TC5E-03 0.68813E~C1 0.11912E 0C 0.31626E-02 0.17216E-10 Ge6TTHHE-C4 0.33256E-05 Ve 44 THEE-GS 0.21101E-04 0.28530E 00 D.22351E-08 0.11212E-0E 0, 158B0E=C4 0,49379E~-05 0. 36304E-04 Ua43437E-C1 0. 22%19E GO 0,32513E-02 O.11040E-02 0,59342E-01 Q. 48328E-05 0.46130E~03 0.4%3833E 00 1. 39055E-04 0.,14151E-01 0s71785%E~(5 D.42T38E 0O 0. 84T08BE~0O1 0. 174563E~-02 0.16591E=02 0.656568E-01 0. TE14BE-05 0.65261E=07 0. 4%9895E GC 054 8B1E~0Q4 0. 10%17E OO 0. 41883E-10 0. }ETHLE~GB Qatb231E~05 Qubas33E-01 Da35756E~-02 Q. 10520 CC 0.2TTGTE GO 0.18955E~10 G.102%2E=-02 O.36640E~11 0. 40088E=07 0o 52359E=05 0.72108€ 00 L STEADY STATE VALUES FCR NULLTDE CONCENTRATINN Cs126 BA126 1137 XE1L3Y C5137 BAL3TM PAYI2T 1132 XEi38 £S13e AT R 129 XE129 5129 BA129 LAlze XEL40 £sSi4n BALALD LAL4D TEL140 XEL1GY CSlal BALI4T LAIal CF14Y PRY 4T XFl42 S142 BAl42 iAl42 CEla2 PR1G2 NO14&2 XEl142 5142 BAl43 LA143 CEl43 PR143 ND143 Lalsas LEt4sa PR144 NDisa CELLS PRI&GS ND14S CEl46 PRIALS ND14S Ceray PR147T NDYT AT PM14T GM-ATOM/CL J0.51674F~-08 0.F0339F-06 N, 590255F=-11 0,60424F-11 0.129F7F-04 N.19453F=-11 0.23519%-08%8 D, 14919E-11 0, 75000E£-11 0,42545F=-1C D.,41422F-0C% 0.42922F-12 0.,38207E5-11 0.1149RFE~-0% 0.10185E-0¢ ND.HI21RE-06 D.128p2F-11 0,12913E=-10 0,.,22RR725-056 0.332467=07 0.70728E-26 0.110475-12 D.434781F=-11 0.,27724£=0% N.36489E-0A 0.37522c-04 0.40058%-06 0.22960£-17 0.36107E-12 0.17008F-00 0.18%5044F-0R 0.817495-05 0. 19405E-10 0.82R828C5-D9 N, 1QGRIE=-1 4 Ge 14B4GE~12 0,22940F-11 0.20214F-00 0.,27502£=07 N0. 1983606 0.470805=-06 Q. 7546752~ 0.50343E~06 0.22557F=10 0.BAZSTE-N}T 0.25450==-10 0.30223E~08 O 41534E~048 3.90148E=10 0,1544TE-09 N.32556F-06 0.52610FE-~11 N.58264E-10 Je E29R4E-07 J3.1E724E-06 D.,9923RE-NT 0.15447E~-04 0.113¢3£-09 0,132435-09 0.,24673¢E-01 Ne37403E-10 0e8452215~04 C.28884E-10 Oel4438FE-09 0.3372%E-09 0.79642E-04 D.82525F-11 Je73481E-10 0,22107E-08 0.19582E~-07 Q. 1 3,7'-"OE-04 0.26575E-10 N.2482RE-09 0.4397T6HE-05 C.62927FE-06 e 13599E-04 J.2123%8-11 0.BR3500%-10 0.533055-058 0.7Ci1ERE~D7? 0.,72157E~-05 U.770205-05 Ou4B145E~12 0.59422F-11 0.32874E-08 J.289246E-07 J«1571RE-0S 0.3730%E-09 O.1611RE-OT 0.38350F~12 0.28551€F~-17 0.44106E~10 C.38EE6E-08 0.52877F-0% 0.37560E-35 C.90521£-0% C.14512F=10 0.965%055=0% 0. 43370E-069 0. 16588E-05 J.499325-09 0.58103E-07 0.79858F-05 NDeI7333E-08 0.29699E-08 (0. 6259%E-0% 0.,10115E-09 0.,11202€E-08 Je11335F-05 0.30252E-05 THE FISSICN PROCUCTS MOLE FRACTION POISONING AgS/ABS{FUEL? T442F =04 IS4 EE-04 3853E-03 49£3E-04 BS3TF-C4 DoV O0O0O0DDT 20O OO . DO DTOMNIDIOT=IOINOONO 0.0 C.1158BF=-03 O, 63756E-04 0.0 0.0 Je0 Ds Q. 1AT13E-04 O.40358E-018 D. 174635E~064 Ol() 0.0 0.0 0,0 0.,15087&£-35 0.27068E-073 0. 