n} - BIRSTER OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.5. ATOMIC ENERGY COMMISSION ORNL- TM- 2970 11970 M vt RECEIVED gy ), . CALCULATED RADIOACTIVITY OF MSRE FUEL SALT M. J. Bell i = NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Ook Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED e e e v eiee- - — oo — LEGAL NOTICE — e - - o e e — This report was prepared as an account of Government sponsored work. Neither the United States, i nor the Commission, nor any person acting on behalf of the Commission: | A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, | i i completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect ta the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the above, ‘‘person acting on behalf of the Commission’’ includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor. ORNL -TM-2970 Contract No. W-T7405-eng-26 CHEMICAL TECHNOLOGY DIVISION LONG RANGE PLANNING GROUP CALCUIATED RADICACTIVITY OF MSRE FUEL SALT MO J. Bell MAY 1970 e —————————— T LEGAL NOTICE This reporl was prepared a8 an account of Government sponsored work. Nejther the United States, nor the Commission, nor Any peracn acting on behalf of the Commisaion: A. Makes gny warranty or representation, expresaed of implied, with respect to the accu- racy, completenega, or usefulness of the information contained in thie report, or that the use of any information, apparatus, method, or process diaclosed in this report may not lofringe privately ovned rights; or B. Assames any liabilities with respect to ihe uae of, or for damages resulting from the usee of any information, apparaps, method, or process disclossd in this report. As used in the above, ''DETBOD acting on behalf of the Commission®’ includes any em- ployee or contractor of the Commisgion, or employee of such contractor, io the extent that such employee or contractor of the Commission, oT employee of such contractor prepares, disseminates, or provides accesa to, Any information pursant 2o hls employment oT contract with the Commisaion, or his employment with guch contractor. OAK RIDGE NATTIONAL LABORATORY QOak Ridge, Tennessee operated by UNION CARBIDE CORPCRATION for the U.5. ATOMIC ENERGY COMMISSION DISTRIBUTION OF THIS DOCUMENT I8 UNLIMITED . ;’ . ( ABSTRACT INTRODUCTION COMPUTATIONAL PROCEDURE COMPUTATIONAL RESULTS REFERENCES iii CONTENTS 20 Z1- CALCULATED RADIOACTIVITY OF MSRE FUEL SALT M. J. Bell ABSTRACT Calculations have been made of the inventory and radioactivity of the fission product and trans- uranium isotopes present in the MSRE fuel salt. ghe calculations have included operation with both 235y and 233y fuels, the effect of stripping of noble gases, 3ng fluorination of the fuel salt after the period of 35y operation, Results are presented which give the inventory and radiocactivity of individual isotopes in the salt up to January 1, 1975. INTRODUCTION The Molten Salt Reactor Experiment at ORNL was first operated at full power in May'1966.l Since that time the reactor has been operated for over 100,000 Myhr with both 232U and 232U fuels.’ In August 1968 235U fuel originally charged, and the reactor was then fueled with 233U prepared at the TURF facility at ORNL. In October 1968 the MSRE became the 233 U the fuel salt was processed by fluorination to remove the first reactor to operate with 233U fuel, Power operation with fuel began in January 1969, and operation of the reactor was terminated on December 12, 1969. The fuel salt was drained and is being stored prior to permanent disposal., Estimates of the composition and radio- activity of the fission products present in the fuel salt drain tank are required to provide for safe storage and disposal of the salt. Such estimates should take into account, in as much detail as possible, the operating history and chemical processing history of the fuel salt. These estimates were made using a modification of the ORIGEN isotope generation and depletion code which took into account continuous chemical processing. Calculated results are presented which describe the compo- sition and radiocactivity of the fuel salt after 235 233 U. U operation and after operation with 2~ COMPUTATIONAL PROCEDURE Estimates of the composition and radiocactivity of the MSRE fuel salt were made using a modification of the CRIGEN isotope generation and depletion code which took into account continuous stripping of the noble gases Xe and Kr.3 During periods of power operation, it was assumed that noble gas stripping took place on a }j87-sec cycle with an efficiency of 38%4. It was also assumed that tritium was removed at the same rate. In the calculations the power history of the fuel salt was approximated by the series of increments of constant average power shown in Table 1. Between periods of operation the fuel salt was drained on a number of occasions and a 'heel" of approximately 10% of the total salt volume remained in the drain tank every time the salt was returned to the reactor. This behavior was taken into account using the same "flux-dilution! technique applied to the circulating fuel salt, i.e., the entire salt inventory was assumed to be exposed to a propor- tionately lower neutron