N OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.5. ATOMIC ENERGY COMMISSION ORNL- TM- 1129 copYNo. - 7C DATE - May 7, 1965 OXIDE CHEMISTRY AND THERMODYNAMICS OF MOLTEN LITHIUM FLUORIDE-BERYLLIUM FLUORIDE BY EQUILIBRATION WITH GASEQUS WATER-HYDROGEN FLUCRIDE MIXTURES A. L. Mathews* C. F. Baes, Jr. *Present address: Western Carolina College, Cullowhee, North Carolina. A dissertation submitted to the Faculty of The University of Mississippi in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the Department of Chemistry. LEGAL NOTICE —— - — —— e = —- This report was prepared os an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Mokes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any informetion, apperatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report, As used in the cbove, ‘'person acting on behalf of the Commission’* includes any employee or contractor of the Commission, or employee of such contractor, to the sxtent that such employee or contractar of the Commission, or employes of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or controct with the Commission, or his employment with such controctor. iii ACKNCOWLEDGMENTS This report is based upon a dissertation submitted to the University of Mississippi in partial fulfillment of the requirements for the doctoral degree. The report describes research carried out in the Reactor Chemistry Division of the Oak Ridge National Laboratory, which is operated by the Union Carbide Corporaticn for the Atomic Energy Commission. The research was supported by the Oak Ridge Graduate Fellowship Program of the OCak Ridge Institute of Nuclear Studies and was directed by a committee appointed by Dean Lewis Nobles of the University of Mississippi Graduate School which was composed of Dr. George Vaughan and Dr. Allen Cahill of the Department of Chemistry at the University of Mississippi and Dr. C. F. Bases, Jr., and Dr. C. H. Secoy of the Reactor Chemistry Division of the Osk Ridge National Laborsgtory. iv CONTENTS ACKNOWLEDGMENTS ¢ « ¢ o o o o o « o o o o o s o o o s LIST OF FIGURES « « « + « o o o o o o s o s s o o o LIST OF TABIIES - * . . . . . - . . - . - . - - . * . ABSTRACT . - . . . - . * . . . » - - . . * . . L . . I. IT. I:NITRODUCT ION . - . * e ® * . . » - . . . . . . . Physical Properties of the LiF-BeF, System . . Thermodynamic Properties of the Various Possible SPeCieS . . . . -* . . . . . . . - - * . . » Thermodynamic Studies of Molten Salt Mixtures Solubilities of Gases In Melts . . « « « & « & & Determination of Oxides in Melts « « « « « « o & Suitable Experimental Approach . « « « « « o« & Transpiration Method .+ « ¢« ¢ o« ¢ ¢ o & & Equilibria .« o o ¢« o ¢ o o o o o o &+ o Saturated Melts .« ¢ ¢ ¢ o ¢« o &+ o & & Unsaturated Melts . ¢« ¢ ¢« ¢ « o o o & mE:RMTAL . » * » . . . * » » - . L . - . - » Chemicals . & ¢ ¢ ¢« ¢ 4 ¢« ¢ ¢ o o o o o s o o GaBSeS o « o o+ o o s + o & s = o s o o s e . Melt Components « « o « o s o o s o o o o Standard Reagents « ¢« o ¢ o o & o o o o o« & Apparatus . o o o o 4 o s o s s 2 s s 2 s e o Flow Control Panel . . . & v ¢ o & o o « o Agueous HF Saturator .« « o« « ¢ ¢ o o o o & Page iii vii X G 14 14 16 20 21 23 23 23 23 23 24 24 26 I11. Anhydrous HF Mixing System Reaction Vessel . . Titration Assembly Gas Volume Measurement Procedure . « ¢« « ¢« . . Measurements . . . Titrations . . Calculations . Limitations . Systematic Errors . Measured Volume Influent Pressure * L d Hydrogen Diffusion . Dead~volume . Sumexry . . . Random Exrrors . . . Melt Composition Melt Temperature Titer Precision Wet-test Meter Temperature Endpoint Precision . . Flow~-rate Precision Statistical Error Analysis mSULTS - . . - L . - » Tabulation « « « ¢ o & @ Page 27 27 28 29 29 29 29 30 31 32 32 34 34 36 37 38 38 40 41 41 41 41 42 Saturated Melts . Unsaturated Melts . vi L ] . * . Determination of Equilibrium Quotients Saturated Melts . Unsaturated Melts Validity of Results Saturated Melts . Unsaturated Melts IVe DISCUSSION ¢ « o » & Correlation of Q@ . - Activity of BeF2 and IiF Thermodynamics of BeFa(l) . . . Correlation of Y Correlation of QO Summaxry BIBLIOGRAPHY APPENDIX A . . APPENDIX B .+ APPENDIX C . . - . - - * Page 45 45 46 54 71 71 72 T4 T4 75 88 92 98 104 106 111 146 177 Fig. Fig . Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. S 10. 11. vii LIST OF FIGURES Phase Diagram of the LiF-BeF, System (From Thoma, I'ef- 2) - . . * - - . * - . . . . . . - - . . - . L] . * Complete Flow-Diagram for Apparatus . . « + « o o o « & BeO-saturated 0.333 BeFz Showing (a) Calculated and Observed Partial Pressures, and (b) Linear Correlation Of Pressures « « o o o o o o BeO-saturated 0.300 BeFz Showing (a) Calculated and Observed Partial Pressures, and (b) Linear Correlation of Pressures in Applicable Reglon « « « « & ¢« + o o & BeO-saturated 0.300 BeF; during Hz Sparging, Showing (a) Calculated and Observed Partial Pressures, and (b) Linear Correlation of Pressures « « « « « « « o & (a) Dependence of x and y on r and s with W. Run No. 303 (a) Dependence of x and y on r and s with W. Run No. 305 (a) Dependence of x and y on r and s with W. Run No. 306 (a) Dependence of x and y on r and s with W Run No. 307 (a) Dependence of x and y on r and s with W Run No. 313 (a) Dependence of x and y on r and s with W. Run No. 501 W, W, and and * . and (b) Variation of (b) Vvariation of (b) Variation of Page 25 49 50 51 59 60 6l 62 63 64 Fig- Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig- Fig. Fig. Fig. 12. 13. 14. 15. 16. 18. 19. 20. 21. 22. 23. 25. viii (a) Dependence of x and y on W, and (b) Variation of rand s with W Run No. 511 .« « ¢« & ¢ ¢« ¢ ¢ o o « + & (a) Dependence of x and y on W, and (b) Variation of rand s with W. Run No. 533 . « « « v v v o o o « (a) Dependence of x and y on W, and (b) Variation of rand s with We Run No. 535 . . ¢« . . ¢« ¢ ¢« ¢ ¢ o+ & (a) Dependence of x and y on W, and (b) Variation of rand s with Wo Run No. 539 .+ « ¢« ¢ v ¢ ¢ v v o o v & (a) Dependence of x and y on W, and (b) Variation of rand s with We Run No. 607 .+ ¢ « o o o ¢ o o o o « & (a) Dependence of x and y on W, and (b) Variation of rand s with We Run No. 621 . . « « ¢ « ¢« ¢ &« ¢ o .« & Correlation of log Q as a Function of Melt Composition and Temperature « « ¢ ¢« ¢ o ¢ o o o o o o 2 o 2 e o 4 . Agreement between Observed Q and Value of Q from Correlation « « + ¢« ¢ ¢ ¢ o o o o o o o o o o s o s o s Activity Coefficients of LiF and BeFy in Mixtures . . . Thermodynamic Activities of LiF and BeFz in Mixtures. . Heat of Fusion of BeFs from Activities at Freezing TemperatuUreS .+ « o « o o o o o o o o o o « o o s o o o Correlation of log QA as a Function of Composition and Temperature « « « « ¢ o o o o o o o o o o » o s Correlation of log QO as a Function of Temperature for Various Melt Compositions « « « « ¢ ¢« ¢ ¢« v o & o« & Solubility of BeO as a Function of Temperature for Various Melt Compositions « « ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o & Page 65 66 67 68 69 70 85 86 9 102 103 Table Table Table Table Table Table Table Table ix LIST OF TABLES Equilibrium Constants Predicted from Thermodynamic Data o ¢ o o o o 4 s o 4 o o o s s o6 e o o v 2 o o o s Activities of LiF and BeFy from Literature o+ « « o « Equilibrium Quotients, Q and QA’ Calculated from Data on Oxide-saturated Melts =+ o s ¢ o+ o o ¢ o ¢ o ¢ ¢ + & Parameters for Unsaturated Melts from Least Squares Program « » « o o = o o = o s o o s o o o« s o 4 o o o Comparison of Calculated and Observed Partial Pressures for Unsaturated Melts o o ¢ « o o « o o o o s o o o o Parameters from Correlation of Q as & Function of Temperature at Specified Compositions ¢ « ¢« + ¢ o o « & Smoothed Parameters from Correlation of Q as a Function of Composition and Temperature at the Specified CompositionNs « o o o o o o o « o o o s o o o o s o o o Solubility of BeO in Molten LiF-BeFz System « ¢ o - .« & Page 12 52 57 58 83 83 101 OXIDE CHEMISTRY AND THERMODYNAMICS OF MOLTEN LITHIUM FLUORIDE~-BERYIIIUM FLUORIDE BY EQUILIBRATION WITH GASEQUS WATER-HYDROGEN FLUORIDE MIXTURES A. L. Mathews C. F. Baes, Jr. ABSTRACT The transpiration method was used to equilibrate dilute gaseous mixtures of HF and H20 in hydrogen carrier gas with molten LiF-BeF; mixtures varying in composition from 0.25 to 0.80 ReF2, both saturated and unsaturated with crystalline BeO, in the temperature range 500 to 700°C. The partial pres- sure data were used to evaluate the equilibrium quotient for the reaction of HF and Hz0 with solid BeO and dissolved BeFz. Bquilibrium quotients were also obtained for the formation of oxide and hydroxide ions in the liquid phase. These equilibrium gquotients were employed to determine: (1) thermodynamic activities of LiF and BeFz in the mixtures; (2) thermodynamics of liquid BeFa; (3) stability of hydroxide in the melt; and (4) solubility of BeO in the LiF-BeF2 system as a function of temperature. I. INTRODUCTION Molten mixtures of LiF and BeFz have been the subject of numerous investigations in recent years primarily because of their suitability as a carrier solvent for UFg in fluid fueled nuclear reactors. In addition, these solutions are especially worthy of study because the components - highly ionic IiF and highly associated, more covalent BeFz - represent extreme types of fluoride salts. Although the molten LiF-BeFz system has received considerable attention from both a practical and a theoretical point of view, the study of its chemistry is still far from complete. According to Everest,l many of the investigations of beryllium fluoride systems did not take into account the role of moisture and the resulting hydrolysis products. If this information were available, future investi- gators could make appropriate experimental adjustments and corrections. The purpose of the present investigation was to study heterogeneous reactions of the type Hao0(g) + fluoride species(soln)’=t HF(g) + oxygen species(soln) in the molten LiF-Bel, system. From such a study information could in principle be obtained about: (1) the thermodynamic activities of LiF and BeF2, (2) the solubilities and stabilities of oxides, and (3) the inter- action of oxide with the proton and perheps other cations in this molten fluoride system. Information about the chemical reactivity of the compo- nents in the molten LiF-BeF; system could be obtained from the thermodynamic activities of LiF and Belz. The oxide chemistry of this system is of interest because oxide is a principal impurity to be dealt with in prepara- tive work and because metal oxides are known to be only sparingly soluble in LiF-Bel'z mixtures. The presence of oxide species in the molten IiF-BeF; system, which is currently being used as the solvent in the Molten-Salt Reactor Experi- ment at ORNL, constitutes an undesirable impurity since inadvertent pre- cipitation of sparingly soluble uranium (and other) oxides might result in unstable reactor operation. One of the steps in the purification of melts for reactor operation is sparging with a mixture of HF and Hp to remove oxide. The present study of the equilibria involved would yield additional guidelines for this treatment. The reactivity of oxide with beryllium and other cations has been investigated as a possible means of removal of reactor products, or of uranium to be reprocessed for later use. In order for proper evaluation of these methods to be carried out, a thorough understanding of the inter- actions occurring in melts would be desirable. For example, the use of H20 as the source of reactive oxygen for oxide precipitating schemes and the use of HF for removal of oxide require that the stability of the inter- mediate hydroxide be evaluated in the melts. In the present study the transpiration method was used to equilibrate dilute gaseous mixtures of HF and H20 in hydrogen carrier gas with molten LiF-BeF, mixtures varying in composition from 0.25 to 0.80 BeFz, both sat- urated and unsaturated with crystalline BeO, in the temperature range 500 to 700°C. The primary data from the measurements were used to evaluate the equilibrium quotient for the reaction of HF and H20 with solid BeO and dissolved BeFz. Equilibrium quotients were also obtained for the formation of oxide and hydroxide ions in the liquid phase. These quantities in turn could be used to obtain the thermodynamic activities of LiF and BeFy as well as the solubility of BeO and the stability of hydroxide. Use of the HF-H20 equilibria as a much needed analytical tool for the determination of oxide in such melts was also indicated. Physical Properties of the LiF-BeFz System Beryllium fluoride is frequently found in the form of a glass rather than a crystalline solid. The beryllium fluoride glass consists of a ran- dom network structure in which the beryllium atoms are surrounded tetra- hedrally by four fluorine atoms and each fluorine atom by two beryllium atoms.l Iiquid beryliium fluoride retains the polymeric character of the glass as indicated by its high viscosity. In contrast to the covalent nature of beryllium fluoride, lithium fluoride is a highly ionic salt. The addition of LiF to liquid BeFz causes a breaking down of the polymeric structure, but apparently the tetrahedral BeF42™ groups are retained. Although it isn't proof of structure in the liquid phase, the fact that a compound LipBeF,; can be precipitated from the melt may be some indica- tion of the short range order in the liquid phase. Phase behavior of the LiF-BeF; system has been studied extensively by Thomsa., gg_gl.z A copy of their published diagram.(Figure 1) is included here to illustrate the major characteristics of the system. The melting point of BeFz is 548°C; the melting point of LiF is 848°cC. The liquidus temperatures for the BeFz-rich region have been difficult to obtain because of the high viscosity of these solu.‘bions-3 A brief summary of the phase studies of various BeF; systems is included in reference l. Many of these systems parallel those of the much higher melting silicate glasses. Studies of the LiF-BeF; system in the temperature range of the pres- ent work (500 to 700°C) are restricted to the region between the high ligquidus temperatures at low BeF2 concentrations and high viscosity at high BeF concentrations. TEMPERATURE (°C) 650 \ | F 600 | B \ LIQUID 550 \ . 