17234F-02 Ua 0 Coe 535947205 Ca 0 C.T71424E-05% 0.0 0.0 Cue 27T7OTE=03 0.0 O. ] < I2B2E-02 0 D4 B De 0 0.0 0.0 0.1 558GE~02 ACTIVITY CURTES Co21486E G,0 G.12035¢ t.1385¢8¢ CL634689F £,59361¢E 5.0 CellB12E Ge36388E C,105Z8F Ce0 C.10C25F D.41506F C.94225F C.95646F C.0 0.40354E C.,91395F 0.98661CE 0.1072¢¢ C.0 C.25801F D.8463CE D.119G1E 0,12140¢ C.62625E 060 D.7T15032E C.T3333E D.11241€ £.10814F 2.77093¢ £.0 0488143 0.95885¢ 9, 10151E .0 0. 56044E 0.65572¢ 9.0 C.50130E 0.50106% 0. 0 C.37809E 0.37800¢ 0.28715E £.88897¢ c7 09 08 o7 Qv 09 08 Q9 08 08 08 08 08 08 0% 08 o8 09 G9 08 o7 o8 o= 09 06 0% 08 o8 09 09 oeg o8 o7 a8 03 08 08 o8 cs8 08 08 0é POWER DENS({TY KW/LITER C.R202&6E-C3 C.0 0«30345E-02 N.10877E-C1 0e.24R31E-C3 Q0+56327E-03 0.0 C.57874E-C1 NaZ21316E-02 0.54601E-C2 0.0 0.28725€E-01 0.21327E-01 0.32263E-01 D.12326E-C1 Celd 0.13499E~-C1 0.45697E-01 0.78754€E~-02 Da%30326E-01 0.0 0.,10424E-C1 0.24T34E~01 0.23535E-0 0.17567E-01 D.297T87TE~C2 0.0 0.322C36E-0C2 Ca31519E-01 0.,16071E=C1 0.60352€-C1 0.9 0.45465E-04 0.0 De42431E~T3 0.14260E-01 0.23924E-C1 0.25123£-01 0.11R67E-0L Qo4& 24E~C2 0.0 0,3295GE-C] 0.20323E-03 C.18251E-02 Ve 0.1G124E-01 G.6857BE-C2 0.0 0.34042E-C2 0.19454F-~C1 O.01 0.,10833E-01 0.,57402E-02 Ue19418E-C2 0.110B0E-C4 GAMMA HEAT KW/LITER 0.75450E=-03 0.0 G.0 C.16%158~-02 0.0 5632TE-03 0.0 0.0 0e%53948E-C2 Qe3TETSE-C2 0.0 0.0 J.0 0.17099E~01 0.897B1F~-04% 0.0 0.0 0.21021E-01 0.3T014E~02 0,33130E-01 T430E-0Q3 £ i52=-01 94E2E-04 9965£-02 -t"Ol"‘OONO-POGOOO-“DOGD o T33E=02 9G4E=-02 48T3E-Q4 22802E-04 4289E-03 5319E-02 2061E-CY ® & & 8 5 & 2 2 ® 8 8 I ® m s & & &4 ¢ 3 & & R * e 8 " g4 8 8 & 2065&-(2 &4 0 o 0 5 4 0 0 3 0 1 1 0 Q ol B3496E~04 OOQQOOOQQOOOUOOOOOOGOOOOOOOQGOOOOOQ - -0 PROCESS RATES MCLES/DAY 0s71227E~04 0.11087E-01 C.49083E-05 0.374460F OC 0.,17756E OC C.26845E-07 De326457£-01 0s12353E-05 G.49983: 00 0. E0052E=-06 0a571¢2€-01 0.35539E-06 0.98562E-01 0.1%867E-05 0. 14055€E-04 0.504689E CO 0.17151E-01 0.178208-056 Ce31563E-02 0.27528E-01 G.58562¢ 00 0.201899E-02 0. 50003E-07 Qe 3BZ25GE~- 08 0.30213E-02 0.31074E 00 0.3314#8E 0C D.31651E-04 0.49827E-08 04 23595E-05 0,31245TE-02 0.6TERBE 0C 0.,1¢067E-04 06594 10E-03 De 1847T5E-05 Q0,20492£-08 0.31657€-07 0,16738E-03 0¢22771E-01 0,16175€ 00 0.38982F 0C 0,624%945-0¢ 0.41689E 00 D.18677E-04 ‘O, 72160£-01 0.21072E-04 (}25022E-02 3.34390% 00 Q. T4643E-04 J+127T90E-03 J.256956E 00 O«%3561€E-C5 0.48242E-C4 0.483814E-01 0.,13028E CO 3. STEADY STATE VALUES FOR THE FISSICN PRCDUCTS NUCLIEE SM147 CEl48 PR1I4S NDL148 PM148M PMILA SMlas PR14S NDY149 PHM14G $M149 ND1ISO PM15G SM150 NE15)Y pr1Isl SMisl Euls1 pMiIsS2 SM152 EUlISZM EuUls? Ghls2 PMIS3 SuMi53 EULS3 GD1I53 PM1 54 iMI54 EULE& GO154 SM1SS EL11 595 60155 $M1Ss EYl1Ee GDisS SM1IST EULST 60157 E¢158 G158 EUIS9 G159 TB1SS EUL&0 GU160 TB160 oYi1a0 60141 TRISY pYletl GD1s2 TBleZM 0Yle2 CONCENTRATION GM=-2TOM/CC 0. 55086E=03 0, 23858E-11 O« 66022E-11 O.16458E-06 D.14027F=03% 0.12165E-08 Q. 904R0E~C8B Ce43738F=11 0. 2052EE~09 0.61737E-C3 0. T2127E-08 0. 