flux. Nuclear data used for the calculation was that compiled for the MATAD(R steady state material balance codegh6 ’ Three group spectral constants were derived from the data of Prince. During the period of operation of the MSRE additions of uranium were made to the fuel salt which amounted to approximately 2% of the uranium inventory. These additions were neglected in the present calcu- lations. This approximation has the effect of raising the neutron flux required to maintain the fission rate at the specified level by less than 24, and is expected to have a negligible effect on the radio- activity of the fuel salt. During a six-day period in August 1968 the MSRE fuel salt was fluorinated to remove 235U before beginning operation with 233U. This processing also removed all those fission products having stable volatile fluorides and any Np present in the salt. In addition, the remaining noble gases and the halogens, Br and I, would also be expected to leave the salt. Accordingly, 100%4 of the elements H, He, Se, Br, Kr, Nb, Mo, Tc, Ru, Te, I, Xe, U and Np were removed from the salt 157 days after the end of power operation with 235U, _3_ Table 1., Approximate Power History of MSRE Fuel Salt Time Avg, Power Cumulative Period Elapsed This Period Burnup Ending (days) (Mw) (Mwhr) Comments L,/11/66 0 0 0 First approach to full power 10/13/66 185 1.76 7823 11/17/66 220 l;.51 11611 12/14/66 247 0 11611 1/1L/67 278 7.81 17420 1/28/67 292 0 17420 5/8/67 392 7.49 35385 6/22/67 L37 0 35385 5/18/67 Lok 6.56 1362 10/21/67 528 0 h)y362 3/25/68 7L 6.10 71580 End of 235U operation 9/29/68 871 0 71580 End of 235y processing 1/14/69 1009 0 71580 Beginning of °°°U full power operation 5/3L/69 1146 6.19 91.9LL 9/22/69 1229 0 919LL 10/1/69 1268 .20 95877 11/2/69 1301 T.ub 101770 11/25/69 132L 0 101770 12/12/69 13l1 7.61 104816 End of 255U operation - COMPUTATTONAL RESULTS The calculated inventories of fission products and transuranium elements present in the MSRE fuel salt after the termination of operation with 235U fuel are shown in Tables 2 and 3. The inventories at 157 days after shutdown reflect the removal of noble gases, halogens, and elements with volatile stable fluorides by fluorination in August 1968. It was assumed that 1004 of these elements was removed. The remaining times past 157 days cooling correspond to the period before power operation with 233U fuel. The radioactivity of these isotopes for the same period is given in Tables L and 5. The computed activity of the fuel salt prior bo the start of 255U operation is 0.289 x 10° curies. The 233U charged to the MSRE for the second period of power opera- tion had been purified by solvent extraction and ion exchange in 196l and 1965. The isotopic composition of this material after purification was 8.6% 233y, 6,933 234y, 2.1 235, 0.15% 23y, ¢.872 238y, and the uranium contained approximately 225 parts per million 232U.7 Table 6 shows the increase in radioactivity of this material during the period that elapsed between purification of the uranium and power operation of the MSRE with 233U fuel. The radiocactivity of the uraniunggaches a level of 1.53 x 103 curies as a result of the presence of Th and its daughters. Tables 7 and 8 give the transuranium element and fission product inventories in the fuel salt at the end of 233U power operation and as a function of time after shutdown. The radioactivity corresponding to these isotopes is given in Tables 9 and 10. The results indicate that 5.88 x lOu curies of radioactivity will remain in the fuel salt after 5 years cooling time. About L% of the long lived radiocactivity will 2327 and its daughters. Of the fission product activity, greater than 984 is due result from transuranium elements, in particular, from to isotopes which form very stable fluoride salts. Approximately 1% of the fission product radicactivity is the result of isotopes of noble metals which would not be expected to remain dissolved in the salt, - Table 2. Fission Product Inventory of MSRE Fuel Salt After Period of 235U Operation as a Function of Time After Shutdown MSRE OPERATION wWITH 235 U FUEL POWER= 4.18 MW BURNUP= 2983, MwD FLUX= 2.35E 12 N/CM*%2-SEC NUCLIDE CONCENTRATIONSy GRAMS CHARGE DISCHARGE 3.00D 30.C D 90. D 157. D 295. O SE 80 0.0 1.068 OC 1l.CéE 00 l.06F CO 1.06E 00 0.0 0.0 BR 81 0.0 1518 00 1.%51E CO l.51lE 00 1.51€ 00 Cu0 0.0 SE 82 0.0 3.48F 0C 3.48F 00 3.48E 00 3.48E 00 C.O 0.0 RB 87 0.0 40 6Tt Q0 4ob6TE 00 4.6TE CO 4.6TE 00 4.67E 00 4,67 00 SR 88 0.0 3.36E 00 3.37E 0C 3,37E 00 3.37E 00 3.37€ 00 3.37E 00 SR 89 0.0 6.B3E 0C 6.56F 00 4.58E 00 2.,06E 00 B8.43E-01 1.34E-01 Y 89 0.0 3.99E 01 4.C2FE Ol 4e21F Ol 4.47E Ol 4.59E 0Ol 4.66E Cl SR 90 0.0 6052FE 01 6.52F 0l 6.51F 01 6.48E Cl 6445E 01 6.39E 01 ZR 50 0.0 le30E 00 le31f CO 1.43E CO 1.69E 00 1.99E 00 2.58E 00 Y 91 0.0 lel4t 21 le.l11lE 01 B.06E 00 3,97E 00 1.8BCE 00 3,54E-01 ZR 91 0.0 5«85E Ol 5.89F Gl 6.19E 01l 6.60E 01 6.82E 0Ol 6.,96E Ol IR 92 0.0 To.34E 01 7.35€ 0Ol T.35E 01 7.35E Cl T.35E Ol 7.35& 0Ol IR 93 0.0 T«95F 01 7.97E Ol 7.97E 01 7.97TE Gl 7.97E Ol 7.97E 01 IR 94 0.0 Te99E 0l T499E Ol Te99E 0Ol 7.39E Cl 7.99E 01 7.99E 01 IR 95 0.0 le4lf O 1e26E Ol 14C2E 01 5.40E 00 2.64E 