548 LiF + LIQUID \ 500 | 72LiF :Bef, o 450 — ~ / . \t\ / . BeF, +LIQUID 400 - _— \ LiF + 2LiF -BeF, J 360.3 350 | | 2LiF -BeF, + BeF» 300 | | | LIF 10 20 30 40 50 60 70 80 90 Bef, BeF, (mole %) Fig. 1. Phase Diagram of the LiF-BeF, System (From Thoma, ref. 2). Thermodynamic Properties of the Various Possible Species From previous studies of LiF, BeF2, and the other possible species present, some information can be drawn about the expected behavior of the system. The thermochemical data for BeF; are summarized in the JANAF Tables.* There is considerable uncertainty in aH,” of BeFa(1), which vas derived from the AH_.° £ 298.15 capacity functions for both the solid and liquid phases. Two sources for the crystal and the appropriate heat of error were cited in JANAF. The heat capacity studies were made on samples of BeF2 which contained BeO and Hz0. Also, the heat of fusion is uncertain. The value of 2 kecal/mole was used in the tabulation (be- cause of the similarity of BeFz glass to B203 and Si02) even though a value of 12.9 kcal/mole was determined from the vapor pressures over solid and liquid BeFs. Determination of AH%O of Bng(l) would help resolve same of these difficulties. The thermochemical properties of BeFa(g) have been based on proper- ties of the liquid and the heat of vaporization of BeF2(1l) except for the work of Greenbaum, EE,EQ‘5 who determined equilibrium constants for the reaction BeO(s) + 2HF(g) = BeFa(g) + Ha20(g) over the temperature range 670 to 970°¢. They report that a @lot of log K vs 1/T yields a least squares slope corresponding to 20.5 * 1.7 keal/mole for AH} over the temperature range studied, and that a plot of AF} vs T gives a value of 6.0 * 0.3 cal deg™* mole™* for ASr by a least squares analysis. If the calculated line for log K vs 1/T using these parameters were drawn and the reported equilibrium quotients plotted, the line would fall on the same side of all points. A least squares analysis using all published data, with equal weighting for all points, gave values of Afii = 20.28 * 0.84 kcal/mole and 85 = 6.67 £ 0.77 cal deg™! mole™*. From their values Greenbaum, et g_]___.5 reported the AHfo 208 of BeFa(g) as -191.3 + 2.0 kecal/mole and 50298 of BeFa(g) as 52.4 % 0.3 cal deg™! mole™!. Based cn the recalculation, the values would be -191.5 % 1.1 and 53.1 % 0.8, respectively. The vapor pressure of BeFa(i) has been studied extensively.é'lo Sense, 93_25-6’7 studied the vapor pressure from 745 to 1021°C. Two Russian groups8’9 have reported vapor pressure studies. All of these are in general agreement but have slight differences. The most extensive, and probably the best, study (550 to 950°C) was that of Greenbaum, g&_g&.lo Since the enthalpy and entropy of vaporization are reasonably well known from these measure- ments, a combination of this information with independently determined entropy and enthalpy of formation of Ber(;) should provide a new means for evaluating the thermodynamic properties of BeFa(g). The thermodynamic values of Hz0(g), HF(g), and BeO(s) are well char- acterized throughout the temperature range of the present measurements (see reference 4). Thus, if the AHr can be determined for the reaction H20(g) + BeF2(1) = 2HF(g) + BeO(s) , then AH%O of BeFa(1l) can be calculated. The greatest uncertainty in AHfO for HF(g) is the correction which should be applied for the imperfection at room temperature. Several recent publications have dealt with the sub- ject- 1117 Franck and Spalthoff'’ reported that the enthalpy of vaporiza- tion rises from 89.5 cal/g at 19.4°C to a max of 146 cal/g at 130°C and decreases at higher temperature. Armitage, g§_§£-12 show that the various thermodynamic properties can best be explained by assuming that HF exists in the gas phase principally as monomers and hexamers, but no actual indi=- cation of the average molecular weight as a function of temperature or pressure is given. Yabroff, gg.gi-lB have summarized most past work in their report. They conclude that HF molecules are strongly associated into polymeric forms and that dissociation is accompanied by large changes in enthalpy-. Armstrong14 and Feder, g§.§£-l5 have considered the effect of this association on the heat of formation of HF(g). The average molec- ular weight of HF(g) at 1 atm and 25°C is 54, at 0.4 atm and 25°¢ is 22, and at 1 atm and 80°C is 20.16 For pressures as low as a few hundredths of an atmosphere both HF and Hz0 are reasonably ideal at 25°C and undoubt- edly are ideal at melt temperatures. From the thermodynamic gquantities tabulated in JANAF, equilibriuvm constants were calculated for several conceivable reactions involving HF, H20, BeFz, BeO, and LiF. These are presented in Table 1 along with the Table 1. Equilibrium Constants Predicted from Thermodynamic Data Reactio K at K at 1on 800°K 1000°K keal BeO(s) + 2LiF(s) == Liz0(s) + BeFa(1) 3 x1071% 2 x1071 52.1 BeO(s) + Hx0(g) == Be(0H)2(s) 5x10°% 1 x107% -12.5 BeF2(1) + 2H20(g) = Be(OH)a(s) + 2HF(g) 1 x10™° 6 x10"° 12.8 2Be0(s) + 2HF(g) == BeFz(1) + Be(OH)2(s) 2 x107% 2 x107™% -37.9 Be(OH)2(s) + 21iF(s) == 2Li0OH(1) + BeFa(l) 1x107% 3x10°% 46.2 BeFa(1l) + H20(g) == BeO(s) + 2HF(g) 2x107% 6 x10°! 25.4 BeFa(g) + Ha0(g) == Be0(s) + 2HF(g) 5x10° 1x10° -21.7 BeO(s) + Hz0(g) == Be(0H)2(g) 2 x1071° 2x10"% 41.6 BeF2(1) == BeFa(g) 1x1078 2x1074 47.1 calculated heats of reaction. Although the equilibrium constants refer to reactants and products which are pure solids or liquids, they could be ap- plied to reactions in solution if appropriate activities were used. From these data the following predictions are made: (1) Oxygen containing compounds of Li should react to form Be compounds. If Lip0 were added to an ILiF-BeF2 melt, the Liz0 should react almost quantitatively to form BeO and LiF. If IiOH were added to an LiF-BeFp melt, the LiOH should react almost quantitatively to form Be(OH)2 and IiF. (2) The formation of Be(OH)2 as a separate solid phase at temperatures as high as 800%K is very unlikely. (3) A11 of the stable campounds have low volatilities at the temperatures of interest. A more precise determination of the AH. of BeF2(1) and of the activ- ities of BeFz2 and LiF in the melt would allow more gquantitative predictions of reactions in the LiF-BeFp system. Thermodynamic Studies of Molten Salt Mixtures The determination of thermodynamic activities of melt components in molten salts has received considerable attention. Blander has swmarized much of the work through 1962.%7 The relationships between activities and activity coefficients depend on the choice of concentration units. The most frequent unit for expressing concentration of mixed solvents is the mole fraction. In molten salts the ion fraction is frequently used. TFor systems in which all salts contain the same anion, mole fraction and ion fraction are equal. The term "mole frac- tion" will be used in the text. 10 According to the Temkin model,l8 in which salts are considered to be completely ionic, the ideal activity of a component is equal to the product of ion fractions of its constituents (aij = Xixj)' For a solution which contains only one anion, j, the ion fraction,Xj, equals one. The ion frac- tion of each cation is equal to the mole fraction of that component. The activities of components are usually referred to the pure liguid (super- cooled if necessary) as the standard state. Occasionally, the activities are referred to the pure crystalline solid for experimental convenience. The activities of components in solution have been measured by the fol- lowing methods: +vapor pressures, freezing point depression, electrode potentials, and heterogeneous equilibria. The vapor pressure method is compllicated by the formation of complex species in the vapor phase. Deter- mination of activities from freezing point depressions requires that the heat of fusion and the qu for the pure solid and liquid solvent be known. Electrode potential measurements of activities are often made in cells with liguid Jjunction. OSuch measurements are limited to dilute solutions, which are expected to give small liquid junction potentials. The use of heterogeneous equilibria has thus far been limited. The 19,20 in mixtures with KC1 and NaCl activity of MgClz has been determined by use of the equilibrium MgCla(soln) + 302(g) = Mgo(s) + C1la(g) - Blood, g§_§£.21 determined the activities of various metal fluorides in LiF-BeF; mixtures using the eguilibrium M(s) + xHF(g) == MF_(soln) + (x/2)Ha(g) - In studies of this type it is important that the solid present be well characterized and relatively insoluble and, of course, that all phases are in equilibrium. 11 If the activity of one of the components of a binary mixture is known as a function of camposition, the other one can be determined by integration of the Gibbs-Duhem equation. From the activities, such properties as molar heats of mixing, excess chemical potential, vapor pressure, and phase behav- ior can be derived. At present, a general theory of the behavior of melts has not been developed to the point that activities can be predicted for a system such as LiF-BeF». The activities of LiF and BeFz have been reported for a limited number of cases. Berkowitz and Chupks in 1960 reported the activities in an equi- molar mixture from relative ion intensities during mass-spectral ana];ysis.22 Recently, Buchler has reported determinations by a more careful mass-spectral analysis and emf measurements. The emf measurements were conducted at two temperatures in a concentration cell containing pure BeF2 in one compart- ment and an LiF-BeFs mixture in the other-23 Blichler used a twin crucible assembly in his determination of activities with the mass spectrometer to facilitate comparison of pure compound and mixture-24 The results of these experiments are compiled in Table 2. 12 Table 2. Activities of IiF and BeF, from Literature * ggzga ?ggg aBer* 7BeF2 aLiF ZLiF 0.50% 627 0.443 0.89 0.0246 0.049 0.25° 633 0.027 0.11 0.25° 692 0.039 0.16 0.26° 604 0.016 0.06 1 0.67° 604 0.86 1.3 0.076 0.23 * Activities referred to BeF2(1l) and LiF(s), respectively. ®From Berkowitz and Chupka, mass spectrometry. bFrom Bichler, emf. “From Blichler, mass spectrometry. Solubilities of Gases in Melts In addition to the studies of activities in melts, the solubilities of gases have also been of interest. Watson, g}_§£.25 have studied the solubility of the inert gases in molten fluorides, including the LiF-BeFa system. All solubilities obey Henry's law and increase with increasing temperature and with decreasing atomic weight of gas. Burkhard and Corbett26 reported the solubility 6f water in molten LiCl-KCl mixtures. Apparently Henry's law was obeyed for low pressures, with the deviations above a few millimeters attributed to hydrolysis. How- ever, no analyses were reported on the gases to determine the amount of H,0 and HC1l in the gas phase in equilibrium with the melt. Shaffer, et al. have studied the solubility of HF in molten fluo=- ride mixtures. In the LiF-BeF2 system28 solubility of HF increases with 13 decreasing temperature and with decreasing BeF2 concentration. The Henry's law constants indicate that the solubility of HF in the LiF~-BeFp system should be less than 150 ppm per atm HF above the melt. Thus, for the pres- ent studies with partial pressures less than 0.02 atm HF, the solubility should be less than 3 ppm. Determination of Oxides in Melts Since the presence of oxide in molten halides affects many physical and chemical properties, quantitative procedures for determination of the amount of oxide present have been widely sought. Goldberg, et §£.29 PLro=- posed high-temperature fluorination with KBrFs; with liberated 02 measured tensimetrically. This method works reasonably well, but the greatest un- certalnties were found with fluoride melts and with samples containing less than 300 ppm. Porter and BrownBO used an inert-gas fusion technique (described by Banks, g§_§£.3l) in determining oxide concentrations in molten fluorides. Samples of the melt were withdrawn through graphite filters and the entire sample was used in the analysis. The reported analyses indicated the rela- tive precision was * 10% for oxide concentrations of about 0.5%. No indication was made of applicability to lower concentrations. 32,33 has determined relative oxide solubilities in ILiCl-KCl Delarue melts electrochemically. The concentration of oxide was determined in the melt with Pt-C electrodes vs a Pt-PtClz reference electrode. These results permitted identification of a variety of reactions involving oxide. None of the methods cited are adequate for determining oxide in the LiF-BeFs system. From studies of oxide solubility by Baes, gE_§£.34 in 14 which weighed samples of BeQ were added to fluoride melts containing uran- ium and zirconium, it was estimated that the solubility of BeO was less than 1000 ppm. Determination of oxide content in filtered samples by the Goldberg mfithod,zg however, gave very inconclusive results. Suitable Experimental Approach The molten salt production facility at the Oak Ridge Y-12 Plant has made use of HF-sparging to remove oxide from solution in the form of water.35 Since the production procedure parallels the transpiration method for deter- mining vapor pressures of liquids, the feasibility of transpiration techniques for an equilibrium study of the LiF-BeF2 system was considered. Much of the feasibility study was conducted by M. K. Kemp who determined partial pres- sures over the ZrOz-saturated LiF-BeFa-ZrF,; system and was able to estimate the activity of ZrF4 in solution-36 Transpiration Method The transpiration method for determining vapor pressures of liquids is well esta‘blished-37 In order for the trenspiration method to work satisfac- torily in studies of heterogeneous equilibria, the following conditions should be met: (1) Reactions must be fast enough and flow rates must be slow enough to allow equilibration between gas and condensed phases. (2) Adequate stirring of liquid phases must be maintained to provide uni- form concentrations of reactants. (3) The vapor pressures of condensed phases must be low enough to prevent significant loss by transport in the carrier gas. (4) Reacting gases should be unassociated. 