68583807 Q. 48TTRE~11 0.99843E-11 0,13522E-n% 0.21828E-07 0,105816E-10 0.32706FE-11 Vea22325-07 «S1T7386-13 0.49200E-1] U.3432BE-11 D.15108E-11 0,11413E-018 0.18358E-07 0. TRTSLE~13 0.29109E-12 U.58016E-CR 0.14868E~08 0.85520E-11 0.13699€E~-11 G, 10262F-058 D.40RBTE-11 D.15685F-10 D.1095GE-08 0.25739€-08 D.61139E-14% 0.109%15-15 Ga16140E-10 De18975E-12 O 7RI94E=-09 0. 39564F=13 0. 23471E~-11 0. 1087T0E-09 0.15142%-14 0.302226-10 D.18628E-71 Q.557685~-12 0, TORG2E=15 D,15764E-11 0.569908E~11 D.57911E~14 0,119%0F-11 MOLE FRACTICN D.10591F-06 D.454B8E~10 0.12696E=09 0431644E=05 C.26970E-07 0.22389E-07 0.173675=06 0.24095E-10 04354 70E=08 0.11870E-0% C.140£2E-056 0.13181€-05 0.9378SE-10 0.1T110E=-05 0.16197E=09 Ty 26000E~07 0.4197CE~CS 5.20218E~09 D,62BR0E~-10 0.81200E-06 0.95471E=12 G.25943E-10 0.66984E-10 0. 29045E=10 D,21944E-07 0.35298E-06 0. 15149611 0,55968E~11 0.11155€=06 3,2 8580E=07 04 16443E-09 9.26339E~10 0.19731E~07 0.11707E-09 0.30187E-09 0.210708-07 0. 49485E-07 0.117556-12 €.21056E-09 0.31832E-09 0a366483E=11 G.15266E-07 C.T60TOE~12 0.45127E-10 0.,20323E=08 0.291138~13 0.58108E=09 0.35812E-10 0.16491E-10 Os 13534E-13 G,30309E=-10 0a134418=09 Qe TBOGZE-1D 0,111368€=~14 T.23083E=-10 PCISONING ABS/ABSIFUEL) 0. 14072E=-04 0.0 0.0 Ue 1216 CE-04 0. 546C03E~03 0o 16020E~03 0, 150756-05 0e 0 0.0 0s111T5E-03 04 66282E~02 04 435 71E~C5 O‘O 0.14311E-03 040 9.0 0. 15C0SE=-02 0. FB529E-G6 0. 0 0.38679E-03 3.0 D.26565E-06 0. 66769E-0F 0.0 0, 0 0.13661£-03 0.0 De G 0.67332E-06 0. 25T71E~04 0. 155308-07 8.0 ] 0s 16604E-03 Ce3556CE-05 0.0 0.0 0.45132E=-06 s 0 s 0 . 426717E-04 0.0 0. 82542E-07 040 0.0 0. 2044 3E=-06 0.0 . 257T43E-0% Q.0 0. 2753 4E-08 0.3 0.0 Oe. 71511E-C7F Gas 0 G, 0 Q. L1198E=-07 ACTIVITY CURIES Ca0 0.25701F Ce28TOQE Ca 0 C.l8C57E O.1218CE Q.0 Cel4BOSE J.14798E G+ 18GB&E [ C.0 0.23442F Ce O 0. 647T75E Ua628€5E C.3714CE Ce 0 Cuab2434F C.0 C.T2183E Ce51555E C.0 C.21382E D, 31509E 0.0 Coal7603E 0. 90646E C.0 0.13752¢ Ca0 CubBIESE 0.83924F Cs0 O0.21651E 0.3850CE Ca0 0.9%195E C.93487F J.0 Ce32114€ 0.0 O0,17112E C.1691%E C-.O Cs47152E C,0 Ca13567E 3.0 0.1%811F Ua12352E C.0 CobOl22E Qe 6011 3E Ce0 08 o8 ab6 07 08 08 08 06 o7 07 04 o7 03 0l 67 a7 o1 0s 04 Q5 3% 36 06 05 05 05 05 05 04 a3 04 o4 a2 02 POWER CENSITY KW/LITER 0.0 DeT73541E-02 0, 76584E-C2 Ca 0 0.55411E=C% 0+24080E-C3 Q.0 Co42420E-C2 Nal18360E~02 G.90992E~03 Q.0 «0 «T6235E-C4 o0 SCooO »11322E=-02 0,55123€E~03 D,15843E-0¢8 0.0 0:13739E~02 0.0 C.122048E-CH 0.18166E=-08 0.0 0.25273E-C3 C.14838E-03 0.0 0.861282E-10 0.13117E-03 0.0 0.3L130E=06 0.0 O+45173E-Ca 0170 TAE-Q6 Q.0 0+995T0E-05 0.10073E-03 0.0 Q0.125561E~04 0. 