00 6.06E-01 NB 95 Q.0 7.18E 00 7,20t Q0 6483E Q0 4.,74E 00 0.0 5.,07E-01 MO 95 0.0 Se¢TlE Ol 5.,76E 01 6414E 01 6.,83E 01 0.0 1.53€ 00 IR 96 0.0 8.08t 01 8.,08E 01 8.08E O] 8.08E Ol 8.08E Ol 8.08€ 01 MO 97 0.0 T.87¢€ 01 7,83t Ol 7.89E 01 7.89E Ol 0.0 0.0 MO 98 0.0 TeS6F 01 T4E6E Cl T.56E 01 7.56E 01 0.0 0.0 TC 99 0.0 8413E 01 8,17F 01 8.,20E Ol 8.20E 01 0.0 0.0 MOl100 0.0 Be42E Ol B8.42F 0l B.42F Ol 8.42E 01 G.0 0.0 RU101 0.0 6. TS5 Cl1 6.,75FE 01 6.75E Ol 6.75E 01 0.0 0.0 RU102 0.0 562 01 5,62F 01 5.62E 0l 5.,62E 01 0.0 0.0 RU103 0.0 4.82E 00 4.5TF Q0 2.85E 00 9.97E-01 0.0 0.0 RH103 0.0 3.65E 01 3.68f Ol 3.85& 01 4.03E 01 4.10E Ol 4.10E 01 RU104 0.0 2.58BE 01 2,58F Ol 2.58E Ol 2.58E 0Ol 0.0 0.0 PO105 0.0 1434E Ol 1.34F 01 le34F Ol 1.34E Ol 1.34E 01 1.34E 01 RULO06 0.0 3.93E 00 3,91F 00 3.72F 00 3,32E 00 0.0 0.0 PD106 0.0 2+5TE 00 2,59E CO 2.79E 00 3.19E 00 3.58E 00 3.,58E 00 PD1OT 0.0 3e42E 00 3442E 00 3.42E 00 3.42E GO 3.42E 00 3.,42E QO PD108 0.0 lo46E 00 1.486E 00 1.46E 00 1l.46E 00 1.46E 00 1.46E 0O 1127 0.0 2.18E 00 2,20E 00 2423E 00 2.2T7E 00 0.0 0.0 TE128 0.0 T«18E 00 7.19E 00 7.19E 00 7.19E 00 0.0 0.0 1129 0.0 l1.36E Ol 1.36F 0l 1.38E Ol 1.40E€ 0O} 0.0 0.0 TE130 0.0 3,486 Ol 3.48E 0l 3.48E O] 3.48E 0l 0.0 0.0 XEl3l 0.0 1.556-03 2.81E~-Cl 1.15E 00 1.25€ QO Q.0 0.0 CS135 0.0 256E 00 2.66E Q0 2.66E 00 2.66E 00 2.66E 00 2.66E 00 CS137 0.0 8.80t Ol B.80FE 0l Bo.TBE Ol B.75E Ol 8.71E 0l 8.64E 01 8A137 0.0 163t 00 1.65E 00 1.80FE 00 2.13E 00 2.50E 00 3.26E 00 BA138 0.0 4e93E 01 4.93FE Ol 4493E 01 4.93E 01 4.93E 01 4.93t 01 LA139 0.0 16176 02 1417E Q2 1417E 02 1.17E 02 1417E 02 1.17E 02 CE140 0.0 1.31E 02 1.32E 02 1.35E 02 1.36E 02 1.36E 02 1.36E 02 CEl4l O. 1413€ 01 1.07E Cl 6401E 00 1.67E 00 3.,97e-01 2.07E-02 PR141 0. 1l.09E 02 1.09E C2 le14€E 02 1.,18E 02 1.20€ 02 1.20E 02 CEl42 0. lel4E 02 l.14F 02 1le14E 02 1.14E 02 1.14E 02 1.14E 02 PR143 0. 437 00 4,08E 00 1.07E 0Q 5.13E-02 1.73E-03 1.61E-06 ND143 0. 1.08E 02 1,09E C2 1412E 02 1.13E 02 1.13E 02 1.13E 02 CEl4s O. 5482E Ol 5.,77E Ol 5.41lE Ol 4.67E Ol 3.96E 01 2.83E 01 - Table 2 (Continued) MSRE OPERATION wITH 235 U =UFL POWER= 4,13 MW BURNUP= 2983, MWD FLUX= 2.35FE 12 N/CM*%x2-SEC NUCLIDE CONCENTRATIONS, GRAMS CHARGE [ ISCHARGE 3,00 30.C C 90, O 157, 0 295, D ND14% 0.0 5,07F 01 5.11F 01 5,%8F Cl £.21€ Ol 6,92E 01 B8.05E 01 ND145 0.0 Te65F Ol Te6EE Ol Toeb6E Ol Teb66E Ol 7.66E 01 7.66F 01 ND145 0.0 5.99E 01 5.59F Cl 5.99E Ol 5.99EF 01 5.99E Cl S.99E 01 PML4T 0.0 3. 70E 01 3.71F 01 3474F Ol 3.61E 01 3.43F Cl 3,11 01 SM147 0.0 84156 00 9423€ 00 B¢477E 00 1.06E 0l 1423E 01 1.55E 01 NDL48 0.0 3,38F 0l 3.38F (1 3,3BE Ol 3,35F C1 3,386 Ol 3.38€ 01 SMI48 0.0 le34F OC 1e35F CC 1e39E 00 1.40E CO 1.40FE 00 1.40F 00 SM143 0.0 3,63F 00 3,73FE CC 3.79E 00 3,79E 00 3.7SE 00 3.79F 00 NGL150 040 135 01 1.35F GOl 1e3%E Ol 1+35E Cl 1.35E 01 1.35E Ol SM150 0.0 10926 01 1922 0l 1.92E O1 1.92E 01 1.,92f 01 1.92€ Cl SM151 0,0 7.21E 00 7.24F CO Te24E 00 7.23E 00 7.22E 00 T7.20E 00 SM152 0.0 TealE 00 Te4lE 00 7441F 00 Te4lE 00 T.41€ 00 7.41E 00 EUL53 0.0 3,68F 00 3.69F 20 3,7CE GO 3.70E 00 3.70E 00 3.70E 00 SM154¢ 0.0 1.65E OC 1.65F 00 1+65E OO0 1.65E 00 1,656 00 1.65E 00 SUBTOT 0.0 2,306 03 2,3CE 03 2,31€ 03 2.31E 03 1.,70E 03 1.,70E 03 TOTALS 0.0 20326 03 2432F (3 2.32E 03 2432E 03 1,70E 03 1.70F 03 -7- Table 3. Transuranium Isotope Inventory of MSRE Fuel Salt After Period of 235U Operation as a Function of Time After Shutdown MSRE OPERATION WITH 235 U FUEL POWER = 4e13 MW RURNUP= 2932, MWD FLUX= 2435E 12 N/CM**2-SEC NUCLIDE CONCENTRATIONS, GRAMS CHARGE DISCHARGE 3.0 0D 30.C D 9C0. D 157, O 295. D U234 T7.87E 02 Te76c 02 TaT76F C2 ToeTEE 02 TT6E C2 0.0 le54E-C4 U235 TewTE 04 T.C9E 04 T.09f 04 T.0%E C4& T.09E C4& C.0 6¢52E-03 U236 3,37k 02 1.03E 03 1.03F 03 1.03F 03 1.03€ C3 0.0 1.C6E-03 U238 1.49F 05 144B8E 0% 1l44EBF 05 1.48E 05 1.43E C5 Q.0 1,24E-08 NP237T 0.0 3.51E O30 3.54F 00 3.62E 00 3.63E 00 C.C 4+30E=-05 PU23% 0.0 6e13E C2 6.16F 02 6,18E 02 6.18E 02 6.,18E 02 6.18E C2 PU240 0.0 2. TTE Cl 24.77¢ QL 2.77€ Ol 2.77T€ Ul 2.77E Cl 2.77€ 01 PU241 0.0 1s4TE OC 1e4TF 0C 1446E 00 1.45E CC l.44E CC l.41E GO SUBTOT 2.25E 05 2422E 05 2422F 05 2422E 05 2.22E 05 6.47F 02 6.47¢ C2 TOTALS 2425E 05 2422t 05 2.22F 05 2422E C5 2.22E CE 6.47TE 02 6.47E 02 _8- Table L, Fission Product Radioactivity of MSRE Fuel Salt After Period of 235U Operation as a Function of Time After Shutdown MSRE OPERATION wWITH 235 U FUEL POWER= 4.18 Mw BURNUP= 2983, MWC FLUXZ 2435F 12 N/CM*%x2=SEC NUCLIDE RADIOACTIVITY, CURIES CHARGE DISCHARGE 3.0 0 30.0 D Q0. D 157. O 295, D SR 83 0.0 1.93F 05 1.85F C5 1.29E 05 S5.81€E 04 2,38E 04 3.78E 03 SR 90 0.0 9¢22E 03 9.22F 03 9,20E 03 G.16E 03 9,12E 03 9.04E 03 Y 99 0.0 9e24C 03 9,23E 03 9.,20E 03 9,17E C3 9.13E 03 9.04E 03 Y 91 0.0 2. TTE 05 2.70F (05 1.97€ 05 9,7T0F 04 4.40F 04 B.65E 03 ZR 95 0.0 2 FBE 05 2.89FE 05 2416E 05 1.14E 05 5.59E 04 1.28E 04 NB 95M 0,0 Ce96F 03 5,52t C3 4.59E 03 2.43E 03 0.0 2.T2E 02 NB 95 0.0 2¢82E C5 2463F 05 2.68E 05 l.85E C5 0.0 1.99€ 04 MO 99 0.0 3.10FE 05 1,47t 05 1.81E 02 6,12E-05 0.0 0.0 TC 99M 0.0 2.TOE Q05 le41F 05 1le73E 02 5.85E~C5 0,0 0.0 TC 99 0.0 1439E 00 1.29F Q0 1.40F 0C 1.40E Q0C 0.0 Q.0 RUL1O3 0.0 le 54E 05 le66F Q5 9,13E 04 3.19E 04 0.0 0.0 RH103M Q.0 1. 