15 (5) An adequate means of removal and measurement of reactive gases from the flowing gas stream must be available. The best evidence that these conditions have been met in the present system is described in Chapter III. The variation in flow rates and in the amount of reaction necessary to maintain equilibrium was used to test the validity of the first two conditions. The vapor pressure data for BnglO and LiF-Bel'z mixtures38 indicated that very little BeFz would be vaporized. The vapor pressure of BeO at the experimental temperatures is insignificant.Bg Although both H20 and HF are at least partially associ- ated at room temperature, the dilute gases at melt temperatures are expected to be ideal. Determinations of the partial pressures of HF and Hp0 over aqueous hydrofluoric acid solutions have been made by means of the transpiration m.ethod.40 Measurements were made over solutions of 10, 20, 30, 50, and 70% hydrofluoric acid, at temperatures from O to 70°C. The HF in the car- rier gas stream was absorbed by an agueous KOH solution. The difference between weight lost by the saturator and weight of HF found in gas stream was assumed to be the ambunt of water removed from the saturator. Since this difference could not be used in the present studies, a suitable method for measuring water was needed. Xemp investigated several methods of analysis. Condensation of samples in a cold trap with subsequent weigh- ing and analysis for per cent HF was not satisfactory primarily because of the small size of the samples. Adsorption of the water by a suitable des- sicant in a weighed drying tube was not satisfactory because HF was also adsorbed. 16 Finally, it was observed that a mixture of methanol and pyridine was suitable for removal of water from a flowing stream even in the presence of HF. Titration of the water with Karl Fischer Reagent could be performed in the vessel and since Karl Fischer Reagent contains excess methanol and pyridine, several successive titrations could be performed. Apparently the HF reacted with excess pyridine to form a fairly soluble pyridinium hydro- fluoride which did not interfere with the titration. Karl Fischer Reagent consists of Iz and S0z dissolved in pyridine and methanol (actually the "stabilized reagent" contains methylcellosolve in- 41 stead of methanol). Although the titration is straightforward, — the reaction occurs in two steps: 502 - 7~ Hz0 + CsHsN + CsHsN'S02 + C5HsN'Iz » 2C5HsNH'I™ + CsHsN, | 0 /802 - C5HsN | + CH30H — CsHsNHOSO20CH3 . 0 When titrating H20 with Karl Fischer Reagent the endpoint corresponds to the first appearance of Iz. For macrotitrations the reagent serves as its own indicator; however, for microtitrations a more precise method is needed. Several authors have reported suitable circuits for the amperomet- ric determination of the endpoint. The one actually used was quite similar to the one described by Nérnitz.42 Equilibria If the molten LiF-BeF, system comes into contact with water vapor, hydrolysis occurs releasing some HF into the gas space and leaving some oxygen-containing species dissolved in the melt. For a closed system at equilibrium, the amount of HF and H20 in the gas phase will depend on (1) the amounts of HF and H20 initially introduced, (2) the solubility of HF 17 and Hz0 in the melt, (3) the concentration of oxide in the melt, (4) the concentration of hydroxide, a reactive intermediete (in the sense that it can exist only in the presence of HF and H20), in the melt, and (5) the amount of HF and Hz20 consumed in side reactions which do not influence the oxide reaction scheme. If the above quantities are properly controlled or measured, useful equilibrium data can be obtained. The reaction of HF and H20 at high tem- peratures with the structural metal used (nickel) can be suppressed by the presence of Ha. Side reactions are essentially eliminated if the purity of melts is sufficiently high. The solubility of HF in melts in the absence of oxygen species has been mentioned and is small compared with the best estimates of oxide solubility. It seems reasonable to assume that water solubility would be of the same order of magnitude as that of HF and the experimental results supported this. One method of controlling the oxide concentration would be saturation of the melt with a sparingly soluble oxide such as BeO. With the above conditions set, transpiration experi- ments can be used to control the amounts of HF and H20 introduced and to measure the hydroxide concentration indirectly through the material differ- ence between influent and effluent gas streams. For a BeO-saturated, LiF-BeFz melt with excess solid BeO present the following equilibrium is valid: H20(g) + BeFa(soln) = 2HF(g) + BeO(s) . If both HF and H20 are assumed to be ideal gases and if the thermodynamic activities of the condensed species are represented by "a", the equilibrium constant for the reaction would be K, = (Ppp) *8peo/ P o%Ber, 18 Since 800 is 1 by definition, Ky = (Ppp) /Py, Ppep, = Yopey, - This equilibrium is independent of the presence or absence of hydroxide in the melt. The quantity (PHF)z/PHZO for BeO saturated melts, defined above as Q, can be obtained from determination of partial pressures in the gas phase alone. Thus Q, which is proportional to the activity of BeFz, would be equal to Ké for the equilibriwm involving pure liquid BeFs at the same tem- perature. Determination of Q for various temperatures and compositions of BeF provides the data necessary for thermodynamic calculations involving the melts. The following additional equilibria involving oxide and hydroxide ions in the melt should also be considered. (The corresponding equilibrium quo- tients, which are shown, may be considered constant for a given LiF-BeF; composition and temperature since at the low concentrations of oxide and hydroxide involved, the activity of F and the activity coefficients 702- and 7.~ can reasonably be assumed constant.) Since [F ] is reasonably constant for a given melt composition, [F~ ] is incorporated into the equi~ librium quotients. H20(g) + 2F (soln) = 2HF(g) + 02 (soln) Q = (Pyp) 1071/ FH20 For oxide saturated melts [0°7] is constant, hence QO/[OZ-]sat = (PHF)zfiPfizo = Q. There are three reactions involving hydroxide in solution. H20(g) + F (soln) = HF(g) + OH (soln) Qy = (Py) [0 /Py 19 Ha0(g) + 02~ (soln) == 20H (soln) Q, = [oH"1%/(py ) [0*7] and for a melt saturated with oxide where [0%~] is constant, Q = [OH-]a/PHao . Hr(g) + 0%7(soln) == OH (soln) + F (soln) Q, = [on"1/(py) [0%7] and for a melt saturated with oxide, Qg = [OH ) /P, - Note that not all of the equilibrium quotients are independent. Since QO is independent of [OH™ ] and QA is independent of [0%“], these two equi- librium quotients are the most conveniently employed. Both Qb and Qc can be expressed as functions of QO and QA- Q, = (q,)%/q, and Q, = Q,/q, The relationships for BeO saturated melts are given by q, = (q,)2/a and Qe = Q,/Q - Stoichiometric relationships show that the number of protons in a given volume of effluent gas will be less than the number in the influent gas by the amount that has appeared as OH added to the melt. If the proton level in the effluent gas stream exceeds the level in the influent stream, OH is being removed from the melt. The difference in Hz0 content between the influent and effluent gas streams corresponds to the total amount of oxide plus hydroxide being added to or removed from the melt. Iikewise, the dif- ference in HF content between the influent and effluent gas streams corre- sponds to the amount of fluoride being added to or removed from the melt. For all experiments conducted, the change in fluoride was small enough so that the LiF-BeFz concentration in the melt was assumed to be constant throughout a given experiment. 20 For simplicity in handling equations the following notation will be used: wt of melt = w(kg) vol of gas (measured at T) through melt = V(liter) V/wRT = W(mole kg™t atm™1) P =28 + bW and Py,o = ¢ *d¥ (atm) for influent pressures (NOTE: When the agueous HF saturator was employed b and 4 were always O. When gas mixing was employed b and d were small negative numbers because small opening in valve tended to gradually close.) Pom = X and Py,0 =Y (atm) for effluent partial pressures [0*"] = [OH"] = s 1§ The equilibrium quotients may now be expressed as Q= x*/y, Q = X°r/y, and Q = xs/y - Saturated Melts For constant. influent partial pressures of Hz20, HF, or both there will be an ultimate steady state condition in which the effluent partial pres- sures are not changing, hence r and s are constant. In fact r will be constant at all times in a given experiment unless rate of reaction to form hydroxide and water exceeds the dissolving rate of solid BeO. The speed with which x and y approach a steady state is controlled primarily by Q and QA' According to the equations described earlier, the difference in proton level of influent and effluent streams is equal to the change in hydroxide concentration. Thus, ds/aw = (a + 2¢) - (x + 2y) . 21 Both ds and y may be eliminated by using the relationships Q = xz/y and. Qy = xs/y. Rearrangement of the former gives y = x°/Q. Rearrangement and substitution into the latter gives s = QAX/Q, which may be differentiated to give ds = (QA/Q)dx. Thus dx/aW = (Q/QA)[(a + 2c) - (x + 2x%/Q)]. Separation of variables gives dx (a +2¢) - x - (2/Q)x? = (Q/Q,) aw . Defining (a + 2c) as A, this equation may be integrated to give 1 1n (4/Q)x + 1 + [1 + (84/Q)] [1+ (88/Q)1F (4/Q)x + 1 - [1 + (8A/Q)] = (Q/QA)W + constant . nj- O The correlation of experimental measurements with this eguation is described in Chapter III. The computer program for this correlation was written by R. J. McNamee, Operations Analysis Division, ORGDP. Unsaturated Melts For unsaturated melts the change in r and s can be determined by mate- rial balance. The difference between influent and effluent partial pressures of Ha20 corresponds to the change in total oxide concentration (dr + ds)/aWw = (¢ - y) . The difference in proton levels corresponds to the change in hydroxide con- centration just as in saturated melts ds/daW = (a - x) + 2(c - y) . By difference dr/aW = (x = a) + (y - ¢) . Combination of these equations with Q, = xs/y and Qy = x?r/y could, in 22 principle, yield integral equations expressing QA and QO as a function of the measured quantities. However, the resulting pair of simultaneous dif=- ferential equations could not be integrated. The following simultaneous differential equations were obtained by elimination of x and y from the expressions for dr/dW and ds/dW: as/aw = (a + 2¢) - (Qys/Q,r)(1 + 2s/Q,) and dr/aw il (QOS/QAr)(l + s/QA) -(a+e) These equations could be solved in the differential form to obtain values of r and s as a function of W for specified values of QO and QA' If r, S, QG and QA are specified at a given W, values for x and y may be calcu- lated. The method of solution of the equations and the correlation of experi- mental data by this method are described in Chapter III. The computer program for this correlation, "FIASCO", was written by M. T. Harkrider, ORNL Mathematics Division. 23 II. EXPERIMENTAL Chemicals Gases Commercial Hz was purified before use by passage through a deoxo unit, a magnesium perchlorate drying tube and, finally, a liquid Nz trap. Com- mercial He was passed through an ascarite trap, a magnesium perchlorate drying tube and, finally, a liquid N2 trap. Anhydrous HF was used directly from a commercial cylinder without further purification. B & A reagent grade 48% hydrofluoric acid was used as the source of HF(g) and Ho0(g). Melt Components Beryllium fluoride was from Brush Beryllium Company (material to be used in preparing the Molten-Salt Reactor Experiment fuel salt). Iithium fluoride was B & A reagent grade. Various mixtures were prepared by melt- ing together weighed samples of the two components. Samples of the mixtures were withdrawn in filter sticks and analyzed for Be, Li, F and impurities (Fe, Cr, Ni, Cu and S). High purity BeO from Brush Beryllium Company was added to the melts which were used in studies of oxide saturated melts. Standard Reagents Reagent grade KOH was used in the preparation of 0.1 N base which was standardized with potassium acid phthalate. Karl Fischer Reagent from Fisher Chemical Company (So-K-3) was standardized by direct addition of weighed aliquots of water. 24 Apparatus Experiments were carried out by means of a transpiration method. The stepwise sequence of processes was as follows: Control of flow of Hy carrier gas Addition of HF(g), Equilibration with Hao(g), or both z///, melt Removal of HF or H20 in standardized reagent Measurement of volume of H, carrier gas A complete flow diagram of the apparatus is shown in Figure 2. Flow Control Panel The menifold gas pressures (Hp and He) were not constant but varied, generally, between 5 and 10 1b gauge. A pressure relief valve (Moore Products Campany differential type flow controller, Model 63BD, modified form) was used to reduce this pressure to & constant value of 3.0 1b gauge. The gas next passed through a Fisher-Porter Rotameter which was used only as & visual check of the flow rate. The pressure was measured with a 4=-in. Asheroft gauge graduated in 1/4-lb divisions from O to 15 1b above atmos- pheric pressure. The brass needle valve with micrometer handle was from Nuclear Products Company as was the 1/3-1b check valve which was used to 25 VAC. j{NHYD. HF ——i — - § X ANHYD. HF ‘ | MIXING AQUEOQUS HF SATURATION iN CONSTANT TEMP BATH FLOW CONTROL PANEL —— D> was added to give 0.333 BeFa. In the 200 series a 4-in.-diam vessel was charged with 1522 g of 0.80 BeFz and 10 g BeO for the first experiments (201-213). After this composition was studied, enough LiF was added to give 0.70 (215-223), 0.60 (225-233), 0.50 (235-241), 0.40 (245-255) and 0.333 BeFa (257-273). In the 400 series the first experiments (401-409) were run on 0.30 BeFy obtained by adding 44 g LiF and 3.0 g BeO to the melt used in the 300 series. For the later experiments (413-423) 87 g additional LiF was added to give 0.25 BeFj. The parameters listed in Appendix A are: w = wt of melt, kg T = temperature of wet-test meter, %k a = influent P, atm x 107 = i 3 ¢ = influvent PHQO, atm x 10”7 . The effluent partial pressures, Py = x and PHgO =y, are tabulated (atm x 10%) with the corresponding initial and final values of W. Note that 45 the use of W allows consistent comparison of experiments independent of the weight of melt or temperature of gas-measurement. Unsaturated Melts Appendix B contains the data from each experiment performed on an unsaturated melt. These experiments are also arranged according to a three digit "Run No." In the 300 series a 2-in.