97504505 0.0 0.97537E~-05 00 04330%6E-C5 0,99383E-Ce Q.3 D 10U65E-05 Q.0 0,28414E=-07 0.0 J.2185e€-Co 0,48664E-07 3.0 0,49441E~-08 Q0.97317€~08 0.0 GAMMA HEAT KW/LITER 0T22E-02 OO0 Qoo 0.50424E5-04 C«11G77E-03 0.0 C.D 0.T1604E-03 0.1819BE-04 » o 0315E~-04 3703E-03 5566E=-03 4188E-0% 6149E-C6 1311E=G5 2815E-05 655 5E-0% BTTE=O5 902E=-05 COoOOLOLoCORDLOCOLQALOLLOOooOROCOSOO P o~ ¥ ¥ & 4 * 9 § % 3 v ¥ ¢ 4 9 s ¢ 9 ¢ & B ¥ 3w g ¥ © W 4 9 QPN ONLF QDA NOLOOTOOTDUNOONOS O 5462C0E-C5 a0 0.12907E=05 0e11926E=-05 Ge 0 0.0 00 De23300E-07 Cul Q.82238E£-07 Oei4599E~09 0.0 Q.0 Da0 0.0 PROCESS RATES “OLES/DAY 0e45611E=02 0.1958%E~05 0. 54667E-05 0.13527E 00 Oell614E=02 0. 10072E-02 0.74917E-02 0.36215E=05 0e16957E-02 0.511186-02 0. £0557E-02 0e56762E-G1 8. 40388E-05 0.73684E-01 0e82670E-05 0.11196£-02 C.18074E-01 0.BT0E9E-05 Ce2T70T9E~T5 0.34968E-01 D.42837E-07 0.413176-05 0.2B846E-05 0.12508E=05 0.94459E-03 0.15201E-01 0.652395-07 G. 24102E~06 0.4803BE-02 0.123C8E=-02 0o 7O811E-05 0.11343E-05 0.84G6GE-03 0.50415E=05 0.12987E=04 0.%0738E-03 0e21312E-02 0.50623E~08 0.90676E-05 04133 64E=04 D.15711E-06 Do 657 40E-03 0432755E-07 0.19434E-05 0. B8BTS 15E~04 0.125376=08 0.25024E=04 De15422E-05 0. TLO1HE-05 0o 582 84E~0F D.13052E~05 0,57884E-05 0. 33630E=05 DenTY50E-1D 0.95277E-05 Gl STYEADY STATE VALUES FOR NUCLIDE CONCENTRATION TR16DM TR163 dylio™ TR1AG oY1 64 DYlesM DY165 HO168 LYl 6é# HN166M ®0146 Er166 Exls67 TOTAL POWER DENSITY DUE 7O RADICACTIVE DECAY = CM-ATOM/CC N.24348E-15 N.19444F-14 J,16798¢-11 0.,57882&-14 0. 26099LF-12 0,37771E-17 0. T52A9E~16 G.17040E-12 U 33B6NE-14 0,92790F-16 0.12723E-14 Ne38284F-173 0.99323E-15 D.406814F-14 0.37355£-13 0.380655~10 0.11129E-12 0.%0121E~11 0.72622F-16 0.14472E~14 0.32762E-11 0.65102£-112 N.1TE4T1E-14 O. 244855372 0. T3608E-172 0+19108E-13 TAOTAL NEUTRON 2BSORPYINN RATE IS FEISSILE NEUTRON BREEDING RATIO IS POWER GENERATEL RY FISSINN CHEMICAL PROCESSING RATS, MOLAR DENSITY, GAMMA POWER DENSITY, ARSLCRPTION MOLES/CC RATE IS IN MW TS EQUIV/SEC = KW/LITER = THE FISSICN PRCOLLTS MDLE FRACTION POISOGNING ABS/ABS{FUEL} ACTIVITY CURIES 0.0 C.2707GE 03 0.0 C.38215€ Q2 0.1155%8E-07 G.0 0.0 C.32655E 02 0. 77293F-08 C.C 0.0 C.23238F (2 0. 276867F-11 0442C95EF 01 0., 4E968E~-0¢ C.0 0.0 C.5391C¢F 01 G C.6i429t 01 0.8107T¢E~1C Q.0 Qe 74CT3E~11 C.0 0.23328E 01 0.2817GE-L3 0.12528E-013 C.108%29¢t 01 C.22¢14EF Co J0.21710E-0C1 Us52C1CE-CI 0.62%25F CO ELEMENTS AND THETR REMOVAL RATFS FROM REACTOR SYM MOLE/DAY SYM MOLE/DAY SYM MOLE/DAY SYM MCLE/TAY SYM MOLE/DAY SyM™ POWER NENSITY KW/LIVER 0.32008E-G7 0.458377E-08 0.0 C.T3917F-08 C.0 D.¥19024E-08 0.32024E-09 0.0 0,11044E-09 0.,29796E-15 0.650337€~-09 0.0 0.0 MOLE/DAY SYM GAMMA HEAT KW /LITER 0.99217E-0D8 0.14222E=-02 0.0 C.O 0.0 0.,41854¢£-10 Q.86ah8E-11 0.0 0.0 042943GE-15 G 0 % QOO " a0 » o PROCESS RATES MOLES/DAY 0.20160E-0% 3e16100E-038 0.16392E=-05 D.47926E-GB 0.21610E-06 0.212748-11 D.62323E-10 N.14109E-D& 0.28038E~-08 GeV6B30E-10 0.10544E~-08 0.31669E-Q7 Q0.8228SE-09 H E {y My AS NB N LA A TA L AT 4,T30E-02 HE T.833F-01 LI 65,14lc 02 1,1320€ 03 NE 1.7758-01 N4 0,90 QuD AR 0.0 K 0.0 0.0 FE D.0 cn 2.