54E 05 l.47E C5 9.14F 04 3,20E 04 9.89E 03 0.0 RUL106 0.0 1328 04 1431t 04 1.25E 04 1.11E 04 0.0 0.0 RH106 G.0 1440 04 1e31F C4 1.25E O4 1.11E 04 9.82E 03 0.0 AGlll 0.0 1.29E 03 9.82E 02 8.10FE 01 3,16E-Q1 6.4TE~-04 1.,87E-09 CD115M 0.0 3.63t 0l 3.64¢E Q1 2.24E Ol 8.,50E 0C 2.89E 00 3.,12E-01 SNLI19M 0.0 l.108 00 1.10E CO 1l.02E 00 8.60E-01 0.0 0.0 SN123M 0.0 6055 01 5.95E 01 5.12E Ol 3.,67E 01 0.0 0.0 $B8124 0.0 2.09E 00 2.02E QGO 1l.48€E 00 7.41E-01 0.0 0.0 SN125 0.0 Te51€ 02 6,028 (2 8,22E 01 9.85E-Cl Q.0 0.0 $8125 0.0 3.33€ 02 3.34F C2 3.34E 02 3,21E C2 0.0 0.0 TEY25M 0,0 1.10F C2 1le11E C2 1.16E 02 1.22€ 02 0.0 0.0 58125 0.0 l1¢23E 03 1.,04F Q2 2.33E Q02 8.37E 00 0.C 0.0 $8127 0.0 Te«03E 03 4,49t 03 3.59€E 01 7.88E-04 0.0 0.0 TE127M 0.0 1l36F 03 1.36E 03 1.18E 03 8.04E 02 0.0 0.C TE127 0.0 6+82E 03 5.,23FE 03 1,20E 03 7.,95E 02 0.0 0.2 TYE129M 0.0 1526 04 1.43E 04 B8,27E 03 2,44E €3 C.O 0.0 TEL29 0.0 3,708 04 9.,20f C3 5,30€ 03 1.56¢ C3 C.0 0.0 I131 0.0¢ 1e51F 05 14195 C5 1.17E 04 6,69E 01 C.O 0.0 XE1l31M 0.0 1. 056 00 1.75E (2 2.56% 02 1.23E 01 C.0 0.0 TEL32 0.0 2.18E 05 1.15F 05 3,63F 02 1.03E-C3 C.0 0.0 I132 0.0 2+25E 05 1.19f Q5 3.74E 02 1.,07E~C3 0.0 0.0 XE€133 0.0 66435 02 4.02f C4 1.38F 03 5.14E-Q1 Q.0 0.0 CS134 0.0 127 00 1.26E CO 1.23E 00 1l.16E 00 1.09E 00 9.64F-01 CS136 0.0 5¢15E 02 «439F €2 1¢04E 02 4.25E CO 1.,19E=01 T.64E~-05 CsS137 0.0 Te66E Q3 TebbE 03 Te64E 03 7.61E C3 7.58E 03 7.52E 03 BA137M 0,0 7.16t 03 7.16E 03 7.15E 03 7.,12E 03 7.09E 03 7,03F 03 BA140 0.0 3.20E 05 2.72€ C5 6431FE 04 2,45E 03 6.5GE 01 3,72E-02 LAl140 O.C 3, 20F 05 3,00F CS5 T+26E 04 2.82F Q3 T.48F 01 4.,28E-02 CEléel 0.0 3,23E 05 3.06F CS5 1.72E 05 4.T76E 04 1l.14E 04 5.93E 02 PR143 0.0 2.91E 05 2,72F €5 7.12E 04 3.42E C3 1l.15€ 02 1.07E-01 CEl4s 0.0 1. 86E 05 leB4E C5 1.73E 05 1.49E 05 14.27E 05 9.04E 04 PR14%4 0.0 le R6E 05 leP4&F Q5 1,73E 05 1.49F 05 1.27E 05 G.04F 04 NDl147 0.0 1,20 05 1.CO0E CE 1.85E C4& 4.37E C2 6466E 00 1.21E-03 PM147 (0.0 3.43E 04 3.45F 04 3,48E 04 3,35E 04 3.19E 04 2.89E 04 PM14EM 0.0 5.39E 02 5413F 02 3.423F 02 1.22E C2 4.04F 01 4.14E 00 PMl4Iy 0.0 5¢33E 04 2436E Q4 5.,01F 00 3,44E-08 2,£3E-17 0.0 SM151 0.0 1eG6F 02 1.97F Q2 1.97E 02 1.97E 02 1.97E 02 1.9¢E 02 ~9- Table i {Continued) MSRE OPERATION WITH 235 U FUEL POWER = 4«18 MW BURNUP= 2983. MwD FLUX= 2.35E 12 N/CM*%2-SEC NUCLIDE RADIOACTIVITY, CURIES CHARGE DISCHARGE 3.00 30.0 O 90. O 157. D 295, D EUl52 0.0 1.15¢ 00 1.15¢ 00 1.15E 00 l.14E 00 1.13E 00 1.10E 0O EUl54 0.0 1276 Ol 1426F Ol le26E O1 1.25E Ol 1.24E 01 1.22E 01 EUl55 0.0 e 69E 02 4.68F C2 4.55E 02 4.2T7TE 02 3.98E 02 3.45E 02 EULI56 0.0 1l BTE 03 1.65E 03 4,74E 02 2.96E Ol 1l.34E 00 2,28E-03 GDl162 0.0 2.15E 0C 2.14F 00 2,03E 00 1.81FE €O 1.59E 00 1.23E 00 T8162M 0.0 2.15E 0C 2.14E 00 2.03E 00 1.81E 00 1.59€ 00 1.23E 00 SUBTIOT 0.0 4.52E 06 3.T9E C6 1«8TE 06 9.73E 05 4.74E 05 2.89E 05 TOTALS 0.0 20 64E 0T 3.97E 06 1.87E 06 9,73E 05 4.74E 05 2.89E 05 ~10- Table 5. Period of Transuranium Isotope Radiocactivity of MSRE Fuel Salt After 235 U Operation as a Function of Time After Shutdown MSRE OPERATION wWITH 235 U FUEL POWER= “elH My BURNUP= 2983, MwD FLUX= 2.35E 12 N/CM*%x2-SEC NUCLIDE RADIOACTIVITY, CURIES CHARGE DISCHARGF 1.3 0 30.0 C 30. © 157, D 295, D U23« 4.B7E 00 4.B0F CO 4,30FE CO 4.80t OO0 4.80FE CO C.D GeSEE=DT U237 .0 9.55E €3 7.02t 03 4.39F 02 9.25E=~01 0.0 Cc.C NP233 0.9 la11E Q€ 4.60E C% 1.50E 02 3.30E-06 0.C 1.59E=-C5 PU239 0.0 3. 76€ Q1 3,785 Cl 3.795 Cl 3.73E Cl 3.75E Ol 3.79E 01 PU24C C.0 6,128 GO 6,12F 00 6.12E GO 5.,12FE OO0 é.12F 00 6.12E GO PU241 Q.0 l.68E 02 1.68E C2 l.h6TE 02 1.64E C2 1.64E 02 l.01lE 02 CtM242 0.0 1e45E 00 le46E 00 1.30F CO 1.,01E CO 7.57E=Gl 6¢,22E-01 SUBTOT 4,87E 00 lel2E 06 4.67E 05 B.16FE 02 24.16F C2 2.09E 22 2.,05E 02 TOTALS 4.94F 00 2.22F 06 4.,68F 05 8,17F 02 2.18E 02 2.10FE 02 2.06FE 02 Table 6. Radioactivity of Enriching °>-U Used to Fuel MSRE as a Function -11- of Postpurification Time MSRE 233-U FUEL CCMPOSITION AFTER PURIFICATION NUCLIDE RADIOACTIVITY, TL208 pB21l2 BI212 PO212 PO216 RN220 RA2264 TH228 TH229 U232 U233 U234 U236 INITIAL o * OCO0O00ODO000O0 SUBTOT 5.24E G2 TOTALS 5.24F 02 36640 D 1e97E 5¢4%8E S.48E 3,51¢ 5.48¢ 5.48E 564 8E 5. 48E 3.10E=-C2 1« T9E 02 3.26E 02 1. 74F C1 30 87F'03 9. 07E 02 9. C7E C2 CURIES 732.C D 3.33¢ Fe24E Se24E 5.92E 9.24E 9.24E 9.24F Q24E 6.2CE=-Q2 l. 778 C2 3.26t Q2 1,74 Cl 3.87E=03 l.17E C3 l1.17€ C3 1098. C 4e25E l.19E 1. 18E Te58E 1. 18F 1.18E 1. 18E 1. 13F 9.31E-C2 1. T6€E C2 3.26E C2 le 74€ 01 3.37E-C3 1«35 03 1,35€E 03 1464, ©C 4.87E 1.35E 1,35E Beb6E 1.,35€ le35E 1.35E 1.35E le24E-Cl 1,748 (2 3.26E C2 1,74 01 3,87E-0Q3 l.47E C3 1,47€ C3 1830, D S5e29E la47TE 1. 47E 9.4CE 1.47E 1.47E la47E le&7F lo 559“"01 1. 72E 02 3. 26E 02 1. 74E 01 3,87€-923 1. 54E 03 1. 54E 03 ~12- Table 7. Fission Product Inventory of MSRE Fuel Salt After Period of 233y Operation as a Function of Time After Shutdown MSRE OPERATION WITH 233-U FUEL POWER= 4018 MW BURNUP= 1387. MWD FLUX= 3,89E 12 N/CM**2-SEC NUCLIDE CONCENTRATICNS, GRAMS CHARGE DISCHARGE 384,0 C 749.C C 111%5. D 1480, D 1845, D RB 87 4.,67E 00 B.48F 00 B8.,48F CC 8,48E Q0 8.,48F CC 8,42 DO B.4BE 00 SR 88 3437E D0 S.6«F CO 5.