-diam vessel was charged with 500 g of 0.333 BeFz and anhydrous HF was used to remove oxide from the melt. Measurements then were made while an aqueous-HF gas stream was being passed through the melt. In the 500 series the first experiments (501-527) were run in a 2-in.- diam vessel containing 500 g of 0.333 BeFz. For the later experiments (529-539) enough LiF was added to give 0.273 BeFz. Measurements were made both while anhydrous HF was being used to remove oxide from solution and while an aqueous~-HF gas stream was being used to add oxide to solution. In the 600 series a 2-~in.-diam vessel was charged with 424 g of 0.60 BeF2 for the first experiments (601-615). For the later experiments (617- 627) LiF was added to give 567 g of 0.40 BeFa. Measurements were made during both the removal and addition of oxide. The format of Appendix B is identical to that of Appendix A except that influent pressures are reported as P, =a + bW and P = ¢ + dW HE H20 when gas-mixing method was employed. Determination of Equilibrium Quotients The experimental data were correlated according to the model presented in Chapter I. Computer methods were developed for these correlations. Saturated Melts The experiments fall into the following three groups: Case I. Measurements were made while both PHF and PHgO were still chang- ing but were stopped before steady state was reached. Case ITI. Partial pressure measurements were made only after PHF and PHgO had reached steady state. Case I1I. Measurements were made in both the changing- and steady-state regions. The program was designed to handle all three cases with only Case I requiring additional input information. In all cases, since x and y were determined alternately, direct calcuwlation of Q would require interpola- tion, which was not very satisfactory where x and y were volume dependent. The procedure of solution is outlined in the following steps: 1. For Case I, Q was specified as part of input information. For Cases IT and III, Q was not specified; the camputer started with the largest value of W and compiled average x and y as it moved to successively lower values of W until the partial pressures became lower than the average to that point by a specified amount (usually 4%). Safeguards were build in to prevent the computer prematurely terminating this process because of unusual scatter. 2. Using all of the partial pressures selected above, the average value of x and the average value of y were calculated and their standard deviations were expressed at the 99% confidence level. The best Q was calculated from these averaged partial pressures and its standard deviation was calculated from the deviation of its component parts. &7 3. Using the Q calculated (or Q provided if Case I), each observed y was 1 converted to a corresponding x using the relationship x = (Qy)g, for the initial region not used in the determination of Q. 4. Next, for each x (observed or calculated from observed y) the quantity (4/Q)x +1 + [1 + (8A/Q)]% log = £(w) (4/Q)x +1 - [1 + (8A/Q) ]% (this relationship was derived in Chapter I) was determined and tabu- lated along with the midpoint, W,, for each observation. 5. These f(W) were now correlated according to the equation £(w) = [1 -+ (SA/Q)I% Q (1/ 24303 QA)W + constant to obtain the best value of QA' The standard deviation in QA was cal- culated by normal method for slope in a straight line correlation. 6. At this point a consistency check was made - the deviations from the best fit were determined to see if the observed values of x were con- sistently on one side of the line and values of x calculated from observed values of y on the other side. If a difference had occurred, Q could be readjusted or QA determined from x and y separately. Steps 1 and 2 complete the calculation for Case IIT. Steps 1 through © complete the calculation for each experiment. Several examples of the various cases are given in Figures 3, 4, and 5. An example of Case I is given in Figure 3a, with the observed values of x and y indicated by short bars. The line is generated by using the values for Q and Q, determined by the correlation. Figure 3b is a plot of £(W) vs W, indicating the linearity of the relationship. TFigure 4a gives an example of Case III. The flat portion was used to determine Q. QA wa.s 48 determined from the initial region by holding Q constant. A plot of £(w) vs W is given in Figure 4b for the applicable region of the above run. Another example of Case I is given in Figure 5a showing the decrease in x and y when influent HF and Hz0 were stopped and hydrogen sparging con- tinued. Figure 5b gives a plot of £(W) vs W showing that the function also holds when influent pressures are zero. The values obtained for Q and QA fraom all of the saturated-melt ex- periments are presented in Table 3. The values are arranged according to composition and temperature of melt. Run numbers are provided for cross reference with original data in Appendix A. {atm} x AND y 49 0.010 RUN NO. 273 Xger, =0.333 1= 600° 0.008 g =500 X102 atm c=5.20 X 10”3 atm —+ =510 X 10 ¥ otm Q4=4.02 X 10”2 mole kg~ 0.006 0.004 | e /“_‘z-.-"b" —" — " / ,.a—'b"b' 0.002 |~ / (@) 0 0.25 0.50 0.75 1.00 {.25 W (mote kg~! atm™!) 3.5 3.0 2.5 2.0 f W) L~ 10 Pz 0.5 {(b) 0 OA 0.2 C.3 0.4 0.5 06 o7 0.8 09 1.0 W (mole kg™ atm™1) Fig. 3. BeO-saturated 0.333 BeF2 Showing (a) Calculated and Observed Partial Pressures, and (b) Iinear Correlation of Pressures. X AND ¥ (atm) 50 0.014 : . | RUN NO. 407 i o0 Xger,=0.300 #=700° l ' a=567x10 3 atm ‘ . £=6.53 x10" 3 atm ‘ i @=165x10"2 atm | 0.010 G =1.61x10"% mole kg~* ‘ 4 _ _ - L o 0.008 // ; 0.006 f f % . JI_____ — == St + : "l"+r T+ 0.004 —{ " 7 | / — ¥ /N * 0.002 1 [ 7 {o) 0 - . 0 0.50 {100 150 200 250 300 350 400 450 500 550 600 650 W (mole kg~ atm™) 4.0 ’ | T - i 0.3 ‘g —_ = 77 0.2 - 77 . J, / -~ : ’/’ _i7/ ! - | T AT G s~ ’ - 0.1 . "—// i /...../f . i ,/42’ . l . | 0 040 020 030 040 050 060 070 080 090 {00 410 120 .30 w (mole kg~' atm™) Fig. 4. BeO-saturated 0.300 BeFs Showing (a) Calculated and Observed Partial Pressures, and (b) Linear Correlation of Pressures in Applicable Region. 51 0.010 0.008 \ = - RUN NO. 408 © 0.006 Xger, =0.300 #=700° —x g=0.0 ; \ -y ¢=0.0 2 0.004 \ Q=165 x 10~ 2amm > \ N @,=1.56 x40~ 2mole, kg ™" = | | 0.002 +. %h~\~ - (@ NG| o — 0 0 050 100 450 200 250 300 350 400 450 500 550 600 6.50 w (mote kg~! atm™") 3.0 x . 0 040 0.20 0.30 0.40 0.50 0.60 070 0.80 0.90 1.00 140 1.2C $.30 W (mote kg™ atm™) Fig. 5. BeO-saturated 0.300 BeFp during Hp Sparging, Showing (a) Calculated and Observed Partial Pressures, and ?b) Linear Correlation of Pressures. Table 3. Equilibrium Quotients, Q and Qps Calculated from Data on Oxide-Saturated Melts g:?g ?%gg gg? * ¢ (atm) Qy + g-(mole/kg) 0.250 520 4192 ( % 0.26) x 10-% (2.77 £ 0.30) x 10-3 0.250 543 4232 0.02) x 10~3 (3.94 0.76) x 10°3 0.250 607 132 0.05) x 10~3 (6.08 1.10) x 10-3 0.250 655 421 (4. 0.09) x 10-3 (9.37 3.00) x 10~3 0.250 702 415 (9. 0.22) x 1072 (1.14 0.28) x 10°? 0.300 500 409 (4.19 % 0.07) x 10-% (3.82 * 0.29) x 10~3 0.300 540 403 ( 0.27) x 10~% (4.86 0.57) x 10™3 0.300 601 405 (3. 0.07) x 1073 (8.34 2.60) x 10-3 0.300 601 406 ( ) x 10-3 (7.04 0.78) x 10™3 0.300 652 401 ( 0.17) x 10°3 (1.35 0.16) x 10~? 0.300 652 402 (7. ) x 10-3 (1.23 0.15) x 10~ 0.300 700 407 ( 0.03) x 10~2 (L.61 0.32) x 10°% 0.300 700 408 ( ) x 10~2 (1.59 0.21) x 1072 0.316 500 113 (6. 0.43) x 10~% 0.316 500 117 (6. 0.26) x 10-% 0.316 550 115 (1. 0.08) x 10™3 0.316 600 105 (4. 0.27) x 1073 0.316 600 107 (4 0.20) x 1073 0.316 600 109 (4 0.22) x 10~3 0.316 600 111 . 0.16) x 10~3 0.316 650 119 0.43) x 10™3 0.316 650 121 0.55) x 1073 0.316 700 101 0.14) x 1072 0.316 700 103 0.17) x 10~2 0.316 700 123 0.04) x 102 0.333 500 129 + 0.39) x 10~% 0.333 500 261 0.42) x 1074 0.333 550 127 0.09) x 10-3 0.333 550 263 0.06) x 103 0.333 550 264 ) x 10-3 + 10~ 3 0.333 600 125 0.16) x 1073 0.333 600 259 0.12) x 1073 0.333 600 265 ) x 10°3 x 10~3 0.333 600 269 0.20) x 10-3 x 1072 0.333 600 270 ) x 1073 x 10™3 0.333 600 273 ) x 10~3 x 10-2 0.333 650 267 0.04) x 10™% 0.333 650 268 ) x 1072 1072 0.333 700 257 ) x 10™2 0.333 700 271 ) x 1072 10~2 0.333 700 272 ) x 102 x 103 (continued) 53 Table 3. (continued) gZ?E ?ggg gg? Q * o (atm) QA i:v(mole/kg) 0400 500 251 (2.07 £ 0.08) x 10~ 0.400 550 252 (5.76 0.46) x 10-3 0.400 600 249 (1.47 0.04) x 10™3 0.400 650 253 (3.27 0.12) x 10~ 0.400 700 245 (6.15° ) x 1072 (3.71 * 0.57) x 1072 0.400 700 2477 (5.00 ) x 10™2 (2.37 0.22) x 10-2 0.400 700 255 (6.15 0.21) x 10™% 0.400 700 256 (6.15° ) x 1072 (2.43 0.59) x 10”2 0.500 500 239 (4.80 % 0.20) x 1073 (2.85 £ 0.21) x 1072 0.500 550 241 (1.49 0.05) x 102 0.500 600 237 (3.27 0.11) x 10~? 0.500 650 244 (7.00° ) x 1072 {(2.9%6 0.82) x 1072 0.500 700 235 (1.40 0.15) x 10~ (8.50 1.00) x 1072 0.600 500 229 (8.07 £ 0.69) x 10-3 (3.99 0.40) x 10°% 0.600 550 231 (2.22. 0.12) x 1072 (8.05 2.00) x 1072 0.600 550 232 (2.22° ) x 1072 (2.71 1.20) x 1072 0.600 600 227 (5.10 0.43) x 10-2 (7.77 0.50) x 10™2 0.600 650 233 (1.05 0.10) x 10~ (1.14 0.13) x107% 0.600 650 234 (1.05P ) x 10°1 (8.03 3.70) x 1072 0.600 700 225 (2.1 0.09) x 1071 0.600 700 226 (2.05° ) x 10°r (1.43 0.10) x 10~} 0.700 550 221 (2.78 £ 0.09) x 10™% 0.700 550 222 (2.78P x 102 (3.47 £ 2.30) x 102 0.700 600 217 (5.81 0.19) x 10~ (3.30 1.10) x 10°% 0.700 600 218 (5.81° ) x 1072 (6.78 3.90) x 1072 0.700 650 223 (.16 0.16) x 10~% 0.700 700 215 (2.15 0.10) x 10~% (2.22 0.21) x 1071 0.800 550 211 (2.98 + 0.11) x 10°* (1.65 % 0.93) x 107t 0.800 600 200 (6.68 0.36) x 1072 (2.56 1.90) x 1071 0.800 600 209 (5.91 0.23) x 10~% (3.30 1.50) x 1071 0800 650 203 (1.40. 0.18) x 1071 (5.79 1.90) x 10~1 0.800 650 204 (1.40° ) x 107 (1.85 1.30) x 10°% 0.800 650 213 (1.25 0.05) x 10"1 0.800 700 207 (2.20 0.15) x 10”1 (6.15 2.10) x 10°1 0.800 700 208 (2.35° ) x 107 (2.08 0.68) x 107} 8501id LiF present, mole fraction BeFz actually higher than indicated. bCase I, Q value specified for QA determination. 54 Unsaturated Melts Determinations of equilibrium quotients involving oxide and hydroxide were based on material balance between influent and effluent gas. The differential equations needed for this correlation were developed in Chapter I. These equations were: dr/dW = (QOS/QAr)(l +5Q,) -[a +e + (b + a)wl and ds/dW = a + 2 + (b + 24)W - (QOS/QAr)(l + 2S/QA) . A computer program was developed for the similtaneous solution of these differential equations using the Runge-Cutta method of solution.49 This caleculation required that the adjustable parameters, QO, QA, Ty and 8,9 and the fixed parameters, a, b, c, and d, be specified. With all of these quantities chosen, the change in r and s with respect to W was calcu- lated and new values estimated for r and s after the increment AW. The cycle was then repeated stepwise and the process continued until a value of W larger than a specified limit, wfiax’ was reached. In order to deter=- mine r and s precisely without significant accumulative errors the step size, AW, had to be restricted so that neither r nor s could change by more than 10% for any step. Values for r and s were tabulated at the var- ious values of W corresponding to the end of each step. With both r and s known, both x and y could be calculated using the equilibrium relationships. If the relationships Qy = xs/y and A = xr [y are solved simultaneously, X = QOS/QAr and v = Qosz/QAzr . 55 These calculated values of x and y form smooth continuous curves al- though exact equations for the curves could not be expressed. The deviation of the observed x and y values from the calculated values was determined. A general least squares method was used to improve the fit. The partial derivatives of the x and y curves were determined numerically by making slight changes in each adjustable parameter (QO, QA, T so) successively. From the deviations and partial derivatives the adjustments in the param- eters needed to minimize the squares of the deviations were determined. With new values for QO, QA’ s and 8, the new values for x and y were calculated. The least-square subroutine was repeated until the values for Qo, QA’ r , and s, were essentially constant as indicated by their he- O, ing changed less than a preset limit (usually 1%) in successive steps. The method would not work when the initial guesses were not reasonably close to the correct values. Upper and lower limits were preset for the value of each parameter. If these limits were reached the calculation was terminated and the data resubmitted with different first guesses. The '"best" values for the parameters Qys Qs T,» and s are reported in Teble 4. The indirect method for detexrmining these values did not per- mit calculation of the standard deviatiors of these parameters. Since a large number of runs are reported for 0.333 BeF,, the spread in the Q and QA values may be used as an indication of the uncertainties with which these are known. The values for T, and sO represent concentrations of oxide and hydroxide at the start of an experiment, hence their variations are mainly the result of differing histories of the melts. The runs are arranged according to composition and temperature with run numbers given for cross reference with the original data in Appendix B. 56 A measure of the goodness of fit is given in Table 5. The mean of the calculated x curve is given with the standard deviation of the observed values of x from the calculated values along with the number of cbserved x points. The corresponding information is also given for y. This tabular information does not give a complete picture of the correlation, hence the following figures are included to further show the relationships. ZEach figure consists of two plots: one showing the calculated values of x and v as a function of W with the pressure data indicated by short bars, the other showing the values of oxide and hydroxide (r and s) at the same val- ues of W needed to obtain the calculated values of x and y for the parameters specified on each. Figures 6 through 12 are all for 0.333 BeFz. Figures © and 7 (Runs 303 and 305) show similar conditions (60000) except for the initial oxide concentration in the melt. Figure 8 (Run 306) shows the decrease in x and y when the influent HF and H20O were stopped at the end of Run 305 and Ha sparging continued. Figures 9 and 10 (Runs 307 and 313) are for 700 and 5OOOC, respectively. Figures 11 and 12 (Runs 501 and 511} show the behavior during higher-temperature (650°C) and lower-temperature (550°C) removal of oxide from the melt. Figures 13 through 15 are for 0.273 BeFz. Addition of oxide is shown in Figure 13 (Run 533) and removal of oxide is shown in Figures 14 and 15 (Runs 535 and 539). Figure 16 (Run 607) shows removal of oxide from 0.600 BeF2 which is near the upper limit of this technique. Figure 17 (Run 621) shows the addition of oxide to 0.400 BeFgz. Table 4. Parameters for Unsaturated Melts from Least Squares Program Temp Run { QA Ty 54 %BeFs (°C) No. (atm moles kg™%) (moles/kg) (moles/xe) (moles/kg) 0.273 600 529 3.23 x 10™7 4.11 x 1073 2.23 x 10* 1.00 x 10-% 0.273 600 539 2.57 x 1072 6.08 x 1073 1.56 x 102 1.00 x 107% 0.273 650 535 8.38 x 10~3 9.36 x 1072 1.59 x 102 3.66 x 1074 0.273 650 537 8.54 % 10™7 9.22 x 1073 4.53 x 1073 1.11 x 1077 0.273 700 533 2.72 x 10~4 1.08 x 1072 2.66 x 1073 1.92 x 1074 0.333 500 313 5.11 x 1076 5.23 x 1072 7.76 x 10™% 1.20 x 10™3 0.333 500 314 1.94 x 10°° 7.78 x 1072 3.31 x 1073 3.89 x 107% 0.333 500 503 4.39 x 107 6.34 x 1073 8.46 x 1073 2.87 x 1073 0.333 544 509 1.12 x 1077 8.69 x 1072 8.25 x 1074 1.7¢ x 1072 0.333 550 315 1.58 x 1072 1.02 x 1078 7.23 x10°% 7.99 x 10”4 0.333 550 316 1.11 x 10°° 8.53 x 1072 7.11 x 10°3 2.79 x 10°% 0.333 550 511 1.84 x 1077 6.77 x 1072 1.08 x 107% 7.52 x 10 % 0.333 550 525 2.55 x 1077 6.89 x 10°2 2.69 x 10~% 1.07 x 1072 0.333 600 301 5.15 x 1077 1.34 x 107% 6.85 x 10°% 1.23 x 107% 0.333 600 302 3.90 x 10°° 1.34 x 10 6.27 x 10”3 1.57 x 102 0.333 600 303 6.39 x 10~7 1.50 x 10™% 1.3l x 10™% 4.82 x 1073 0.333 600 305 6.05 x 1073 1.06 x 1072 7.08 x 10~% 8.73 x 107’ 0.333 600 306 3.93 x 10~° 1.15 x 1072 8.10 x 1072 1.55 x 1072 0.333 600 309 6.33 x 1077 1.16 x 1072 1.04 x 1073 2.41 x 10°% 0.333 600 310 473 x 1077 1.10 x 1072 1.29 x 1072 1.34 x 107% 0.333 650 319 2.63 x 10™% 2.76 x 107% 1.0l x 103 1.00 x 1074 0.333 650 501 2.05 x 10™% 1.27 x 1072 2.01 x 1072 6.61 x 1074 0.333 650 513 2.55 x 10™%4 9.78 x 10”3 2.35 x 103 1.56 x 10”4 0.333 650 514 1.00 x 1074 1.93 x 1072 8.00 x 1072 1.36 x 1072 0.333 651 527 2.53 x 107% 1.62 x 1072 5.42 x 10-3 1.11 x 10773 0.333 700 307 6.82 x 1074 2.92 x 1072 1.29 x 10"? 