¢ 1.738E-02 SE 2,188E-01 BR 3,741F-03 L.R13E 00 MO 1.22YE 00 TC 1.450fF-0Q7 2.970E-04 SN 2.626E-02 SB 1,S567E-02 E.388E-01 L€ 2,013F 00 PR 4,.961F-01 9.037E-05 DY ©S.250F-C5 HI 1.422F-07 0.0 W 0.0 RE 0.0 3.429E-12 PB 5.183E£-07 Bl 1.862F~10 0.0 TH 8.572F 01 Pa S.672E 00 B< mG LA M1 KR RU TE NE ER s PO X = O W NN DD O 1488 {2 8 3,31%5F-08 C . 0 AL 0.0 51 . < ¢ 0.0 i . c U 0.0 IN . S99kt 00 28 1,113E-N2 SR . G3%2E-01 RK 6.71i%E-03 PO 4CSE U0 f 1.2085£-02 XE 316E 00 P¥ 1,387€-C1l SM 2E2E~-CE TM 0.0 Y8 0 1 0.0 PT TFEE-CE AT 0.0 RN 3T8E~CQ1 NP T.443E-03 PY 1. 61 5E-08 N 0.0 P 0.0 v 2.613E~CT GA 4.623E~C1 Y 1.615E-02 AG 2.444E 00 (S 1.506E~01 EU J.0 Ltu 0.9 AU S.153E~-07 FR B.994E-03 AM MOLEFDAY SYM MOLE/DAY 9.927E~-03 0 5.754E~(2 ¢.0 S 0.0 Ca0 CR 0.0 1.7C8E~-0T GE 6.H681&~C4 5.98TE-01 IR 3.1&T7E GO 4.006E-03 CTD 1.763E~-03 1.787E-01 Ba 1.,039E-C1 1aB821E-02 G0 2.84TE=-G3 Je0 HF 0.0 0.0 HG 0.0 0.0 RA 1.4608-09 6.16XE-03 (M 5,8%568-C4 08 Table B-4. Summary of Nuclear and Chemical Properties of the Most Important Isotopes in the Fuel Salt of a Typical 2250-Mw {thermal) Single-Fluid MSBR Fe Pu PCISONING Fo Po TOTAL KEAT Fo Fo GANMA HEAT Fe Po CONLENTRATION Fa Po MOLE FRACTION ABS/IFISSILE ABS) (KW/LITERY (KW/LITERY} (GMICC) £21490 4. h2BE-D3 290960 Te TCHE-D2Z 3809480 52353E-02 380900 3,26TE-05 330500 6.282E-C4 541350 34909E-03 150870 & T92E-02 35QBT0 4.550E-02 55137C 1.287E-05 551379 224 THE=C4 601430 1.733E-02 571420 6,025E-02 571420 4,315E=-02 561380 4, 142E-06 561380 T+964E-C5 611470 1.555E-03 370900 5. G42E-02 37C9¢CC 4+ 1COE-02 4 {0930 3,330E-06 400930 6.4C3E~-CS 621510 1.501E-03 5231380 T TR7E~-DZ 284930 3.5867E-02 4C0%40C 3.257E-0% 400940 6« 263E-05 541351 1.1159E=-03 150880 Se.779E~02 ST14CO 3.313E-02 400920 3.207E-0¢ 400520 6.167E-G5 511481 5.46CE-04 2895230 5.7%4E-02 3609C0O 2y E4E-02 4 (0960 2. T46E-04 400%80 5.281E-C5 380900 4831E-04 370320 S.5C02F-02 5212¢0 242%5E=-02 5612790 2.382E-0% 561370 4, 522E-08 62152¢ TLBABE-DE 5113245 . 176F-02 28C940 2.170E-02 4C0910 1, 390E~06 400510 2,573E~-C5 601450 3TT1E-D4 250890 4.%33E~02 5514CC 2. 1C2E-02 4 (0950 9,4305-07 400850 1.8138-C5 5912420 2.705E-04 3739130 4.911E=-02 280%20 1.240E-02 58142¢C B.175E-07 581420 1.572E~C5 400930 2.538E-04 551400 4, EI0E-G2 551390 1.,710E-02 561360 8,C034E-07 5861360 1,345E=C5 631550 l.£40GE-04 E71400 4a2CAE-02 280910 1.631E-02 37087¢C T7.3285-07 370870 1,409E-(5 611480 1.502E-04 390940 4, 1672E-02 350940 1.415%E-02 581400 T.0738-07 581400 14360805 621800 1.431E-04 37TL9Y0 4, 124E-02 37CES0 1.257€~-02 57129¢ b, 122E-07 5713596 1,177E-CS 561370 1.3B5E=04 511220 3.9ITE-Q2 270910 1.25BE=~Q2 581440 5. 035E-07 581440 3. 6816~C6 631530 1. 385 6E-D4 360900 3.9228-02 561460 1,2C6E=02 60143¢C 4,708E=07 601430 2,052E-06 5814190 1.159e-04 380540 I,444F-02 5313260 1.127E~02 3s0910 4,2545~07 390510 + 1 30E=C6 611490 1.1176=-04 290950 342334E=-D2 4C0550 B.1456E-03 £014%0 4.153£-07 £D1450 T»9BHE~CH 71220 €.894E-05 871840 2, 296502 £10%71 T.2856-03 3808990 4,13BE~-07 3808990 T.957E~Gé 591410 5,23T4E-DF 390570 3, 2358-02 511210 T.282E~-03 400904 4y JODE=07 4£00%00 7.B882E-L6 8314560 5.338E=0% 551390 3. 