€4F OC 5.64F 00 5.64F 00 5.64E 00 5.64E 00 Y B9 44.66FE Ol 64665 01l Ta23F Cl Te24FE 0Ol 7.24E 01 T.24E Q1 T.24F Ol SR 90 6.39E Q1 9,55 0Ol 9.31F Ol 9,C8E 0l 84865 01 B.65E N1 B.,44E 01 IR 90 2.58E 00 4e.«4E 20 $.91F 20 9.,18F 00 l.14E 01 1.36E Ol 1.57E 01 IR 91 6.90E 01 9.73E Q1 1.05f C2 1.05F 02 1.05E 02 1.05F 02 1.05F 02 IR 92 T.35E Ol 1l.1CF 02 1.10F 02 1.10E 02 1.10F C2 1.10FE 02 1.10F 02 ZR 93 T7.97E 01 1.19€ 02 1.19F 02 14,19E 02 1.19F 02 1l.13€ 02 1.19E 02 ZR 94 7,93E C1 1,188 C2 1l.18F €2 1.18E 02 1.18E C2 1.13E 02 1.18F 02 MO 95 1.53E 00 2.44% 0l 3.92F C1 3.97F 01 3.97E 01 3.,97E 01 3,97 Ol ZR 36 3,08E 0Ol 1le14F 02 1le14EF C2 1l.14E C2 1la14E 02 le14E C2 1.14F 02 MO 37 0.0 3.25F 01 3.25F 01 3.,25E Cl 3.25E& O1 3.25E 01 3,25t 01 MO 98 0.0 3,165 C1 3.16F 01 3.15E C1 3.16E 01 3.16E 01 3.16F Cl TC 99 0.0 2498F 01 2.99E Ol 2,99E Cl 2.99E Ol 2.99E 01 2.,9S9F Ol MO100 0.0 24 85FE Cl 2.85E Cl 2485E Cl 2.85E Cl 2.85E 01 2.8%E Q1 RU101 0.C 1955 01 1.95E C1 1495E Cl 1.95E C1 1.95E 01 1.95F C1 RU102 0.0 1e¢56E Cl 1.56F Cl 1456E 01 1.56E GOl 1.56E 01 1,56E 01 RHI03 4.,10E 01 5,075 0! S.30FE Cl 5.30F Q1 5.30F Ol 5.30E 01 5,30E Ol RU104 0,0 7.88E 0C 7.88% 00 7.88E 00 T7.88€ CO 7.88BE 00 7.88E 00 PD10S 1.34E 01 1.82E Cl 1.82F Cl 1.82E Ol 1.82F Q1 1.82E Ol 1.82F O1 PDI06 3,58BE 00 4.61F 00 5.7&F 0C 6.30FE 00 6,57 00 6.71E 0OC 6.77E 00 PD107 3.41E 00 5.64E OC 5.€4F QC 5.,64F 0C 5.64F 00 5,64F 0C 5.64% 00 TE128 0.C Fa&4bFE 00 9447E 00 Ge4TE CO 9447E CC 9.47E CO S.47E 00 1129 0.0 1. 49F 01 1.58F Q1 1.58EFE 01 1.58E Cl l.58E 0Ol 1.58F 0l TE130 0.0 2, 0GE €1 2.C9F 021 2.09E Cl 2.09E 0Ol 2,09 01 2.09E C1 CS137 B8463E Cl 1.28E C2 1.25E C2 1.23E C2 1.20E 02 1.17F 02 l.14E 02 BAl137 3,25E CO 5.56F 00 B4.65F 0C 1l.15E 01 le43E Cl 1.70F 01 1.97F 01 BA138 @.93E O1 Te44F Cl Te44E Cl Te44E Ol To44E Q1 7T444F Ol T.w4E Ol LAL39 1.17E 02 1l.70F C2 1l.70f Q2 1,70E 02 1.72E C2 1. 70E 02 1.70F 02 CEL140 1.36E 02 1.89F C2 1.5CF C2 1490E 02 1490E C2 1.90& 02 1.50F 02 PR141 1.20E 02 1.70E C2 l.86F C2 le84F 02 1.8B4E C2 1.94FE 02 1.84F 02 CE142 1.14FE 02 14 73F €2 1.73F C2 1e73E C2 1.73F 02 1la73E 02 1l.73E 02 ND143 1.13E C2 1467 02 1.73F C2 1473E C2 1+73E C2 1.73E 02 1.73E 02 CEL144 2.84E 0Ol 3.G98E Q1 1456F Cl 6440E CC 2.62% CC 1.,07E CO 4.41E-01 NDlas4 B.GSE 01 1.13F 02 1.237F T2 le4hE C2 1lo50F €2 1l.52F 02 1.528 €2 ND145 T.6%E Ol 1eC7& 02 1.07% Q02 1.07E £2 1.07E 02 1.07E 02 1.07€ 02 NDl4b 5.99E Q01 B.4«1F 01 B.41lF 0l 8.41F C1 B.41E Cl 8.41% 01 B.41F C1 PM147 3,10 01 4.01E 01 3,16F Q1 2.42E Cl 1.86E Cl 1.43E 01 1.10% Cl SM147 1456F 01 2.39E 01 3.40F 91 4,14F Cl 4.70E Cl S5.13E N1 £.46F 01 ND148 3.37€ Q) 4,63E Cl 4463F 01 «o63E Q] 4.63E Q1 4,63E 01 4,635 01 ND150 1435€ 01 1.90F C1 1.50F C1 1.90F ©C1 1.90E Ol 1.90FE 01 1.,50E 01 SM150 1492€ C1 2.71F Ol 2.71F C1 2.71E Cl 2.71E 01 2.71E C1 2.71F 01 SM15] 7,20 00 S5.39F OC 5.3BF 0C F.33E CO 5.29E 00 5.25€ OC 5.21F CO SM152 Te42E CO0 1.465 01 1446E Cl 1e46HE Ol 1.46FE Cl les6E 01 leé4éE 01 EUL53 3.70E CO 5.45F 00 5.49E CO 5.49E 00 5.49t% CO S.49F 00 5.49E 00 SUBTOT 1.68S 03 2.66F 03 2,71Ff 03 2.71E 02 2.71E €3 2.71E C3 2.71F 03 TOTALS 1.70FE 03 2,76E C3 2,767 03 2.76F C3 2.THE C2 2.THE 03 2.T6E 3 ~13- Table 8, Transuranium Isotope Inventory of MSRE Fuel Salt After Period of 23'3U Operation as a Function of Time After Shutdown MSRE OPERATION WITH 232-U FUEL POWER= 4018 MW BURNUP= 1387. MWD FLUX= 3,89E 12 N/CM**2-SEC NUCLIDE CONCENTRATIONS, GRAMS CHARGE OISCHARGE 384.0 D 749.C D 1115. O 148B0. D 1845. O U232 B.05E Q0 7.,88FE Q0 7.78E 00 ToTIE OO TeH4E 00 7.56E 00 T,49E 00 U233 3,455 04 3,30t 04 3.30FE 04 3.30E C4 3.30F C4 2,30E 04 3.30E 04 U234 2.81lE 03 2,94t 03 2.94F 03 2.94E 03 2.94E 03 2.94E 03 2.94E C3 U235 9.94F 02 9,86E 02 J.86F €2 9,86F 02 9.86E C2 S.86c 02 9.86E 02 U236 6409E 01 6+.80F 01 048CE Cl 6.80FE Ol 6.80E 01 &.,8CF 0l 6.,80£ 0Ol U238 2,38E 03 2.37E 03 2.37F 03 2.37E €3 2,37 03 2.37E 03 2,37 03 PU239 T.4BE 02 6.31FE 02 6.31F 02 6.31E 02 €.31E 02 6.3l1E 02 6,31E 02 PU240 3462E C1 TeT4E 01 Te74E Q1 ToT4E Cl T+T4E 0l 7.74E 01 T.T4E Ol PU241 1.41E CO T.89E 00 T.46F 00 7.08E CO 6.71E CO 6.36E 00 6,03€ 0O SUBTOT 4.15E 04 4.01E 04 4.01f 04 4.01E 04 4,01lE 04 4,01E 04 4,01E 04 TOTALS 4.15E 04 4,01E C4 4«01lF C4 4,01E 04 4,01E 04 4.01F 04 4,01F 04 Table 9. -1l - Fission Product Radioactivity of MSRE Fuel Salt After Period of 233U Operation as a Function of Time After Shutdown MSRE OPERATION WITH 233-U FUEL POWER= 4e18 MW BURNUP= NUCLIDE RADIOACTIVITY, CURIES CHARGE DISCHARGF SR 89 SR 90 Y 90 Y 91 ZR 95 NB 95M NB 95 RU103 RH103M RUL106 RH106 SN123M $B125 TEL125M TEL12TM TE127 TEL129M TE129 CS134 csS137 BA137M CEla4l CElé4s PR14¢4 PM147 PM148M SM151 EUl52 EU15« EULSS GD162 TB162M SUBTOT TOTALS 3.77¢ J.C4E 9.06E 8.64E 1.28E 2.72E 1.99E 0. D00 GCOO0OOC0CO OO0 0ODO0OO0ODOOO 03 c3 03 03 04 02 04 1.62F 1. 35¢ 1. 36E l. 83E 2. 00F 4e 155 1. 7T2E T+ 40F Te 40F T« 43E 8. 95E le 3G9E 6. 38E l. 37E 3. G94F 3. 28E 2.67FE J. 79E 5 52C 1.12F l. O05E 4.10t le 2TE 1s 28F 3. 