5.37 x 10°¢ 0.333 700 311 9.87 x 10™% 2.90 x 10"% 2.10 x 10”2 2.24 x 10”4 0.333 700 @ 523 7.24 x 107% 1.57 x 107% 3.07 x 10°% 8.28 x 1077 0.333 700 524 6.00 x 10™% 2.15 x 2072 1.80 x 10”% 8.00 x 10”3 0.400 550 619 1.48 x 1074 2.27 x 2072 1.36 x 107% 1.6l x 107% 0.400 550 625 9.10 % 10°° 1.55 x 1072 9,20 x 1074 3.37 x 1074 0.400 604 621 4.94 x 1074 1.58 x 1072 3.84 x 1073 4.49 x 1074 0.400 702 627 6.00 x 10”7 3.0l x 1072 1.50 x 107°® 1.65 x 1074 0.600 500 607 1.96 x 1074 2.39 x 107® 2.09 x10"% 1.83 x 10°° 0.600 600 611 1.14 x 1073 6.97 x 1072 2.66 x 10°2 5.79 x 10 % 58 Table 5. Comparison of Calculated and Observed Partial Pressures for Unsaturated Melts Run (Mean of x *¢) x 10° DNo. of (Mean of y *¢°) x 10> No. of No. (atm) Points (atm) Points 301 10.252 * 0.309 35 5.979 * 0.128 26 302 4 442 0.634 10 3.906 1.189 7 303 6.325 0.247 30 7.571 0.208 25 305 9.726 0.285 42 6.843 0.230 38 306 3.030 0.155 13 4.109 0.383 10 307 15.177 0.355 47 4. 478 0.454 32 309 6.974 0.260 39 4.559 0.141 33 310 2.908 0.29% 10 3.157 0.381 12 311 11.307 0.302 60 2.866 0.258 39 313 6.296 0.267 33 11.434 0.497 32 314 1.207 0.170 8 6.469 0.929 12 315 9.490 0.462 4y 12 .455 0.679 36 316 2.728 C.273 18 16.710 1 319 16.884 0.915 40 7. 747 1.404 33 501 5.076 * 0.126 36 2.181 £ 0.192 26 503 2.149 0.095 22 1.596 0.117 20 509 7.031 0.387 47 5.474 0.422 38 511 5.921 0.298 39 2.554 0.298 39 513 11.164 0.349 41 3.939 0.264 30 514 4 .988 0.462 15 2.568 0.333 10 523 12.871 0.362 49 2.895 0.138 34 524 5.921 1.143 15 1.848 0.956 8 525 3.302 0.198 51 3.124 0.268 47 527 10.085 0.247 40 4.089 0.305 33 529 7.953 £ 0.557 40 5.582 + 0.993 40 533 11..392 0.207 3% 3.416 0.182 31 535 7471 0.330 23 3.599 0.282 25 537 7.911 0.159 40 5.034% 0.287 40 539 7.975 0.286 46 3.372 0.335 4ds 607 9.400 * 0.300 21 5.760 * 0.359 23 611 12.910 0.709 46 1.600 0.326 31 619 10.520 + 0.236 17 6.902 * 0.249 12 621 11.745 0.700 32 2.320 0.178 22 625 10.366 0.523 41 2.907 0.159 33 627 14.812 0.651 33 1.131 0.210 18 59 (x1073) @ g T e | enmmm—— . . /__ 4 -+ -+ . ] E - *‘—,Mh — e X : . '/ 5 it : o RUN NO. 303 : < ! . Xger, = 0.333 £+ 600° a=3.82 x10™° atm c=405x10"2 gtm Qo =16.35x107° atm mole kg™* 2 // Q=150 x10" 2 mole kg~! - 0 (x10™3) s 18 / / 16 / A/ r AND s {mole kg—i) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 50 w (mole kg™ otm™") Fig. 6. {a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 303. 60 (x10™%) o I\ - \ ! RUN NO. 305 '-\ Xaer, = 0.333 #=8600° 12 a=3.82 x 10”3 atm \ ; ¢=1.05x10"2 atm \ Gp=6.05 x10"~5 atm mole kg~ Q,=1.06 x10™2 mole kg™ ___ Q 3 el e |tk - e’ ‘ \ i — -—-—.__ /w‘)‘J | T T T e—— X { o - @ X AND ¥ (atm) (5) \ o 10 - r AND s (mole kg~ ') \m \ 4/// o 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 60 6.5 7.0 w (mole kg'i atm™') Fig. 7. {a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 305. 61 (a) : (xt0~3) | RUN NO. 306 L XBan =0.333 +F=600° 6 o=0.0 - c=0.0 ‘E Gp=3.93 x%o“5cfm mole kg~' | A - -2 -1 - OA—HSHO le? kg 1 % 4 Ty 3¢ 2 N \\ \ X 0 Y {£) - (x10~3) " // 14 \; / 12 1o i \ o = @ ° £ \ 8 n z I - \\\\ 5 \ 4 \ \S 2 C 0 0.5 1.0 .5 2.0 2.5 3.0 W (mole kg™! atm™') Fig. 8. (a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 306. 62 (x1073%) i RUN NO. 307 12 Xger, = 0.333 +=700° 0=3.95x10"°> atm c=1.05 x 10" % atm @, =6.82 x10™% atm mole kg™ @ = 2.92 1072 mole kg™' x AND y (otm) S {x107>) T , \ ) ” (6) | | /" r AND 5 {(mole kg“) o 0 A 1 ; 5 i 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 55 6.0 6.5 7.0 w (mole kg~ ' atm™") Fig. 9. (a) Dependence of x and y on W, and (b) Variation of r and s With I‘I- RUI]. NO- 307. 63 (x10) | - T (o)} 4 fiu___—-l——y ! +++-——'—+- i -“ie-) [ P™ 10 / i T / RUN NO. 313 5, L Xger, = 0.333 #=500° > H . a=00 2 U/# | c=163x10" atm < ) Qo = 5.1 x107° atm mole kg™ x \\.; §,=523x10">mole kg™’ .\ — . 4 -_"'-'—---_._‘ X 2 O 1 (x4073) (5} 18 s 16 /’/ 14 v rAND s {mole kg™") n // 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50 w {mole kg~ ! atm™') ™Mg. 10. (s.) Dependence of x and y on W, and (b) Variation of r and s with We Run No. 313 64 _3) {x10 - {a) | o L _ X e - N T © ~ 4 - : \ O =z < + - } - ++ bty (x107%) (b) 18 | RUN NO. 50! Xger, = 0-333 1 =650° N | a=975 x 10" ° otm \ 6 i b=-2.4x10" Y atm W’ \ ' c=6.50x10"* atm | d=-95x10"% atm w ™ 14 \ @;=2.05 x 10~ % atm mole kg~ \ Gy =127 xlO_zmole kg~ r AND 5 (mole kg™ ") 10 \r 8 + ‘r 6 —— ; \ \\— a / ‘ s 2 / * | 1 o | 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 W (mole kg ' atm™") Fig. 11. (a) Dependence of x and y on W, and (b) Variation of r and s with W Run No. 501. 65 _3 T (K 10 ) (a) | 10 ! i I i ! - l —— —-——— X 4 -— - s e % - RUN NO. 51l g , - XgeF, = 0.3323 #=550° ~ 6 f T ¢=1.03 x10" < atm o | - ; b=-1.0x10"Yatm w™' i s | ¢= 400 x10"% atm x - | ‘ d=-40x10"%atm w™! 4 - ' Q.= 1.84 x10”5 atm mote kg™! o : 0 ¢ < ++M#HH | 4= 6.77x10~3 mole kg~! | +y- 6 =/ ; { ..'"l-.___\: + - ! \“M:t l ¥ 0 {(x107® {b) 10 | ® | T | x ! -é 6 N | p—— ‘ ' - ‘ s / \\ <1 | L 4 \ \\ i \\ ]\"-‘-—-__ -—-._.___I—-—._.__‘ s ; 1 0 0 0.5 .0 15 2.0 2.5 3.0 35 40 45 5.0 55 6.0 W (mole kg~! atm™") Fig. 12. (a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 511. 66 (x 10_5) __ T ; ‘ T {g) _ - . 12 \ | | | | | = | 10 . 1} ' "-,.__;L-_—fi-_ Afl RUN NO. 533 ' X XgeF,=0.273 #=700° ; Eq | 0 =4.47x107> atm 5 f s ’ c=763x10"° atm f ! = Q=272 10~ % atm mote kg ! ‘ g &y =1.08x10 2 mate kg-' x © ! J | ! l ' | 44 e |/ el 4 s . 24 M + 2 ..I.LA } O i (x10™%) ! I T (5) - 14 e I // 12 e 10 ]U'i i . e E / . ! O Z 6 — v . e S / // 4 — / / 2 é 5 | o 0.5 1.0 .5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 W (mole kg~! atm™1} Fig. 13. (a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 533. 67 {(x 10_3) (o] // x 10 ; g™ // /,/ RUN NO. 535 8 - XBeF, = 0-271 * = 650° € A‘ g=¢50x10"“ atm E - _ -4 -9 ° b=-24x10 " otm W ~ = c=55x10" *atm e 6 =60 x10 % otm w! < §y=18.38x 107° atm mote kg™ - / T 9, =9.36 x10”> mote kg™ 4 R P — fo %_ \"'-...}’ 2 { 0 | | {8 ‘1 (x10"3) t 14 12 -"fi 10 o x °@ o E w 8 N o z < k \ 6 z \\\ 4 \ \ %"-—.S 2 “~r 0 0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.2 5.0 w (mole kg" atm™") Fig. 14. (a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 535. 68 (x107) T {a} ’/.""—'—'._-_ X 12 _ ,/’ / RUN NO. 539 / Xgep, = 0-273 #=600° 10 a=1.45x10"2 atm i b=-2.0x10"*atm ™ - c=5.50x10""% atm d=-6.0x10"%atm w™! @n=12.57 x107 7 atm mole kq_' ] G, = 6.08 x10™> mole kg~ x AND y (otm) © r AND 5 (mole kg™ 1) ® S a 2 \ \>‘"‘—— $ ° 0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 5.0 5.5 6.0 W (mole kg™* otm™*) Fig. 15. (a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 539. 69 (x10™3) X (a) 10 ) e — X /f L -~ - - T : E Ho it ++ : :_6' 6 7 + \*tf - —-= - T T ———— - .- - N RUN NO. 607 i ‘ 2 Xger, = 0.600 #=500° k\-fi:" ' S a a=2.00x10*23atm P =—1145x10" " otm W' \ c=1.36x10"% atm | —, d=-44x10 atmw ™ | ! 2 — Qp=1.96 x 10™* atm mole kg™’ fi‘ e — @y =2.39 x1072 mole kg™ | 0 | | | | | 1073 ‘ (x (6) 1 18 \--\\ T - {6 \ \\ ‘ [ 14 | T2 ,L \ N 2 ! N \ % \ i E “ 10 N ., a \ \ N 8 S ‘ S 1 6 \br 4 2 0 o 0.5 1.0 (5 2.0 2.5 3.0 35 4.0 45 5.0 5.5 6.0 W (mole kg~! atm™ ) Fig. 16. (a) Dependence of x and y on W, and (b) Variation of r and s with W. Run No. 607. 70 (x1073 g T (a) - - - I . - S L | - | i -.‘__._"_l——.__..____. . \h X 0 t RUN NO. 62t I Xgep, = 0400 £=604° € g 7=6.45x10"2 otm s c=5.90x10" > atm ; Gy =494 x40~ % atm mole kqg™! Z ! Q,=1.58 x107% mole kg™ x 6 ) i 4 _ s} _—-—# s ‘ e T 2 fi } S //fiffl ¥ | 0 ; ‘ | (x10 ) T } (6) 14 F— - - i + —_— 12 — — / =0 -t ' ——— — 1 i | 2 / = = . 2 . £ e 8 - — — e —— e} - «» o / z < [ / 6 — —— L . .___—-5 —l-'_—_- / / 4 / —_-_;"'" | | 2 i o i i . | 0O 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50 55 6.0 W (mote kg™' otm™!) Fig. 17. (a) Dependence of x and y on W, and (v) Variation of r and s with W. Run No. 621. 71 Validity of Results The general agreement between the calculated and observed effluent partial pressures of HF and Hp0, in view of the variely of experimental conditions, supports the method of measurement and indicates that the equi- libria assumed were correct and sufficient. OSome specific examples which support these equilibria are given below. Saturated Melts The first clearcut indication of the formation of hydroxide in mea- surable amounts came from the variation of effluent pressures with respect to volume of carrier gas. VWhen a mixture of HF and Ha0 was introduced into a BeO-saturated melt containing little or no hydroxide, the effluent par- tial pressures of HF and Hz0 (x and y) increased with the increase in volume of gas passed in such a manner that x2/y remained constant, vhile x/y decreased. Since Q = x®r/y and Q = xs/y, the quantity x*/y would be constant when r is constant (fixed by Be0 saturation) and x/y would decrease as s increases. The influent partial pressures of HF and Ha0 were varied and the resulting Q's compared. Rums 101, 103, and 123 for 0.316 BeF2 at 700°C (with reported Q values of 2.18 x 1072, 2.47 x 1072, and 2.13 x 10™2, respectively) had influent pressures such that influent (PHF)a/(PHQO) were 4.36 x 1072, 4.46 x 1072, and 4.25 x 10”2, respectively. Runs 105, 107, 109, and 111 for 0.316 BeFp at 600°C (with reported @ values of 4,61 x 1073, 4.07 x 1073, 4.09 x 1073, and 4.69 x 10”3, respectively) also indicated that the cbserved Q's were independent of the influent pressures, with influent (PHF)z/(PHaO) values being 6.52 x 1072, 2.28 x 1072, 5.54 x 10™2, and 4.98 x 10”2, respectively. 72 These runs include cases where the influent and effluent pressures were nearly identical and also where quite a bit of HF was required to react with oxide to form water and the reverse (Hz0 reacting with fluoride to form HF). All three gave Q's in agreement. In the early runs, the flow rate of carrier gas was varied from 50 to 150 ml/min and no variation in the effluent pressures was observed. The QA values determined using saturated melts were similarly found to be independent of the ratios of HF and Hp0 in the influent stream. Also, QA was shown to be independent of whether hydroxide was being added or re- moved by the gas stream. For example, see the odd-even pairs 401-402, 405-406, and 407-408 in Teble 3 for 0.300 BeFa at 652, 601 and 700°C, respectively. The proton balance between influent and effluent gas streams, after the initial region where hydroxide was being formed, alsc attests toc the vallidity of the measurement. After completion of the 200 series the melt was transferred from the vessel through a sintered nickel filter and the material on the filter examined by x-ray diffraction. The characteristic peaks for LiF-BeFz and BeO were observed. There was no indication of compound formation between BeO and the fluoride melt or of other constituents [such as Lia0 or Be(OH)a]- Unsaturated Melts In addition to the tests performed with saturated melts, the validity of Qo was checked by conducting experiments in which oxide was being added and a8lso when oxide was being removed. The former, more precise results, and the latter were in reasonable agreement. 73 The total pressure of the reactive gases was varied by changing the termperature of the saturator with no noticeable effect on the QO and QA values. 