228802 3£0A9¢ 7T.382E-03 591410 4, 00&E-0T 591410 T.702E-08 400910 S.148E-0F 399920 2. 18RE-02 5113ct T2 ZCTE-O3 38C88C 4.004E-07 380880 T.6599E-(6 541870 4.35B8E~GF 8213=0 3.177E-02 5113¢0 T+ 2CEE-03 58lalc 3.753E-07 581410 7.,216E=-0¢ 5561200 241 7CE-DT 551430 3, 152E=-02 2GC950 7+0CLE-D3 £0146C 3. 256E~07 601460 £6.259E-06 STREAM CCMPCSITIONS FOR MSPER AY STEADY STATE MOBLE GASFS NOBLE METALS SEMI-NCBLE METALS RARE EARTHS HALOGENS ACTIVE METALS NUCLIRE GM/DAY NUCLIDE Gu/laY MUCLICE GM/CAY MUCLTIDE GM/OAY NUCELIDE GMSTAY NUCLIDE GM/CAY 24613560 S.A07E O 5213240 A.588% €1 SL053C 6.411E Q1 FELA2(0 9.512E Ot 531350 4.827E-0% IBOSCC 4,058 L1} 54Y280 6.PR8E O} 521320 S.78&E 01 4009440 4,338 O 581400 B,199€ 01 531310 4.2355E-01 581370 Z,433& {1 541370 5.132€ Ot 521321 S,6847% 03 4C092¢ 6. 108E 01 S71390 T7.046E 01 531290 4.119%~-01 561380 7.E8BE CQ 561380 5.09CE 0% 410850 Z.876E U1 400560 BL.458E O BE1440 6.C03E 01 350810 2.B6SE-0OL 51370 4,447 CC I40EB0 4,39TE 01 AT0970 3.682F C1 400910 2.518E £} £01430 5,.574F 01 531330 2,3238-01 561350 1.508BE LU 360870 3.604E §1 3213200 32,3192E {1 400950 1.8%48€ C1 601450 4,987EF 01 531270 1.771E-02 370870 8.758E-01 360890 2.730E 01 E21210 2.0028 {4 400200 7,837 00 551410 4,67TE Q1 531340 1. 271E-02 380890 5,083E-C1 IL0BB0 2. T7H4E 01 411000 2.68GE 01 £0124C 1.1%28 CO 581410 4,381E 01 3506830 8.602E-03 380880 4.883E-C1 3160851 1,614€ O} 470980 2,607F 01 51128¢ 8.46(0E~-01 £01460 3,3836E {1 531320 B5.155£-03 561400 4.419E~C} 51340 1,453E O1 42310990 2.5732F 01 ACL124C B8.2715E-CL 390910 3.2085 ) 350840 3,603E-03 £51330 1.989E~01 541251 1.420E 01 10881 2.348E 01 51123¢ S.478E-01 £61430 2.313E Q1 250790 1.471E-03 ITO835C B.H2IE~Q2 54129C !,3VCE O1L a20990 2,30RE G3 SL1220 3,5%8€E~C} QORGS0 2.032F 1 350850 8,T94E-04 380910 BLBT9E-L3 521330 8,7314¢ 00 4210205 2.0&88F (1 4L0STC 2.627E=01 £C1480 2.017E 01 531380 T.121E-04 551360 9.46B7E-C3 5%131C 7.774F 00 421010 2,027c 01 50288 Z2.145E~01 £1147C 1.915E 01 380870 7,116t-04 380920 T.92B£-03 363900 T.2R4E 20 421000 1.8822& ¢! 5311210 2.11%E=-C1 €21500 1.105F Gl 531270 6.722E-04 3BOBET Z,621E-03 AL0B4AT £.935E 00 521290 1.537¢ ©¢1 S0119C 2.001E-C2 £01440 1,0%4E Q1 350840 4,984E-04 561390 1,954E-43 360831 7,788 GO BZLI2R0 l.47¥5F {1 5CL18C 1.