72F 1.05¢% le4 7€ 5« 38E 3.52¢ 3.55E 24 T4E 24 T4F l. 8CE 3.10¢ 05 C4 04 c5 C5 03 05 04 04 03 03 384,0 9,72¢F 1e32F 1.32¢ 1.69¢E 3.33F T.0PE Re30F 9.92¢ B8e92C 3.63F 3. €638 l.65F 5.12F 2e11E 3.7CE 3.65F 2.15F 64C1lF 3LETE 1.09¢ leN2F 24237 4.5 8E +.G8F 2¢92E l.Ro6t l.46¢ 5.06F 3.36F 2.38F le32E l.32°F 2.01¢F 2.01E 1387. n - MwC T49.C © 3.0CE Cl l.28BE 04 1l.28€ 04 £.38E l.36E l,44E l. 78E SQQQE-OI 30005-01 1, 82€ 03 1.82E 2. 18E 3. 96F 1. 85E 3.63E 3.59F 5.06E-02 1.62E‘02 2. T6E QO 1. 07F 04 9,97E C3 3.63E‘01 2.04E C4 2. 045 04 2.25E C4 1,80E~C2 l.45E C2 4. 7T3E QO 3.22€ Cl l.62E 02 6e 61E~-01 6. 61E-01 l.15E 05 1.15€ C5 FLUX= 3.,8GE 12 N/CM**2-5EC 1115, D 9.12E~01 1.25E C4 1.25F 04 2.83E GO 1.10E C1 le17E-C1 l1.29€ 01} 3.,958E~-03 1.9BE=-C3 9.12E C2 9.12E C2 2+86E-01 3.06E Q2 1,45E C2 T.08E CO 3.50F (O 1.16FE=04 3+73E-C5 1.97E CO 1.04E C4 S.74E (3 50775-04 84.37F C3 8.3T7TE C3 1.73F C4 l1.72E=C4 la44E 02 4.51€ CO 3,08 01 l1.1CE C2 3.30E-C1 3.30c=~C1 B.18E 04 B«12E C4 1480, D 2481E~02 1.22E 04 1. 22E 04 1.565-01 BOQbE-Ol 9.51E-03 1.05% 0C 2.56F-05 1. 33€E-05 4.58F 02 L ,58FE 02 1.51E-0C1 2. 37E 02 l.12E 02 2. 78E 00 1.37E CO 2.73E-07 80746-08 le40E OC 1.02E 04 9452 03 q.37E-O7 3.43E 03 3.43E 03 1. 33E 04 1. 66E-06 1.43F 02 4,26C 00 2.95E 01 7.53E 01 1.65€~01 1.65E=-01 6« 58E 04 6.58E 04 1845, D 8.6TE=04 1.19E 04 1.19F 04 B8.42E-03 T.31E-02 T T76F=04 8.56E=-C2 1079E-07 8.94E~-08 2.30E 02 2.30F 02 T99€E-02 1.33€ 02 8.70E C1 1.0S8E 0O 5+39F=01 6.40E-10 2.05€E~10 1.00€ 0O 9.95E 03 9.30F 03 1.52E-C9 le4l1F C3 l1.41F 03 1.02E 04 1.61E-08 1.42€ 02 4.02€ 0O 2.83E 01 5.14E 01 B.27E-02 Be27E~02 5.7T1E C4 5.71E 04 Table 10. -15- Transuranium Isotope Radiocactivity of MSRE Fuel Salt After Period of °>2U Operation as a Function of Time After Shutdown MSRE OPERATION WITH 233-U FUEL POWER= NUCLIDE RADIOACTIVITY, TL208 PB212 31212 PO212 PN216 RN220 RA224 TH2 28 U232 U233 U234 PU238 PU239 PU240 PU241 AM241 CM242 SUBTOT TOTALS 4018 Mu BURNUP= CHARGE DISCHARGE 5.29¢ l.47E 1l.47E S.40E le47E le4TE 1l.47E le47E 1.72€ 3,27¢ l. 74E 9.00E-01 4.59E 01 T.99E 00 leb6lE 02 2+94E-01 4+22E-01 l.76E 03 le 76E 03 5. 49E 1. 53¢ le 53E 9. T6E l1e S3E 1l..53E 1. 53E 1. 53¢ l. 68E 3.13¢ l. 82E 1. 00E 3.87E le 7T1E 9.01€ Q2 9.59E~-01 245t 01 2+455E (3 Te84E 04 CURIES 1387. MWD 384,00 749.0 0 S5et6E l.57F 1.57F 1.01E l.57E 1.57E l.57¢ 1.57E l.£7E 3el3E 1.82¢ 1l.10E 3.87€ 1.71¢E Be.£2FE 2435¢E 4.88E 2.51¢E 2451E 5. T6E 1.60E 1.60E 1.02E l. 60E 1. 60F 1.60E 1l.60F 1.65E 3.13E 1.82¢ l.11€ 3.87E le T1E 8. 08E 3. 60F 1.05E 2448E 20 48E FLUX= 3.89E 12 N/CM¥#2-SEC 1115 D 5.8GE 1.61E 1.61E 1.03E l.61E le61E 1.61E l1e61E leb4E 3.13E 1.82€ 1.10E 3.87TE 1.71E TeAGE 4,79E 2¢34FE-01 2+45E 03 2.45E 03 1480, D 5.,81€ le62E 1.62E le 03E l.62E 1. 62E l.62€ 1.62E 1.52E 3.13E 1. 82E 1.10E 3.87¢ le 7T1E 1. 26E 5.91E 6e¢ 30E~-02 2441E 03 2.41€ 03 1845, D 5e82E le62E 1e62E 1.03E l.62E 1.62E 1.62E 1.62E 1.60E 3.13€ 1.82E 1.09E 3.8TE 1. 71E 6.88E 6.97E 3.81E-02 2,37 03 2.38F 03 16- Table 11 presents the photon spectrum produced by radiocactive decay of the fission products in the fuel salt. The photon energy group structure for the calculation is the same as that used in the PHCEBE code. The most important fission product gamma ray sources in each of these groups are summarized in Table 12, The photon spectrum produced by radiocactive decay of the trans- uranium isotopes is shown in Table 13. In this table the 0.3 Mev mean energy group has been subdivided into seven low energy groups to include the x-radiation accompanying a-decay of the actinides. The greatest shielding problem presented by these isotopes is the 2 x 1012 photons/sec of 2,62 Mev energy generated by radicactive decay of 208Tl, a daughter of 232U. At the end of five years storage the radiocactivity of 208Tl Wwill determine the y-ray shielding required to ship the fuel salt. At 232U and its daughters will be in this time the entire decay chain of secular equilibrium and will be disappearing with the 72 year half-life of the former, An estimate has also been made of the neutron production rate in 19F. Using values given the fuel salt by a-n reactions with “Be and by Arnold8 for neutron production rates in thick absorbers and for dependence of neutron yield on energy, a neutron source strength of h.5 x 10° sufficiently high that the neutron dose rate will be the controlling neutrons/sec was obtained. This neutron production rate is radiation through a lead shield, Table 11. Photon Spectrum of Fission Products in MSRE Fuel Salt After Period of 233U Operation as a Function of Time After Shutdown MSRE OPERATION WITH 233-U FUEL POWER= 4,18 MuW BURNUP= 1387. MWD FLUX= 3,89E 12 N/CM*%2-SEC TWELVE GROUP PHOTON RELEASE RATES, PHOTONS/ SEC EMEAN TIME AFTER DISCHARGE {MEV) DISCHARGE 200.,0 D 384.0 D 566.,0 0 749,0 D 930.0 D 1115, D 1297. D 1480, D 1662, D 1845, D 3.00E=01 2¢11E 17 4.14E 14 2.,01E 14 1.26E 14 8.,21E 13 S5,40FE 13 3,56F 13 2.39E 13 1.62E 13 1.12E 13 7T.91F 12 6630E=01 3441E 17T 3.66E 15 9.60E 14 &,90F 14 &,06E 14 3.,81E Llé 3.,66E 14 3.,55F 14 3.4TE 14 3.41lE 14 3.,35E 14 1«10 00 1.59E 17 2452E 13 1.64E 13 1.18E 13 8.58E 12 6,35E 12 &,T4E 12 3,62E 12 2.81F 12 2.24F 12 1.82F 12 1¢55€E 00 1.09E 17 1¢19E 13 T.34E 12 4#.95E 12 3.36E 12 2.32E 12 1.61F 12 1.14F 12 B8,22F 11 6.10E 11 4&,66E 11 1.99E 00 1.62E 16 3.31E 13 2.12E 13 1437E 13 B8.80E 12 S5¢69E 12 3.64F 12 2.35E 12 1.52E 12 9.81€ 11 6.34F 11 2438E 00 1.99E 16 1.32E 12 9.12E 11 6.47E 11 4.5BE 11 3,25E 11 2.29E 11 1.63E 11 1.15E 11 B8.16E 10 £,78E 10 2.75E Q00 B,24FE 15 3,80F 10 2.68E 10 1.,90F 10 1,35E 10 9.57E 09 6.7T5E 09 4&.T8E 09 3,39F 09 2.40F 09 1.70E 09 3.25E 00 4.25E 15 6.37E 08 5.99E 04 6.29E 00 6.25E-04 6.92E-08 0.0 0.0 0.0 0.0 0.0 3.70E 00 5.22E 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 G.0 4+22E 00 1.97E 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4o TOE 00 6.89E 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.25E 00 Q.