7 IV. DISCUSSION The measured equilibrium quotients, Q, QA’ and QO, were correlated with temperature and melt composition in terms of simple algebraic expres- sions. In the case of Q, wherein Ka = Q/aBer, the resulting correlation can be used to derive a considerable amount of thermodynamic information about the LiF-BeFp solutions and, by extrapolation, about pure BeF, liquid. Combination of Q and QO can be used to obtain the concentration of oxide at BeO saturation. The variation of QA with melt composition and tempera- ture reflects the stability of hydroxide in LiF-BeF; melts. Correlation of Q For each composition, the Q values were correlated according to the equation log Q = slope(1/T) + constant. The Q's were weighted by an amount inversely proportional to their variance since all measurements did not follow the same parent distribution. The values of the parameters are presented in Table 6. Since one of the primary objectives was determination of thermodynamic properties of Bng(i), extrapolation of these data as a function of XBng to the pure liquid BeF; was desirable. For a given temperature, log (Q/XBng) Vs (XLiF)2 forms a parabola for the composition range 0.30 to 0.80 BeFz, thus the Q values at various compositions were correlated by the function log (9/Xg p,) =k + (X p)? + m(x, )% - From definition in Chapter I, log Ka = k, therefore, correlation of k as a function of 1/T will yield the thermodynamics of the desired reaction. Both 1 and m also show linear dependence upon l/T- For the coefficients 75 expressed according to k = k° + k'(1/T), etc. ¥° = 3.900 * 0.019 k' = 4418 £ 17 1° = 7.819 % 0.225 1! = =5440 = 218 m° = -12.66 * 0.60 m! = 5262 + 513 . From the above parameters, equations were generated for each experimental composition as a function of (l/T). The smoothed parameters obtained are tabulated in Table 7. The lines generated by the smoothed parameters for the various experimental compositions are shown in Figure 18 along with log K, vs (1/T) for pure BeF2(l) based on the extrapolation. Figure 19 provides a measure of this correlation. The quantity des/Qcalc is shown for each experimental run. The standard deviation for each point is rep- resented by a vertical bar. Activity of BeFp and LiF Since Q is equal to Ké(aBer), log (Q/¥p.p,) = log K lap p )/(Xpg) = Tog K + 1og (ap p /Xpp,) By definition, aBng is unity for pure liquid BeF; (XBer = l), therefore, log (aBer/l) = Q0. Since XiiF = 0 at this point, log K, = k® + k'(1/T) In order to solve for log (aBer/Xéer), which is log 7fieF2’ at any com=- position the value of log K must be subtracted from log (Q/XBer) leaving - O L, 11 2 0 1 4 log Yo, = 17 + 11 (/D) IXP 0 + [ + (/M 1% 0 At a specified temperature, the variation in ZBng with composition is given by - ox® 4 pxh . 10g Yo, = Kpip X p Values for the parameters at three temperatures are presented below: 76 (¢ a o B %o 500 0.783 % 0.380 -5.85 £ 0.89 600 1.589 0.356 ~-6.66 0.85 700 2.229 0.338 -7.25 0.80 The quoted uncertainties in ¢ and B lead to an average uncertainty of * 0.10 units in log 7. From these uncertainties the values 100° BeFp' apart would overlap within the quoted uncertainty, but the values for 500 and 700°C definitely do not overlap. According to the Gibbs-Duhem Equation, if the activity (or activity coefficient) of one component is known as a function of composition, the other can be determined by integration of the equation d 1n (72) = -X1/%X2 4 1n (71) . From the equations given for log 7EeF2 as a Tunction of composition at specified temperatures, integration was carried out as follows: 2 4 108 Ypep, = Fpip * PX sy — 3 d 1og Ypop, = (200, g0 + 4BX°, ) Ay p (1 - XLiF) ( Xar d1n yup=- 2.303)(2axLiF + 46X3IiF) S - _ 2 3 In 7, p = (2.303) jfi(-za + 20K o= ABXA Lo+ ABXPL L) AXL o _ 2 3 4 i log Y p = =20% .o + OXA o (4/3)BX gt Pt C Twvo methods for evaluating C for various temperatures were considered. For a given temperature, if NiF is known for one composition, C can be determined and, hence, 1T determined for all compositions. First, 77 7LiF was calculated from the reported composition at LiF liquidus at various temperatures vhere a, .. £ 1 and ¥ o = l/XLiF' The values for 7LiF at the various temperatures were determined from the published phase diagram2 which was presented in Chapter I. The second method involved the use of the Q values for BeO=-saturated melts in contact with solid IiF to determine the XiiF at saturation. (The measured Q's are tebulated in Teble 3 and the parameters for smoothed fit are given in Table 6.) The equations for log aBng as a function of composition and log aBng at IiF saturation were solved simultaneously to obtain XiiF' With the con- centration of LiF at Bap = 1 known, Yr 4T could be evaluated. The following values for C were obtained by the two methods. From Thoma's Phase Diagram From Solution of Equations %Egg "er, TLiF ¢ "BeF2 I4F C 500 0.329 1.490 -0.299 0.321 1.473 -0.328 600 0.280 1.389 +0.083 0.281 1.391 +0.086 700 0.208 1.263 +0.283 0.256 1.344 0451 Agreement of values of C determined by both methods is very good at 500 and 600 but not at 700°C. Although ILiF saturation at 700°C oceurs at 0.208 BeFa, the value of C corresponding to a calculated saturation value of 0.256 BeFa was considered more acceptable because the parabolic func- tion does not fit the data well below 0.30 BeFz. In fact, at 0.25 BeFa (data at 650 and 700°C) the fit is very poor. Other empirical expressions were tried in an attempt to improve the fit in this region. No improvement was obtained using expressions con- taining additional odd-powers of XLiF’ but a very good fit was obtained from 0.25 to 0.50 BeFa by using an equation containing X%, X%, and X 78 terms. Correlation of the data at 700°C gave the following equation: 6 7 P + 12.51X LiF This equation should be compared with the correlation using only X? and log (q/xBeF2) = =0.723 + 4.094X . o - 16.64X4Li X% terms: log (@/Xp.p ) = -0.640 + 2.220%% . o - 7.25%% L Both fit equally well between 0.33 and 0.50 BeFp, but the former fits better for concentrations below 0.33 BeFs and the latter fits better for concentrations above 0.50 BeFz. In order to obtain values for ZBeFa from the former equation, the constant term was adjusted to yield the same vale- ue of 7Bng (at 0.40 Bng) as was given by the simpler expression used to express activities above 0.30 BeFz. The expression obtained for log ZBeFa was given by: = ewije . 2 -~ . . 6 108 Ygep, = =0 0382 + 4.094X% 1 = 16 64X4LiF + 12.51x8_, F IiF The Gibbs-Duhem integration was carried out on this equation in order to obtain the expression for log 7iiF: = wmQo . 2 . 3 = -8 188XLiF + 4.094X g * 22.20X°_ 5 F 14T 15.01X7. . 1og F IiF 4 7i,iF 16.64X Li 6 _ + 12.51X I4F + C If this equation is solved simultaneously with the equation for log aBng at LiF saturation, the concentration equals 0.208 BeF; (the same as re- ported by Thome) and the value of C equals 1.124. Figure 20 shows a plot of log 7. BeF» composition at 500, 600, and 700°C. The dashed lines indicate the values and log 7LiF as a function of at 700°¢C (below 0.30 BeFz) when the equation with the x6 term was used. LiF (The overall fit was not improved by using the extra term, hence the sim- pler form was used for the more general correlation.) The dotted line indicates the values of log 7 IiF at which the solid LiF phase would appear 79 and the values of log 7 at which the pure ligquid BeFs phase would BeFs appear. The (-*-+-) line shows the predicted behavior of log Tper, o0 the basis of a simple model in which, for the region 0.33 - 1.0 BeFz, the components are redefined as BeFz and LipBeF, and the activity of Belz is 1 > - BeFy " The value of X BeFa is re lated to XBer, the mole fraction in IiF-Befy mixtures, by ! = - . X oer, = (pep, = 1)/ 2%pep, 3 — t * . LIS Since aBng = X BeF as defined above, the activity coefficient of BeF; assumed equal to the mole fraction X' in ILiF-BeF; mixtures is given by ZBer = (BXBng - l)/ZXaBeFa ’ This procedure of redefining components is similar to the method of Flood and Urnes;50 however, the assumed proportionality of aBeFa to its mole fraction is purely arbitrary and the resulting correlation, which is rather good, is, therefore, entirely empirical. It might be more reason=- able in this model to expect to be proportional to the product of aBeFa the cation fraction of Be?" and the anion fraction of (F ) squared [i.e., s 1 3 . . . ®per, proportional to (X Ber) ], the melt being considered to be a simple mixture of the four ions Li+, Be2+, F, and BeF42'. In order to rationalize . * 1 - the proportionality of aBng to X BeFa it seems necessary to adopt one of the following unattractive models for the components IiBeF,; (undissociated) + BeFa (undissociated) or Liz?t BeF,2™ + Be?t BeF,2" . A more realistic approach to an interpretation of the behavior of aBng and arsp con perhaps be made in terms of models such as have been 80 proposed by F‘drland-5l According to this model BeFa(%) is assumed to be a three-dimensional polymer of BeF4°~ tetrahedra with common corners, and the addition of LiF is assumed to break the Be-~F-Be bonds. However, no such correlation will be attempted here. Two features of the observed variation of aBng are especially note- worthy: (1) The rapid drop in Tger, &5 Xpep, 8PProaches 0.33, at all temperatures, suggests the formation of BeF4%~ ion. (2) The temperature coefficient of 7 indicates increasing positive BeF2 deviations from Raoult's law with increasing temperature at high XBer values. The activities of BeFz and IiF were calculated from the activity coefficients as a function of composition and temperature. The activities at 500, 600, and 700°C are shown in Figure 21. The plot of activities, which should be proportional to the partial pressures of BeFz and LiF, corresponds to the predicted behavior of a system showing incomplete mis- cibility.52 Since the positive deviations increase with temperature, these data seem to indicate that the system has a lower consolute temper=- ature near 700°C and 0.80 BeFp. Although the number of determinations of Q in this area is not extensive enough to definitely show the formation of two liquid phases, the indication is strong enough to warrant further investigation of this possibility. To date there is no clearcut evidence of partial immiscibility in the LiF-BeFz system although various investi- gators have considered the possibility of such occurrence.53'55 The MgO- 5102 system, which has frequently been compared with the LiF-BeFz system,l indeed does show a miscibility gap. At least one case has been reported 81 for a similar fluoride melt. At low LiF concentrations in the system, LiF-BeF,~-ZrFs;, evidence was obtained from quenched samples that two immis- cible liquids were formed above the ZrF, primary phase field.56 The IiF activity exhibits large positive deviations at low BeFp con- centrations; however, it should be kept in mind that these activities are referred to the solid rather than the supercoocled liquid (if the latter were used as the reference state, all of the activities would be lower). The activities reported in the present work are in general agreement with previous measurements (surmerized in Teble 2). The largest discrepancy is in the value for LiF at 0.50 BeFz reported by Berkowitz and Chupka-22 The value for IiF by Bfichler24 is in reasonable agreement. Also, Biichler obtained greater activities for BeFz at higher temperatures.23 Special attention should be given to the value reported for 0.67 BeFz (displaying very large positive deviations) which corresponds very closely to present values. This agreement is particularly gratifying since three completely different techniques have been used to obtain the values. Also, the pre~ vious studies were performed with melts which did not have BeO present. The presence of BeO would not be expected to affect the activities since BeO is only slightly soluble. Beryllium oxide could not have affected the Gibbs~Duhem integration since BeO was always present as a saturating phase, thereby restricting its activity to unity. The expression for the relative partial molal heat content is given by: 3ln 7 (H; - Hlo) 3T RT? From the expression for log ZBng’ the appropriate differentiation may be carried out to obtain 9 log xBer = - t2 tyéh 2, = - (1'x + m' x4 ) (1/T) 3 I4F Therefore, 1y 2 tvh = (" - . (1182 4+ m' X p) = (Bpep, Hper,)/2+ 303R and H - - . - i 2 -t 4 . (HBeF2 HpBer) 2.303R [(-5440 * 218)X gt (5262 % 513)X g Values for the relative partial molal heat contents at various composi- tions are tabulated below: '(EéeFa " HPBng) (fiéng - HpBeFa) XBer cal/mole XfieFa cal/mole 0.80 - 961 £ 40 0.40 -5839 * 471 0.70 -2045 = 92 0.333 -6309 * 640 0.60 ~3363 + 224 0.30 ~6420 * 745 0.50 ~4718 = 228 Since the activity coefficient of BeFz is given by an analytical expression, the excess chemical potential of BeFz can be directly cal=- culated from E = RI1n ¥ H BeFas Bel's Since 1n yBng is a function of temperature, this equation does not lend itself to easy tabular or graphic presention (unless in a plot similar to Figure 20); however, the analytical expression should be useful for further calculations involving the excess chemical potential. 83 Table 6. Parameters from Correlation of Q as a Function of Temperature at Specified Compositions Xper, (slope o) x 1073 constant * ¢ (IiF saturation) -3.662 0,184 1.534 0.549 0.25 -6.025 0.365 4o 147 0.384 0.30 ~-6.173 0.136 4e565 04147 0.316 -5.832 0.075 4.322 0.083 0.333 -5.674 0.116 44233 0.133 0.40 =5.565 0.101 4.528 0.114 0.50 =5.529 0.257 4.857 0.309 0.60 =5.274 0.046 4745 0.052 0.70 =4 740 0.050 44199 0.057 0.80 =4.667 0.215 4.140 0.249 Table 7. Smoothed Parameters from Correlatiom of Q as a Function of Composition and Temperature at the Specified Compositions XBng slope x 10~ constant 0.25 -5.813 3.690 0.30 -5.821 4.168 0.316 ~5.812 4.288 0.333 -5.797 4.396 0.40 ~5.694 4,076 0.50 -5 449 4,763 0.60 -5.153 4605 0.70 -4« 805 44346 0.80 =4 o 628 44096 84 TEMPERATURE (°C) 100 700 650 600 550 500 5 2 10~ 5 £ o 2 O o QF g2 N Au. QI ~ S [ < 2 10> 5 2 1o 1.00 1.05 {10 {45 1.20 1.25 1.30 1.35 19997 o) Fig. 18. Correlation of log Q as a Function of Melt Composition and Temperature. Il T T ® i 11 } 1 1 AL | 1 et | | | | | _ £ Q0L 069 009 0G4 004 069 008 066G 00.Z 069 009 0G¢g Q0% 00L 049 009 0S¢ 004 004 0g9 009 06g 004 004 0G9 009 ojete 00s 004 069 009 066 00¢ 004 OO0 owoO W W0 W $.20 — 110 — (.00 91v9,, \axu 0 0.90 [— 0.80 TEMPERATURE (°C) 0.30 0.316 0.333 0.40 0.850 0.60 0.70 0.80 XBeFZ = Agreement between Observed Q and Value of Q from Correlation. Figo .19. ACTIVITY COEFFICIENT OF BeF, AND LiF 0.5 0.2 0.4 0.05 0.02 0.0¢ 0.2 Fig. 20. 86 LiF SOLID 500 P60y ..--1" - - “~ rLiF 0.3 0.4 0.5 MOLE FRACTION BeF, 0.6 BeF, LIQUID 0.7 0.8 0.9 Activity Coefficients of LiF and BeF; in Mixtures. {.0 ACTIVITY 1.0 a.if 0.8 500 o 600 : 700 0.4 / 0.2 7 ' / ) / 7 V4 0 ¥ LiF 0.2 0.4 0.6 0.8 BeF, Mg. 21. MOLE FRACTION Thermodynamic Activities of IiF and BeFp in Mixtures. 