%88E-01 £013500 8.514E 00 350820 3.723E-04% 5531330 5,994E~04 260820 2.5268 00 410971 1.378F 41 51270 1.9%4E-CL £C14T0 T, 1T6E 0O 250880 2.4B6E-04 561340 6.195E=C4 541400 2.401€ 00O 52132G 1,127€ g1 S5CL17¢ 1.363E=01 621820 $.315E Q¢ 5313R0 1.7C5E-04 561417 5,3858-04 541320 1.8&4BE 20 451030 9,515 09 48114C 1.0B0E=CL 571400 3.854E 00 531300 1.4T71E-0Q4 561420 3.351&-04% 380850 1.0%%E DO 2a(84y 3,017 CC 511260 9.7T86E=02 B81&30 3,2%6E GO 350890 T.4T75E-Q5 551340 Z2.,246E-C4 350910 T.904E-C1 %212%1 8.877E (O 48YLEC F,450E=02 621510 2.729E Q0 531390 4.940E-05 551390 2,206F=(4 €41331 2.Z207TE-GY 4311510 8,7C01E 00 5T1250 3.924E-02 521530 2.,326E 0C 250841 3.646E-C% IBEGI3C 1.045E-(% 360920 5.723E-G2 521380 B8.6TLE Q0 325760 3.TFLI9E-C? £21480 1.10%€ 0C 250801 1.538E-05 37CBYC 9.61BE=-(5 541410 2,94 8E-02 431040 443965 03O 45115C 3.386E-02 £214%0 9,023F-01 350821 1.110E-C8 551380 8,292L-0C%5 13 STRFAM HEAT RATES FCR MSER AT STEACY STaATE NCBLE GASES NUCLIDE 541380 350880 35C8%0 360870 54137¢C 360900 5413G6¢C 41350 541400 541351 260851 34091¢ 541330 3560920 360850 541610 360831 350930 541331 541420 260940 541430 541311 10030 541291 {MW} 2.814% 0OC 2.634E QO 2.29%E 00 1.124E 09 B.620E-01 T.J61E-01 5.864E-01 2.388£-01 1.538E-01 1.28¢E-01 9, 952F-02 T.013E-02 1.335€-02 be2408-03 2,913€-03 1.675E-032 1.575€-03 8,959E-04 T.691E~-04 3.624E-04 2.504E~-05 2,172E-05 2.022F=056 T.5T3E-06 4,537E-12 NOBLE METALS NUCL IDE 551340 521331 5217220 411000 421020 421010 47 (9s0 410981 340840 410970 521310 521350 4311010 410959 431040 521330 410971 421040 £20990 240853 4£21030 521311 340830 £212%90 431030 (MW} 3.283E 0OC 1.856E 00 1.43%F 0C 9.01¢t-01 .662E-01 G b41E-01 5,500F-01 5.459E-01 4,9T76F-01 4,G19F-01 4.T24E-01 4.043E-C1 3.5T7xE-01 3,68T7E~01 2.1C4E~-01 3,0235E=01 1. 026E-01 2.54TE-01 Z.29RE-01 1.,981F-01 1.7351e-01 1.2332-01 1.1708-01 8.144£-02 7 R9EE-Q2 SEMI-NOBLE METALS NUCLICE 4CAa%80 4C0%39 SCLzéc 4C0sTC 5112590 51127C 51124¢ 5C1256¢C 511250 501291 511310 511280 501231 5Ci230 5C127C 5112¢0 511330 501320 5il24c 511320 5C1310 511281 511301 5013C0 32077C IMW) 3.7CCE-01 2.310E=-02 2eC3GE-02 B.,2&CE-03 4. TCTE-C3 2.09%E-03 1.602E-03 oESEE'C‘D 205345'04 1.541E-04 1.462E-04 1o 94 8E~04 1.257F-04 1.206E~C4 T«B8Z6E-C5 5.176E-C5 4.4T5F-05 4 36CE~05 34241E-G5 3.195£-05 1.7291‘3"05 1.560E-05 1.233E-058 B.CB1E-06 RARE NUCL IDE 281440 3¢091¢ 581410 571400 £61430 €C1470 581430 £11470 353930 39060¢C 390920 571420 571410 €11431 £11490 831540 591450 €3156C ©11480 61151¢ 390940 390950 57143¢C 360911 £21530 EARTHS { MW) €.534E-C1 2.526E-01 1,152E-01 B.610E-02 6.613E-02 3. 0485_02 2. 380E-02 1.268E~02 1.236E-02 7+039E-03 £.599E-33 4.605E-G3 4,52GE~-03 2.904F=-03 2.404E-03 2.172E-03 2.040%-03 1. 804E-03 1.553€=-03 T.6EQE-04 T.007€-04 5.5455=04 5.333E-04 4o 409E-04 3.93T7TE~C4 HALJOGENS MUCLIDE 531350 53131¢ £31330 531340 350840 £31320 350870 350830 3508380 53135890 350860 350850 260820 531370 531380 350890 531390 531300 350841 350801 35082L 3508090 531280 5313¢1 a { MW} 1.200E-02 2' SZSE_GB 2+512E-03 3.4 66E-04 1.375E-04 T.383E-05 4.966F=-05 2.T6TE-05 2.486E-05 2.061E-05 1.756E-05 1.414E-05 1.226%E~-D5 1.,167E-05 G, 013E-06 2.908E=06 1.870t-06 1.7752-0% 2.064E-07 4.284E-08 1.251E-08 5,C78E~0F 3.645E-09% 0.0 ACTIVE METALS NUCLIDE 380900 551370 561403 2808590 380910 551360 380920 561390 561410 561420 380930 55139¢C 370890 5513490 551380 370900 380940 551400 370910 380950 551410 27086C 37093¢C 561430 370920 {MW) 4. 