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 C.0 TOTAL B.82E 17 4.15E 15 1e21E 15 6.4TE 14 S5.09E 14 4.49E 14 4,12E 14 3,87F 14 3.69E 14 3,56E 14 3.45F 14 MEV/ SEC Te9TE 17 2455E 15 Te39E 14 3.96E 14 3.14F 14 2.T79E 14 2.5TE 14 2.42E 14 2,31F 14 2.23E 14 2.17E 14 TWELVE GROUP ENERGY RELEASE RATES, MEV/WATT-SEC EMEAN TIME AFTER DISCHARGE (MEV) DISCHARGE 200.0 D 84,0 D 566.0 D T49.0 D 930.0 D 1115. D 1297. D 148C, D 1662, D 1845, D 3000E~01 1e52E 10 2.97E O7 1.45E O7 9.08E 06 S5.8B9E 06 3.,88F 06 2.56E 06 1.T2E 06 1lo17F 06 B.OTE 05 5S,68E 05 6.30E=01 S.14E 10 S.52E 0B 1.45€ 08 T439E O7 6.13E 07 S5.T4E OT 5.52F 07 5.36FE 07 S.24E 07 S5.14E 0T 6S.05E 07 ls10E 00 &.17E 10 6.64E 06 4.32E 06 3.10E 06 24.26E 06 1.,6TE 06 1.25E 06 9,%53F 05 7T.40F 05 5,89 05 4&.80E 05 1o55E 00 4404E 10 4.4CE 06 2.T2E 06 1.84F 06 1.25E 06 B8.,80E 05 5.96FE 05 &.,22E 05 3.,05E 05 2.26E 05 1.73E 0% 1499 0C 7.7T1E 09 1.58E O7 1.01E O7 6.52E 05 4¢19E 06 2.TIE 06 1.74E 06 1.12E 06 T.23E 0fF 4.,6TE 05 13,02E 05 2438E 00 1.13E 10 7.50E 05 5.20E 05 3.,69E 05 2.61E 05 1.85FE 05 1.31F 05 9.,27E 064 6.56FE 04 &.65F 04 3.29F 04 2eTSE 00 Se43F 05 2.5CE 04 1.TTE 04 1.25E 04 Bo8TE 03 6430E 03 4,44E 03 3,15E 03 2,23FE 03 1.58F C3 1l.12€ 03 3.7T0E 00 4.62E 09 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44.22E 00 1.99E 09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4«7T0E 00 T.75 €9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.C 5,25E 00 0.0 0. 0 0.0 0.0 0,0 0.0 Q.0 0.0 G.0 0.0 0.0 TOTAL 1e91E 11 6.1CE 08 1.T7E 08 9.48E O7T 7+51E 07T 6.6TE OT 6414E 07 5.7T9E 07 5.564F 07 5,35 Q7 5.20F 07 WATTS 1.28E 05 4,08E 02 1.18E 02 6.34E 01 5.03€ 01l 4.47E 01 4.,11F 01 3,.88E 01 3.71F 01 3.58E Cl1 3.48F C1 -LI_ NUCLIDE CEl&4 NUCLIDE IR 95 N8 95 BAL3TM NUCLIDE RH106 EUul5e NUCLIDE RH106 PR144 NUCLIDE PR144 NUCLIDE RH106 NUCLIDE RH106 Table 12, DISCHARGE 3.38E O7 DISCHARGE 1.29E 09 1.17€ 09 5.53E 07 DISCHARGE 9.8lE 06 2¢64F 05 DISCHARGE 2.4TE 06 4,20E 06 DISCHARGE 2.4TE 07 DISCHARGE 1.28E 06 DISCHARGE 4.36E 04 PRINCIPAL PHOTON SOURCES IN GROUP 1, MEAN ENERGY = 0.300MEV 200.0 D 384.0 O 566.,0 2.07€ 07 1. 32E 07 8.49E PRINCIPAL PHOTON SOURCES IN MEAN ENERGY = 0.630MEV 200.0 D 384.0 D 566.0 1.52E (8 2.14E 07 3.07E 3.16E 08 S.64E 07 BodkhE 5.46E 07 5.40E 07 5433E PRINCIPAL PHOTON SOURCES IN MEAN ENERGY = 1.,l0CMEV 200.0 O 384.0 D 566.0 5.63E 06 3.97E 06 2.82E 25BE 05 2.52E 05 2.4TE PRINCIPAL PHOTON SOURCES IN MEAN ENERGY = 1.550MEV 200.0 C 384.0 D 566.,0 le42E 06 1. OCE @6 T.10E 2.5TE 06 leb6oE 06 1.05€ PRINCIPAL PHOTGON SOURCES IN MEAN ENERGY = 1.990MEV 200.0 C 384.0 D 566,90 1.51E 07 9. 66E 06 6. 20E PRINCIPAL PHOTON SOURCES IN MEAN ENERGY = 2.3B0MEV 200.0 C 384.0 D 566.0 Te«36E €5 5.2CE 05 3.69E PRINCIPAL PHOTON SOURCES IN MEAN ENERGY = 2,T50MEV 200.,0 D 384.0 D 566.0 2.50E 04 1. 7T7E O4 1.25E MEV/WAT T-SEC TIME AFTER DISCHARGE D T49.0 D 930.0 D 06 5.43E 06 3.49E 06 GROUP 2, MEV/WATT-SEC TIME AFTER DISCHARGE D 749.0 O 930.0 D 06 8.73E 05 2+54E 05 06 l.21€ 06 3.18E 05 o7 $.2TE 07 5.21€E 07 GROUP 3, MEV/WATT-SEC TIME AFTER DISCHARGE D 749.0 O 930.0 D 06 1.99E 06 l.428 06 05 2.41E 05 2+36E 05 GROUP &, MEV/WATT-SEC TIME AFTER DISCHARGE D 749.0 D 930.0 D 05 5.02€E 05 3.57E 05 06 6+74E 05 4«33 C5 GROUP 5, MEV/WATT-SEC TIME AFTER DISCHARGE 0 749.0 D 930.0 D o0& 3.96E 06 2.55E 06 GROUP &9 MEV/WATT-SEC TIME AFTER DISCHARGE 0 749.0 D 930.,0 D 05 2.61E 05 1.85E 05 GROUP T, MEV/WATT-SEC TIME AFTER DISCHARGE 0 T49.0 D 930.0 D 04 B8.8T7E 03 6.,30E 03 1115. 2.22€ 1115. T.05E 8, T4AE 5.15E 1115. 9.99E 2431E 1115. 2.52€ 2. TEE 1115. 1.62E 1115. 1.31E 1115, b.44E D 28R° 05 05 05 Summary of Important Fission Product Gamma Ray Sources 1297. le43E 1297. 2.02E 2.51¢E S.09E 1297, T«09E 2.26E 1297. 1.78E 1.77TE 1297. l.04E 1297, 9.27€ 1297. 3.15E in MSRE Fuel Salt 04 04 o7 c5 05 05 05 1480, 9.12E 1480, 5.75E Tel3E S.03E 1480, 5.02E 2.21E 1480. 1.26F l.13E 148C, 6.66E 1480. 6.56F 1480, 2.23E D os 03 03 07 05 05 05 05 1662, 5.85E 1662, 1.65E 2.05E 4+ 98E 1662, 3.56E 2.17E 1662, 8., 96E 7. 25E 162, 4., 27F 1662, 44 65E 1662, 1.58E D 05 03 03 o7 0s 05 04 04 1845, 3. T4E 1845, 4. 69E 5.82E be 92E 1845, 2.52E 2. 12E 184E, b4 34E 4 64E 1845, 2. T3E 1845, 3.29E 1845. le 12€ D 05 02 02 07 05 05 04 0% 05 -gI_ Table 13. Photon Spectrum of Transuranium Isotopes in MSRE Fuel Salt After Period of 233U Operation as a Function of Time After Shutdown MSRE OPERATION WITH 233-U FUEL POWER= MEV/ 4.18 MW BURNUP= 1387, FLUX= 3,89E 12 N/CM®*2~-SEC ACTINIDE PHOTON RELEASE RATES, PHOTONS/ SEC EMEAN (MEV) 3.00E~02 4 ,00E-02 6+ 00E~02 1.00€E-01 1.50E-01 2.00E-01 3.00E-01 6.305‘01 1.10€ 00 1.55€ 20 1.99€ 00 2. 