88 Thermodynamics of BeFa(1) From the correlation of Q as a function of temperature and composition for the reaction BeF2(1) + H20(g) = Beo(s) + 2HF(g) involving pure liquid BeFa, the equation expressing equilibrium constant values is log K, = (3.900 * 0.019) = (4418 * 17)(1/T) or OF = -(17.85 * 0.09)T + (20,217 *+78) . From this equation, the AH are 20.22 keal/mole BeFa reaction’ 2 “Sreaction and 17.85 eu/mole BeFa2, respectively. As indicated in Chapter I, the ther- modynemic values of Ha0(g), HF(g), and BeO(s) are fairly well established. Thus, by using these values and the relationships from the above reaction, new values for Apr, Aflpf, Asof, and S° of BeFa(l) can be calculated. These are tabulated below along with the reported values from JANAF-4 BeFo(1) at 800°K 800°K 1000°K 1000°K JANAF Fresent Work JANAK Fresent Work Ampf ~213.57 ~213.60 -207.08 ~208.46 . ~240.11 -234 049 ~238.92 ~234.,26 £s%p -33.18 -26.11 -31.84 -25.80 S@ 30.66 37.74 35,36 41.35 While the present values are not in close agreement with the published values, they provide the most direct experimental method of evaluating the thermodynamic properties of BeF2(1). If these values for BeFa(l) are com- bined with the data of Greenbaum, gglgi-lo for the vapor pressures of Bng(é), new values for the thermodynamics of Ber(g) can be obtained. These are tabulated below along with the values reported in JANAF. 89 BeFa(g) at 800°K 800°K 1000°K 1000°K JANAF Present Work JANAF Present Work AFC o ~192.02 ~191.31 -192.92 ~193.91 LHO -192.29 ~181.24 ~192.63 ~181.01 £SPs ~0e34 1.25 -0.71 1.29 s° 63.50 76 .4 66.49 80.1 The values of Aflpf and S° of Ber(g) reflect significant difference between these results and those of Greenbaum, EE_§£.5 for the reaction BeO(s) + 2HF(g) = BeFa(g) + Ha0(g) . Since the velues of AF°. from the two methods are in reasonable agreement, £ the greatest source of difference must be in the temperature dependence of the equilibrium quotients. In addition to the thermodynamic properties of BeFa(l) and BeFa(g), the present study provides a means of determining thermodynamic properties of BeFa(s) through determination of the heat of fusion, AH If pure fusion’ solid BeFz separates upon cooling the LiF-BeF; system, the relation between a and the freezing temperature T at a given concentration XBer in the BeFs liguid is given by d(1n aBeFa) =4 1n (XseF27éeF2) = (AH /RT?) ar . fusion 1t AHi"usion 1n (XBeryser) = (e, o /RI(L/T - 1/1°) with TO as the melting point of pure BeFa2. The values of T for various is independent of T, then compositions XfieF@ were tabulated from the published phase diagram-2 The values of 7BeF2 were calculated for the specified temperatures and compo=- sitions from the derived expression given earlier. A plot of log (Xpop, Ypep,) V8 1/T is given in Figure 22. The slope of this correlation leads to a value 90 of 11 * 3 keal/mole for Aflfusion' The other lines presented in the figure include: +the line obtained if Aflfusion = 1.6 kcal/mole; the line obtained if TBeF, = 1 (i.e., log Rers VS 1/T); the line obtained if Mo ion = 7.5 keal/mole. The value of 1.6 kcal/mole for AH was included for comparison fusion because this value was recently reported57 from comparison of AHSUbl with éigap- Both measurements were from the variation of vapor pressures with temperature over solid and liquid, respectively. One discrepancy in these data, which is not mentioned in the article, is that the vapor pressures reported for the solid near the melting point are greater than the extrap- olated wvapor pressures of the liquid by a factor of three. The faet that the reported vapor pressures for the solid and liquid do not intersect even near the melting point is indicative of a systematic error in one or the other sets of measurements since both sets seem internally consistent. The value of 7.5 keal/mole for AH was included for camparison fusion because this is the value obtained if aflfusion is determined to be the dif- ference between Afipf of BeFa(1l) calculated here and Aflpf of BeFa(s) reported in JANAF.” The AHOf of BeFa(s) is based on the heat of solution measure- ments on BeO and BeFz in agqueous HF by Kolesov, gg.gi.58 Since there is some question regarding the accuracy of the reported results, the value of Mo oo, 1s about 7.5 & 6 keal/mole. Although the present results do not definitely establish the value of AH, . . of BeFa(s), they do tend to sup- port the value of 12 kcal/mole reported in JANAF rather then that of 2 keal/mole used in the JANAF tabulation or the more recently reported value of 1.6 keal/mole. 91 0 \\\i\m..___‘ | S \3\\ ~~— | SLOPE FOR AHfygion = e W\ ~ 4< 1.6 kcal /mole ~ 0.10 "o s N\ Q . N ° X T 0.20 N N o AR g N\, m x \ \ 8 Ls0|_ SOLID LINE: N o . 1 v cal/mole log Xger, Vs /7 \ POINTS: \\ 1 09 TBefy VS T - N\ 11 kcal /mole 0.40 | ‘ 1.20 1.25 1.30 1.35 .40 1.45 1.50 1000/7’(0}() Fig. 22. Heat of Fusion of BeF, from Activities at Freezing Temperatures. 92 Correlation of QA The vaelues of Q, reported in Tables 3 and 4 were correlated with respect to temperature and composition. Visual inspection indicated that the values exhibited linear dependence on both temperature and composition. The general equation for the correlation was obtained in the following manner. (1) (2) (3) The values at each temperature were grouped to determine the slope of the line log Q, = (slope)XEer + constant The least-square slopes at the five experimental temperatures were as follows: Temp (°c) Slope No. of Values 500 2.695 * 0.473 6 550 2.480 = 0.357 11 600 3.123 % 0.174 22 650 2.847 * 0.207 16 700 2.775 £ 0.175 20 Using weights equal to the number of data points for each line, the average slope was determined to be 2.843. All of the values agree with this slope within the quoted standard deviations except the wvalue at 600° which is slightly larger. With the slope of all lines set at 2.843, the value of log QA at the composition intercept (XBer = 0) was determined at each temperature to give best fit to data as shown below: 23 Temp (°C) 1log @, Temp (°C) log Q, 500 -3.138 650 ~2.757 550 -3.056 700 -2,638 600 "'"2 .893 (4) These end values were used to calculate the function of log QA vs l/T, vhich is log Q, = -2085(1/T) - 0.503. Thus, the best smoothed velues for QA over the experimental range are given by log Q, = 2‘843XBeF2 - 2085(1/T) - 0.503 . The observed values of QA and the calculated values based on the above function are shown in Figure 23. Since the data at the various temperatures overlap, the coordinates are specified for each line independently. The standard deviations of the points are not shown in the figure, but most points agree within the quoted standard deviations in Table 3. The values determined in BeO-saturated melts are shown by closed symbols and those in unsaturated melts by open symbols. The concentration of hydroxide present at equilibrium for known par- tial pressures of HF and Hz0 above a melt of known composition could be calculated using the relationship for QA, Q, = (PHF/PHzo)[OH"] = mole/kg , derived from the reaction H20(g) + F (soln) = HF(g) + OH (soln) . Other equilibria involving hydroxide were also introduced in Chapter I. One reaction is Hz0(g) + 0%27(soln) = 20H (soln) from which Q = [OH”]a/'PH20 = (QA)z/Q % for a BeO-saturated melt. Since expressions for both Q and QA are known, the values of QB can be derived. If the equation given earlier for log (Q/XBer) 18 rearranged in terms of Xz .. rather then X ;p, the follow- ing equation is obtained log (Q/XBeFa) = ~0.940 - 4596(1/T) + [35.00 - 10168(1/T)])<'BeF2 2 - 3 + [-68.14 + 26132(1/T) IX Ber, [50.64 - 21048(1/T)]X e Fa + [-12.66 + 5262(1/T)]x4BeF2 . If this equation is combined with the expression for QA, the following holds: log Qp =2 log Q, - log Q = -0.066 + 426(1/7) + [-29.31 + 10168(1/T)]X‘Ber + [68.14 - 26132(1/T)]X2Be , [-50.64 + 21.048(1/T)]x3 F BeF2 4 - + [12.66 - 5262(1/T) X BeFs log XBeF2 The parameters of the equation log Qp = slope(1/T) + constant are tabulated below for various experimental compositions: XBer Slope Constant XBeF2 Slope Constant 0.333 1629 -3.513 0.70 695 -1370 0.40 1524 3415 0.80 456 -0e571 0.50 1279 -2e925 Another reaction involving hydroxide is IF(g) + 0% (soln) == OH (soln) + F (soln) from which Qy = [0 ]/PHF = QA/Q for a BeO-saturated melt. Therefore, 95 log Qy = log Q, - log Q = 0.437 + 2511(1/T) + [-32.16 + 10168(1/T)]X'Ber 2 3 + [68.14 - 26132(1/T) 1% Ber, [-50.64 + 21048(1/T)]X el - 4 - . + [12.66 - 5262(1/T)]X Bery log Xp.p, The parameters of the equation log Q = slope(1/T) + constant are tabulated below for various experimental compositions: XBng Slope Constant XBeFa Slope Constant 0.30 3734 -3.819 0.60 3068 -3 404 0.333 3714 ~3.960 0.70 2780 -2.862 0.40 3609 ~4.052 0.80 2541 -2.348 If the above functions are used to evaluate equilibrium quotients for 0.333 BeFp, the values obtained and Afli based on integration of the van't Hoff equation are given below: Equilibrium Afi? Quotients Q at 800°K Q at 1000°K (kcal/mole) Qy 6.90 x 10™3 2.29 x 107% 9.5 Qg 3.33 x 1072 1.30 x 10™2 7.5 Q 4 .80 5.70 x 10”1 -17.0 Fach of these equilibrium quotients is in terms of moles of hydroxide per kilogram of melt due to experimental expediency, but they could be converted to the mole fraction scale by dividing each by moles of solvent per kilogram of melt. This conversion would not affect the Aflf values. The above values of equilibrium quotients involving hydroxide may not provide enough informa- tion to establish the complete nature of hydroxide in the IiF-BeF2 systemn, 96 but they do allow quantitative prediction of the extent of conversion of oxide to hydroxide, which is the principal controlling step in the removal of oxide by HF-sparging. 0.2 0.3 0.4 0.5 0.6 0.7 XLiF Fig. 23. Correlation of log Qy a5 2 Function of Composition and Temperature. 98 Correlation of Q0 The vealues of QO reported in Table 4 were correlated as a function of temperature at each composition. The parameters of the equation log Qg = slope(1/T) + constant are given below: XBng slope * O constant * o No. of Points 0.333 -8637 £ 349 5.673 = 0.401 24 0.400 -9032 + 706 7.026 * 0.812 4 The values of QO and the corresponding correlations as a function of temperature are shown in Figure 24. Since the two values for 0.60 BeFz would not yield a line with slope or intercept similsr to the others, a line was drawn parallel to the line at 0.40 BeFz so as to be equidistant between the two values at 0.60 BeFz. Measurement of QO at high BeFz compositions is limited because the rete of change in P, and P with respect to W approaches the precision HF Ha0 of measurements of the low PHgO and high PHF encountered. Although addi- tional experiments were performed on 0.60 BeFp, convergence in the solution of equations to obtain QO’ QA’ r , and 8, was not reached due to the exper- 0) imental limitation mentioned above. The data on unsaturated melts were neither extensive nor preclse enough to permit a meaningful correlation with respect to melt composition. However, the solubility of BeO could be determined by comparison of these measurements with those of BeO-saturated melts. 99 As described in Chapter I, = 21n2" 0y = (B 21037 /Ry and since for a BeO-saturated melt 2 -_— (Pyp) /PHQO Q 2= = o ]sat - QO/Q . The value of Q at BeO saturation was established in the earlier work. Divi- sion of QO by Q for the same melt composition and temperature would provide the concentration of oxide at saturation. The values of Q needed to determine BeO solubility are given by the following parameters for the equation log Q = slope(1/T) + constant: XBng Slope Constant 0.273 -5900 44150 0.333 -5674 4a233 0.400 -5565 4.528 0.600 =524 4745 The solubilities in moles per kilogram of oxide in the various experiments, as determined from QO/Q using observed QO values and smoothed Q values from the above relation, are given in Table 8. Since [0*7] = o,/ , log [0°7] = log Q; - log & , and as both log QO and log Q show linear dependence with (l/T), log [027] should also show linear dependence. Combination of the parameters for QO and Q leads to log [0%7] = slope(1/T) + constant: 100 f@i@& Slope Constant 0.273 -2258 0.641 0.333 -2963 1.440 0.400 - 3467 2.498 Each of the observed solubilities is shown in Figure 25 along with the calculated expressions for the three compositions tabulated above. Since many more experiments were performed on 0.333 BeFz, the range of measured solubilities at each temperature provides a rough measure of just how well these are known. A clear trend of solubility with tempera- ture is shown: 500°C (2.5 -~ 6.0) x 10~3 moles/kg 600 (7.2 - 11.8) x 103 700 (2.3 - 3.8) x 107% The other values indicate that BeQO solubility may be increasing slightly with BeFz, but the increase 1is not very great. 101 Table 8. Solubility of BeO in Molten IiF-BeF2 System “per, o R [0%, Tpep, Tgk Run (0% (mole/kg) (mole/kg) 0.273 600 529 1.30 x 1072 0.333 600 309 1.16 x 1072 0.273 600 539 1.04 x 102 0.333 600 310 8.70 x 1073 0.273 650 535 1.46 x 102 0.333 650 319 2.14 x 1072 0.273 650 537 1.48 x 10 2 0.333 650 501 1.68 x 1072 0.273 700 533 2.13 x 1077 0.333 650 513 2.08 x 1072 0.333 500 313 6.67 x 102 0.333 650 514 8.16 x 1073 0.333 500 314 2.53 x 102 0.333 651 527 1.98 x 102 0.333 500 503 5.72 x 1073 0.333 700 307 2.61 x 102 0.333 544 509 5.85 x 1077 0.333 700 311 3.78 x 1072 0.333 550 315 7.25 x 1073 0.333 1700 523 2.77 x 1072 0.333 550 316 5.09 x 1073 0.333 700 524 2.30 x 1072 0.333 550 511 8.45 x 1073 0.400 550 619 2.53 x 1072 0.333 550 525 1.17 x 1072 0.400 550 625 1.56 x 102 0.333 600 301 9.47 x 1073 0.400 604 621 3.23 x 1072 0.333 600 302 7.18 x 1073 0.400 702 627 9.02 x 107% 0.333 600 303 1.18 x 10°% 0.600 500 607 2.39 x 1072 0.333 600 305 1.11 x 1072 0.600 600 611 1.78 x 102 0.333 600 306 7.23 x 102 102 TEMPERATURE (°C) . 700 650 600 550 500 Toka OI W n O, (PH,:)2 [02_] /PHZO (atm mole kg*‘) o I 2 QO 10 ° 5 C 0.333 > 0.273 10°© 1.00 {05 110 145 1.20 125 130 {.35 1000/7 (ox) Fige. 24. Correlation of log QO as a Function of Temperature for Various Melt Compositions. 103 TEMPERATURE (°C) 700 650 600 550 500 I [ I | l A 0.60 BefFsp iy 0 0.40 10 vV 0.333 —t— 0 0.273 040 __| T 5 N 2 N — v o \ g c 0.333 \ 0 A a 92 N QL £ o = v -2 c 10 0= - v v NGV > g % S% 5 O ‘\\\\L O 1} m v 2 1073 1.00 .10 .20 1.30 1000 /7 (ok) Fig. 25. Solubility of Be0O as a Function of Temperature for Various Melt Compositions. 