860E-01 1.228E-01 1.188E-C2 34872E-C3 3.2B3E~C4 2.07TE-C4 1.152E-(4 }.470E-C5 1.159E-(5 1.117E-C5 J.089E-C6 S5.885E-C6 4,342E-06 3.315E~-C% 2+430E~06 2.382E-C6 1.367E-05 1.355€E-04 1.312E=C% B.345E-C7 3. 1858E-07 2.4425-07 1.5693E-07 1.5613E~GY 1.295E=-C7 <3 Table B-5. Flow Rates and Heat-Generation Rates of the Fission-Product Streams in a Typical 2250-Mw (thermal) Single-Fluid MSBR Flow Rates Total Power Gamma Power Poison Stream g/day moles/day (Mw) (M ) Fraction 1 500 i .388 11.68 5.75 5.02 x 107 D 682.8 6.149 15.96 7.50 6.37 x 1071 3 299.2 %.190 0.43 0.34 3.5% x 107 4 TLT.T 5.242 1.29 o.i5 1.52 x 1072 5 1.884 0.016 0.018 0.012 2.50 x 10'6 6 80.81 0.751 0.62 0.13 7.50 x 10'1+ Totals 2082 19.74 20.00 13.87 2.13 x 1672 8 8L Co L Table B-6. Material Balance for Thorium Consumption in a Typical 2250-Mw (thermal) Single-Fluid MSBR Processing rate of fission products 2282.37 g/day Processing rate of actinides 201.20 g/day Deposition rate in graphite 35.65 g/day Fission rate of miscellaneous actinides 6.01 g/day Total fission products and actinides removed 2525.23 g/day Burnup rate of thorium 2529.06 g/day - O CO—1 AN E\N O = o 10. e no - I AN 15. DN NND 2 et ViEEWW N R ONO 0 O 6. o7 . 58. 29. 50. 66. 67 - 68. 0. T1-72. 5. 74 . 75-89, C. F. Baes H. F. Baumann S. E. Beall M. J. Bell R. E. Blanco F. F. Blankenship G. E. Boyd R. B. Briggs R. E. Brooksbank K. B. Brown W. 1I,.. Carter H. D. Cochran, Jr. F. L. Culler J. R. Disgtefano W. P. Eatherly D. E. Ferguson .. M. Ferris J. H. Frye W. R. Grimes A. G. Grindell P. A. Baas B. A. Hannaford J. R. Hightower, Jr. C. W. Kee R. B. Lindauer J. C. Mailen H. E. McCoy L. E. McNeese D. M. Moulton J. P. Nicheols L6, hT. L3, Lg. 50. 51. 52. 5o 54, 05 - 56~57. 58-59. 60~62. 63 . 6l . 65. . Nicholson H. Pashley (K-25) . M. Perry W. Rosenthal W. F. Schaffer, Jr. Danlap ‘Scott J. H+ Shaffer M. J. Skinner F. J. Smith Martha Srewart R. E. Thoma D. B. Trauger Chia~Pao Tung W. E. Unger C. D. Watson . Watson . Weinberg - Weilr - Whatley . White . Wymer . Youngblcod Central Research Library Document Reference Section Laboratory Records Laboratory Records, RC Y~12 Document Reference Section ORNL Patent Office Mmoo R G OO E W EXTERNAL DISTRIBUTION D. F. Cope, Atomic Energy Commission, RDT Site Office (ORNL) A. R. DeGrazia, USAEC, DRDT, Washington, D.C. D. Elias, RDT, USAEC, Washington, D.C. Norton Haberman, RDT, USAEC, Washington, D.C. 20545 20454 20545 Kermit Laughon, Atomic Energy Commission, RDT Site Office- (ORNL) T. W. McIntosh, Atomic Energy Commission, Washington, D.C. M. Shaw, Atomic Energy Commission, Washington, D.C. 20545 20545 Laboratory and University Division, ORO Divisicn of Technical Information Extension, OR