38 0C 2.75E 00 3.25E 00 3.70E 00 4, 22E Q0 4+ T0E 00 5425 00 TOTAL SEC EMEAN (MEV) 3.00E£-02 4+.00E-02 é.OOE-OZ IOOOE-OI le« S0E-01 2.00E-01 3.005-01 64 30E-01 1.10E 00 1.55E 00 1.99E 00 2. 38E 00 2.75E 00 3.25E 00 3,708 30 4. 22E 00 4, T0E 00 5.25E 0C TOTAL WATTS ODISCHARGE 200.,0 D 9.88E 13 3.67E 14 5.0T7E 14 Te T8E 14 3.59E 14 2.846E 14 1.91E 14 2.95E 13 2.02E 12 Te45E 1C 3.59€E 10 2+ TBE 01 1.93E 12 0.0 0.0 0.0 0.0 C. 0 20 62€ 15 3.,21F 14 ACTINIDE ENERGY RELEASE 1l.82E 09 1« 73E 11 6. 36E 11 1.82€ 12 1. 09€ 11 5.92€ 12 5.09E 11 4.68E 12 1.38E 12 T.58E 10 3.66E 10 2.97E 01 1.97€ 12 0.0 0.0 0.0 0.0 0.0 1. 73€ 13 1.17E 13 DISCHARGE 200,00 D T.09€ 05 3.52F Cé6 T.28E Q6 1.86E 07 1.29€ 07 1.37€ 07 1.38E 07 4. 45E 06 5.32E 05 2+ T6E Q& le TIE 04 1.585'05 1. 27E 06 0.0 0.0 Ce O C. 0 Ce O T«67E 07 S.14E 01 1.31E 01 l.66E 03 S.13E 03 4.,37E 04 3.92€ €3 2. 84E 05 3.65E 04 7. 07E G5 3.64E 05 2.81E 04 l. 74E C4 1. 65E~05 1. 29E 06 0.0 0.0 0. 0 0.0 0.0 2. T9E 06 1.87E 00 TIME AFTER DISCHARGE 384,00 2.52E 09 l. 73E 11 6.45E 11 1.85E 12 1.09E 11 6.00E 12 5.14E 11 4. T4E 12 1. 40E 12 T«68E 10 3.T1E 10 3,04E 01 1.99€ 12 0.0 0.0 0.0 0.0 0.0 1.75€ 13 1.18E 13 566.0 D 3.20€ 09 1.73E 11 6.53E 11 1.86E 12 1.10E 11 6.05E 12 5.18€ 11 4.79€E 12 L.41lE 12 T.75E 10 3.74E 10 3.07€ 01 2.01E 12 0.0 0.0 000 0.0 0.0 1.77E 13 1.19€ 13 749,0 O 3.87E 09 1.73€ 11 6.61E 11 1.87E 12 1. 10E 11 6.10E 12 5.20€ 11 4. 82€ 12 l.42E 12 T«81E 10 3.7TE 10 3.07E 01 2.02¢ 12 0.0 0.0 0.0 0.0 0.0 l. 78E 13 1. 20E 13 RATES s MEV/WATT-SEC TIME AFYTER DISCHARGE 384.,0 D 1.81E 01 l.66E 03 9.,26E 03 4442E 04 1,93E 03 2.87E 0S 3.69E 04 Te16E 05 3.69E 05 2.85E 04 1. 77E 04 1.735‘05 1.31E 06 0.0 0.0 0.0 0.0 0.0 2.82E 06 1.89E 00 566.0 D 2430 C1 l.66E 03 9.38€ 03 &.46E On 3.94E 03 2.90E 05 3.72E 04 T«22E 05 3.72E 05 2.88E 04 l.T8E 04 1.75€E-05 1.32€ 06 0.0 0.0 0.0 0.0 0.0 2.85E 06 1.91E 00 749.0 D 2.78E 01 l.66E 03 9.50E 03 &+49E 04 3,95€ 03 2.92E 05 3. 74E 04 T.2TE 05 3. 15 05 2.90E 064 1. 79E 04 le 75E-05 1.33E 06 0.0 0.0 0.0 0.0 0.0 2.8TE 06 1.92€E 00 930.0 D 4.50E 09 1. 73E 11 6. 69E 11 1.88E 12 1.10E 11 6.13E 12 5.22E 11 4.85E 12 le43E 12 T« B4E 10 3.79€ 10 3.07E 01 2.03€ 12 0.0 0.0 0.0 0.0 0.0 le 7T9E 13 l« 21E 13 930.,0 O 3.23E 01 l.66E 03 9.561E 03 4,51 04 3.95€ 03 2+93E 05 3. 1SE 04 T+31E 05 3.77E 05 2491 04 1.80E 04 le 75€~05 1. 34E 06 0.0 0.0 0.0 0.0 0.0 2. 89E 06 1.93E 00 1115, O 5.14E 09 1.73¢ 11 6.TTE 11 1.89E 12 1.10€ 11 6415 12 Se24E 11 4. B6E 12 1.43E 12 T.87E 10 3.80E 10 3.06E 01 2.04E 12 0.0 C.0 0.0 0.0 0.0 1.80€ 13 l1.21E 13 1115. O 3.69E 01 1. 66E 03 9« T2E 03 4.52E 04 3.97E 03 2.94E 05 3.T6E 04 Ta33E 05 3.78E 05 2492E 04 l.81E 04 1. TE-0S 1. 34E 06 0.0 0.0 0.0 0.0 0.0 2.89E 06 1.94E 00 1297. D 5. T4E 09 1. 73 11 6, 84E 11 1,89 12 1.11E 11 6.16E 12 S.24E 11 4.B7E 12 l.44E 12 T.89E 10 3.81E 10 3.05E 01 2,05 12 0.0 0.0 0.0 0.0 0.0 1. 80 13 1.21€ 13 1297. D 4,13 Q1 l.66E 03 9.83€ 03 4.53E 04 3.97E C3 2.95E 05 3. TTE 04 T«35E 05 3,79 05 2.93E 04 le81E 04 107‘E“05 1.35E 06 0.0 0.0 0.0 0.0 0.0 2.90E 06 l.94E 00 1480. D 6e 34E 09 1.73E 11 6492E 11 1.89E 12 lo11E 11 6e 16E 12 S5¢24E 11 4e BTE 12 le 44E 12 T« 89E 10 3.81E 10 3.04E 0Ol 2.05€ 12 0.0 0.0 0.0 0.0 0.0 1.80E 13 l.21E 13 1480, D 4,55k Cl l.66E 03 9. 94E 03 4« 53E 04 3.98E 03 2.95E 05 3.7TTE 04 T« 35E 05 3. 79E 05 2+93E 04 1.8l 04 le 73E-05 1.35E 06 0.0 0.0 0.0 0.0 0.0 2. 90E 06 l. 94E 00 1662. 0 6.91E 09 1.73€ 11 6.99€ 11 1.89E 12 l1.11E 11 6.16E 12 5.25E 11 4.,87E 12 le&4E ]2 T.69€ 10 3.81E 10 3.03E 01 2.05€ 12 0.0 .0 0.0 0.0 0.0 1.80F 13 l.21€ 13 1662. D 4.97E 01 1.66E 03 1.00E 0«4 4«53E C4 3.99E 03 2.,95€ 0% 3.T7E C4 T« 35 05 3.79€E 05 2+93E 04 1l.81E O4 1. 73E~05 1.35E Cé6 0.0 0.0 0.0 0.0 0.0 2.90E 06 l.94E 00 1845, D T+48E 09 1.73E 11 T«06E 11 1.89E 12 l.11€ 11 6.17E 12 5.25E 11 4.BBE 12 l.44E 12 Te89E 10 3.81€E 10 3,C2E 01 2.05E 12 0.0 0.0 0.0 0.0 0.0 l1.81E 13 1.21€E 13 1845, D 5.37E 01 1.66E 03 1.01E 04 4.53E C4 3,99E 03 2.95E 05 3, TTE 04 Te3%E 05 3.T9E CS 2«93E 04 1.82E 04 1. 72E~0S5 1.35E 06 0.0 0.0 0.0 0.0 0.0 2.90E 06 l.94E 00 '6T? -20 = REFERENCES MSR Program Semiann. Progr. Rept. Aug. 31, 1966, ORNL-L037. MSR Program Semiann. Progr. Rept. Feb, 28, 1970 (in preparation), Chem., Technol. Div. Ann. Progr. Rept. May 31, 1969, ORNL-L)22, pp. 89_91n Chem. Technol, Div, Ann, Progr. Rept. May 31, 1969, ORNL-LL22, pp. 12-15. MSR Program Semiann, Progr, Rept. Feb. 28, 1967, CRNL-4119, pp. 79-83. MSR Program Semiann. Progr. Rept. Aug. 31, 1967, ORNL-4191, pp. 50-58. M. Chandler and S. E. Bolt, Preparation.of Enriching Salt 'LiF- J. 233UF& for Refueling the Molten Salt Reactor, ORNL-L37L (March 1949). E. D. Arnold in Engineering Compendium on Radiation Shielding, R. G. Jaeger, Ed, Vol, I, Chap., 2 (1963). -21- DISTRIBUTION Central Research Library Document Reference Section Laboratory Records Dept. Laboratory Records, ORNL R.C. Division of Technical Information Extension Laboratory and University Division, AEC-0ORO ORNL Patent Office M., J. Bell Bettis Briggs Carter Eatherly Ferguson Gabbard Haubenreich Kasten Laughon, AEC Site Repr. MacPherson McNeese Nichols . Nicholson Perry . W, Rosenthal Dunlap Scott R. £, Thoma M. E. Whatley » RPEHOCOIRTTOOSE O SREPYpHONENEYE DN e e e e * & & & * . o - - - & & . -