104 Summary These studies of equilibria between HF, H20, and molten LiF-BeF2 had a twofold purpose: (1) to determine as much as possible about the thermo- dynemics of the 1iF-BeF system, and (2) to determine as mch as possible about the oxide chemistry of the system. The thermodynamic activities of LiF and BeF2 were determined as a function of temperature and composition. The major characteristics of the system include: (1) Positive deviations from ideality at high BeF, concentrations. (2) Increasing positive deviations of the activity with temperature indi- cating the probability of a miscibility gaep near 700°C. (3) Combination of activities with previously published phase diagram indicate a higher value for Aflfusion of BeFz than currently used in thermodynamic compilations. (4) Activities determined with BeO present are in agreement with limited previous data. Extrapolation of data to pure liquid BeF,, which is inaccessible experimentally because of high viscosity, provides a means of determining thermodynamic properties of BeFa(l). The equilibria between Hp0, HF, and dissolved hydroxide were studied by estimating, from material balance calculations on the gas phase, the amount of OH formed in or removed fram the melt upon reaction. The re- sults from measurements on both BeO-saturated and unsaturated melts were consistent. The results indicate that significant amounts of hydroxide were formed in the presence of 0.0l atm HF, but OH could not exist in the absence of HF and Hz0- 105 The equilibria between Hp0, HF, and dissolved oxide were also evalu- ated with melts not saturated with BeO. The solubility of BeO was estimated by combination of these results with those for BeO-saturated melts. These results suggest methods to attack at least two allied problems: (1) Determination of thermodynanmic activities of other fluorides dissolved in the LiF-BeFp system; and (2) Determination of the amount of oxide in fluoride melts. The procedure used here to determine activities of BeO-saturated melts could be applied to melts saturated with other sparingly soluble oxides. Variation in Q with amount of corresponding fluoride dissolved in melt would provide information necessary to calculate change in activities. The experiments performed here on unsaturated melts required determi- nation of the concentration of oxide present at the start of an experiment in addition to the equilibrium quotients. If oxide analyses were required on similar melts, the equilibrium quotients could be evaluated and treated as fixed parameters, thus the variation in effluent PHF and. PHgO to a small value of W (about 1.0) could be used to calculate the amount of oxide in the sample prior to treatment. In principle, this should work no matter whether oxide were being added or removed. The presence of saturating solid oxide would complicate the analysis, but the total amount of oxide present could be determined by treatment with anhydrous HF and measurement of the evolved H0. 10- 11. 12. 13« 106 BIBLIOGRAPHY See: D. A. Everest, The Chemistry of Beryllium, Elsevier Publishing Company, New York, 1964, p. 38, for a survey of the chemistry and phase studies of beryllium fluoride. R. E. Thoma et al., Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1965’ ORNL"'3789’ po 3. W. T. Ward and S. Cantor, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1964, ORNL-3591, p. 52. JANAF Thermochemical Tables, The Dow Chemical Co., Midland, Michigan, 1963. M. A. Greenbaum, M. L. Arin, and M. Farber, J. Phys. Chem. 67, 1191 (1963). K. A. Sense, M. J. Snyder, and J. W. Clegg, J. Phys. Chem. 58, 223 (1954). K. A. Sense and R. W. Stone, J. Phys. Chem. 62, 453 (1958). A. V. Novoselova, F. Sh. Muratov, L. P. Reshetnikova, and I. V. Gordeev, Vestnik Moskov. Univ., Ser. Mat., Mekh., Astron., Fiz., Khim. 13, No. 6, 181 (1958). N. E. Khendamirova, A. M. Evseev, G. V. Pozharskaya, E. A. Borisov, A. N. Nesmeyanov, and Ya. Il Gerasimov, Zhur. Neorg. Khim. 4, 2192 (1959)- M. A. Greenbaum, J. N. Foster, M. L. Arin, and M. Farber, J. Phys. Chem. 67, 36 (1963). E. U. Franck and W. Spalthoff, Zeit. Elektrochem. 61, 348 (1957). J. W. Armitage, P. Gray, and P. G. Wright, J. Chem. Soc. 1963, 1796. R. M. Yabroff, J. C. Smith, and E. H. Lightcap, J. Chem. Eng. Data 9, 178 (1964). 1. 15. 16. 17. 18. 19. 20 21. 22, 23. e 25. 260 27. 107 G. T. Armstrong, "Fluorine Flame Calorimetry", p . 144 in Experimental Thermochemistry, vol. II, ed. by H. A. Skinner, Interscience, New York, 1962« H. M. Feder, W. N. Hubbard, S. S. Wise, and J. L. Margrave, J. Phys. Chem. 67, 1148 (1963). Hydrofluoric Acid, Anhydrous and Aqueous, p. 8, Stauffer Chemical Company, New York, 1957. M. Blander, "Thermodynamic Properties of Molten Salt Solutions", ps 127 in Molten Salt Chemistry, ed. by M. Blander, Wiley, New York, 1964 . M. Temkin, Acta Physicochim. URSS 20, 411 (1945). W. D. Treadwell and A. Cohen, Helv. Chim. Acta 22, 433, 1341 (1939). I. L. Reznikov, Zh. Prikl Khim. 23, 897 (1950). C. M. Blood, F. F. Blankenship, W. R. Grimes, and G. M. Watson, Abstr. 7th Intern. Congr. Coordination Chem., 1962. J. Berkowitz and W. A. Chupka, Amn. N. Y. Acad. Sci. 79, 1073 (1960). A. Bluchler, Study of High Temperature Thermodynamics of Light Metal Compounds, Army Research Office (Durham), Prog. Report No. 7 (Contract No. DA-19-020-ORD-5584)(Sept. 30, 1963). A. Blchler, Study of High Temperature Thermodynamics of Light Metal Compounds, Army Research Office (Durham), Prog. Report No. 9 (Contract No. DA-19-020-0RD-5584)(March 31, 1964). G. M. Watson, R. B. Evans, III, W. R. Grimes, and N. V. Smith, J. Chenm. Eng. Data 7, 285 (1962). W. J. Burkhard and J. D. Corbett, J. Am. Chem. Soc. 79, 6361 (1957). J. H. Shaffer, W. R. Grimes, and G. M. Watson, J. Phys. Chem. 63, 1999 (1959). 28, 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 108 J. H. Shaffer and G. M. Watson, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1960, ORNL-2931, p. 31. G. Goldberg, A. S. Meyer, Jr., and J. C. White, Anal. Chem. 32, 314 (1960) . C. V. Banks, J. W. O'laughlin, and G. J. Kamin, Anal. Chem. 32, 1613 (1960). B. Porter and E. A. Brown, Determination of Oxide Solubility in Molten Fluorides, U.S. Bur. Mines, Report of Invest. No. 5878 (1961). G. Delarue, Silicates Ind. 27, 69 (1961). G. Delarue, Chim. Anal. (Paris) 44, 91 (1962). (a) C. F. Baes, Jr., Molten-Salt Reactor Program Semiann. Progr. Rept. Jan. 31, 1963, ORNL~3419, p. 110. (v) C. F. Baes, Jr., J. H. Shaffer, and H. F. McDuffie, Trans. Am. Nuclear Soc. 6, 393 (1963). (a) J. E. Eorgen, F. A. Doss, G. J. Nessle, J. Truitt, and C. R. Croft, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1960, ORNL-2931l, p. 64. (b) W. R. Grimes, "Materials Problems in Molten Salt Reactors,"” pp. 96- 129 in Materials and Fuels for High-Temperature Nuclear Energy Appli- cations, ed. by L. R. Zumwalt, M.I.T. Press, Cambridge, Mass., 19%4. A. L. Mathews, C. F. Baes, Jr., and M. K. Kemp, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1964, ORNL-3591, p. 46. G. W. Thomson, 'Determination of Vapor Pressure,' pp. 446-451 in Physical Methods of Organic Chemistry, vol. I-part I, 3d ed., ed. by A. Weissberger, Interscience, New York, 1959. D. R. Cuneo and S. Cantor, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1963, ORNL“BZP:L'?, P . 4‘6 . 39. 40 4le 42 e 43. 45, 47 . 494 20. 51. 520 109 L. P. Firsova and A. N. Nesmeyenov, Zhur. Fiz. Khim. 34, 2615 (1960). P. A. Munter, O. T. Aepli, and R. A. Kossatz, Ind. Eng. Chem. 41, 1504 (1949). H. A. laitinen, Chemical Analysis, p. 421, McGraw-Hill, New York, 1960. G. Nernitz, Chemiker-Ztg. 82, 222 (1958). G. Long, Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1965, ORNL-3789, p. 65. W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, Solubility Relations Among Some Fission Product Fluorides in NaF-ZrF4-UFs; (50-46-4), ORNL-2421 (Jan. 15, 1958). J. J. Lingane, Electroanalytical Chemistry, 2nd ed., p. 286, Interscience, New York, 1958. S. Dushman, Scientific Foundations of Vacuum Technique, pp. 607-618, Wiley, New York, 1949. H. H. Stone and C. F. Baes, Jr., Reactor Chem. Div. Ann. Progr. Rept. Jan. 31, 1965, ORNL-3789, p. 72. H. D. Young, Statistical Treatment of Experimental Data, p. 96, McGraw- Hill, New York, 1962. H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry, p. 486, D. Van Nostrand, Princeton, N. J., 1956. H. Flood and S. Urnes, Z. Elektrochem. 59, 834 (1955). T. Fgrland, "Thermodynamic Properties of Fused-Salt Systems,"” p. 156 in Fused Salts, ed. by B. R. Sundheim, McGraw-Hill, New York, 1964. S« Glasstone, Textbook of Physical Chemistry, 2nd ed., p. 721, D. Van Nostrand, Princeton, N. J., 1946. 53. 54. 55. 56. 57. 58. 110 E. Thilo and H. A. Lehmann, Z. Anorg. Allgem. Chem. 258, 332 (1949). D. M. Roy, R- Roy, and E. F. Osborn, J. Am. Cer. Soc. 37, 300 (1954). J. E. Ricci, "Phase Diagrams of Fused Salts," p. 269 in Molten Salt Chemistry, ed. by M. Blander, Interscience, New York, 1964. Molten-Salt Reactor Program Semiann. Progr. Rept. July 31, 1963, ORNL-3529, p. 106. J. A. Blauer, M. A. Greenbaum, and M. Farber, J. Phys. Chem. 69, 1069 (1965). V. P. Kolesov, M. M. Popov, and S. M. Skuratov, Zhur. Neorg. Khim. 4, 1233 (1959). 111 APPENDIX A Partial Pressures from Studies on BeO=Saturated Melts The experiments are arranged according to & three digit "Run No." which indicates chronological order. There are three series (100, 200, 400) included. A brief history of each series is given in Chapter III. The information provided for each experiment includes: Run No. Composition of melt (expressed as mole fraction Bng) Temperature of melt, °c w = weight of melt, kg T = temperature of wet-test meter, °k a = influent Pr, atm x 103 - 3 3 ¢ = influent PHgO’ atm x 10 The effluent partial pressures, PHF = x and PHao =y, are tabulated (atm x 103) with the corresponding initial and final values of W (V/WRT). Note that the use of W allows consistent comparison of experiments independent of the weight of melt or temperature of gas-measurement. The equilibrium quotients evaluated from each experiment are presented in Table 3. 112 Run No. 101 0.316 BeFp at 700°C, w = 0.305, T = 300K, a = 15.45, ¢ = 5.48 0.000 0.075 8.22 0.935 1.030 6.51 0.075 0.103 11.32 1.030 1.119 7.03 0.181 0.253 12.76 1.203 1.286 749 0.253 0.325 12.88 1.286 1.374 7.09 0.325 0.39% 13.38 1.374 1.457 7.54 0.394 0.462 13.78 1.457 1.538 7.67 0.462 0.526 14.34 1.545 1.641 12.88 0.526 0.589 14.64 1.641 1.712 13.00 0.589 0.655 14.20 1.712 1.787 12.42 0.733 0.836 6.00 1.787 1.859 12.88 0.836 0.935 6.28 Run No. 103 0.316 BeFz at 700°C, w = 0.305, T = 300°9K, a = 15.15, ¢ = 5.14 Wi We X N Wy We X Yy 0.000 (0.203 457 1.838 2.046 6.59 0.203 0.343 6.63 2.046 2.234 6.60 0.343 0.437 9.87 2:234 2414 6.93 0-437 0.531. 9.87 2.414 2.596 6.86 0.531 0.600 10.68 2.596 2.772 7.09 0.600 0.677 12.00 2.772 2.916 6.93 0.677 0.758 11.50 2.916 3.061 6.87 0.758 0.862 11.90 3.130 3.177 13.25 0.862 0.938 12.09 3.177 3.248 13.00 0.938 1.016 12.00 3.248 3.342 13.16 1.016 1.092 12.20 3.342 3.415 12.76 1.092 1.170 12.20 3415 3.485 13.25 Run No. 105 0.316 BeFa2 at 600°C, w = 0.305, T = 301°K, a = 17063, Cc = 4.77 Wi We X y Wy Wf X Yy 0.929 1.002 8.50 1.709 1.805 6.45 1.002 1.075 8.53 1.805 1.902 6.37 1.075 1.148 8.82 1.902 1.995 6.63 1.148 1.219 8.91 2.190 2.39 9.32 1.219 1.287 9.10 2.390 2.458 9.20 1.327 1.517 6.53 2.458 2.526 9.10 1.517 1.613 6.40 2.526 2.650 0.04 1.613 1.709 6.45 113 Run No. 107 0.316 BeFz at 600°C, w = 0.305, T = 300°K, a = 11.58, ¢ = 5.87 Wy We X y Wi We X Yy 0.866 0.943 8.12 2.162 2.379 5.70 0.943 1.016 8.50 2:379 2.543 5.63 1.016 1.169 8.12 2543 2.706 5.68 1.169 1.323 8.13 2.706 2.872 5.60 1.323 1.398 8.22 2.872 3.037 5.59 1.398 1.546 8.45 3,170 3.284 7.68 1.546 1.695 8.34 3.284 3.442 7.88 1.732 1.891 5.80 3442 3.599 7.91 1.891 2.052 5.75 3.599 3.759 7.79 2-052 2‘162 5064 Run No. 109 Oo3.16 BEFQ at 6OOOC, W = 00305, T = BOOOK, a = 6055, c = 7-75 Wi Wf X Yy Ws We X Yy 0.866 1.012 6.36 2.531 2.677 9.26 1.012 1.149 6.72 2.677 2.79% 9.71 1.149 1.286 6.75 2.7% 2.918 10.04 1.399 1.547 8.41 2.918 3.040 10.18 1.547 1.688 g.80 3.064 3.163 6.20 1.688 1.855 9.00 3.163 3.262 0.24% 1.898 2.044 6.37 3.262 3.362 6.20 2.044 2.142 6.26 3.59% 3.729 9.42 2142 2.241 6.26 3.729 3.857 9.72 2e24). 2342 6.14% 3.857 3.986 9.64 Run No. 111 0.316 BeFa at 600°C, w = 0.305, T = 300°K, a = 6.78, ¢ = 2.23 Wi We X Yy Wy We X Yy 0.799 0.943 6.45 2.205 2.302 6.4l 0.943 1.037 6.54 2.302 2.399 6.33 1.037 1.135 6.34 2.464 2600 9.14 1.135 1.230 040 2.600 2.737 9.10 1265 1.403 2.07 2.737 2.875 9.08 1.403 1.541 9.03 2.875 3.010 9.22 1e541 1.675 9.28 3.010 3.146 9.13 1.675 1.810 9.26 3.146 3.282 9.21 1.926 2.019 6.63 34463 3.555 6.75 2.019 2.111 6.72 3.555 3.648 6.59 2.111 2.205 6.57 3.648 3.742 6.59 114 Run No. 113 0.316 BeF, at 500°C, w = 0.305, T = 300°K, a = 6.54, ¢ = 9.33 Wy Wf X Yy Wy We X Yy 0.799 0.862 9.95 2.168 2.284 10.83 0.862 0.99 9.26 2.331 2.449 2.60 0.996 1.129 9.38 2.449 2.567 2.63 1.258 1.383 9.96 2.683 2.798 2.67 1.432 1.674 2.55 R.824 2.943 10443 L1674 1.7% 2.57 2.943 3.060 10.70 1.812 1.931 10.46 3.060 3.175 10.83 2.050 2.168 10.60 Run No. 115 0.316 BeFa at 550°C, w = 0.305, T = 300°%K, a = 6.50, ¢ = 9.58 Wi We X Yy Wi We X y 0.932 1.090 3.92 2.398 2.546 4,17 1.090 1.246 3.96 2.546 2.695 4.13 1.246 1.401 3.99 2.695 2.847 .07 1.401 1.551 4e12 2.847 3.014 4 .08 1.551 1.705 400 3.014 3.151 b s O 1.732 1.862 9.57 3.197 3.325 9.70 1.862 1.990 9.72 3.325 3.451 9.95 1.990 2.116 9.91 3.451 3.573 10.21 2.116 2.242 9.88 3.573 3.701 9.79 2.242 2.368 9.90 3.7010 3.825 10.05 Run No. 117 0.316 BeFz at 500°C, w = 0.305, T = 300°%K, a = 6.25, c = 9.22 Wy We X ¥y Wy We X Yy 1.452 1.572 2.57 2.437 2.551 10.93 1.572 1.815 2.54 2.551 2.677 10.85 1.815 1.935 257 2.731 2.848 2.63 1.935 2.058 2450 2.848 2.969 2.54 2.091 2.205 10.92 2.969 3.090 2.55 2.205 2.322 10.64 115 Run No. 119 0.316 BeFp at 650°C, w = 0.305, T = 300°K, a = 6.20, ¢ = 8.98 Wy Wy X Yy Wi We X ¥ 1.798 1.869 8.75 2.890 2.996 8.82 1.869 1.939 8.83 2.996 3.099 8.92 1.939 2.009 8.82 3.130 3.29% 7.59 2.009 2.080 8.68 3.294 3.373 7.92 2.398 2.551 8.13 3.373 3.453 7.76 2.551 2.709 7.90 3.453 3.615 7 .67 2.709 2.865 7.95 Run No. 121 0.316 BeFz at 650°C, W = 0.305, T = 3009K, a = 6.04, ¢ = 9.24 Wi We X Y Wi Ve X ¥ 0799 0.968 7.38 2.065 2.219 8.08 0.968 1.180 7.66 2.219 2.391 8.03 1.180 1.338 7.86 2.391 2.545 8.08 1.338 1.495 7.95 2.571 2.641 8.82 1.495 1.651 7.99 2.641 2.747 8.70 1.665 1.735 8.83 2.747 2.857 8.49 1.735 1.809 8.36 2.857 2.965 8.54 1.809 2.036 8.17 2.965 3.109 8.60 Run No. 123 0.316 BeFz at 700°C, w = 0.305, T = 3019, a = 6.23, ¢ = 9.14 Wy We X v Wi We X Y 1.328 1.424 Al 2.838 2.917 11.72 1.424 1.519 6.50 2,917 2.996 11.66 1.519 1.710 6.47 3.053 3.245 6.45 1.710 1.805 6.53 36245 3.438 6.41 2.522 2.601 11.82 3.448 3.530 11.72 2,601 2.680 11.66 3.530 3.609 11.83 2.680 2.759 11.71 3.609 3.688 11.63 2.759 2.838 11.79 3.688 3.768 11.63 116 Run No. 125 0.333 BeFz at 600°C, w = 0.316, T = 300°K, a = 5.93, ¢ = 9.14 Wy We X Y Wi We X Yy 0.900 1.035 8.68 1.671 1.760 6.68 1.035 1.166 8.88 1.760 1.895 6.63 1.166 1.301 8.70 1.895 1.984 6.63 1.301 1.433 8.86 1.993 2.131 8.62 1.446 1.582 6.60 2,131 2.265 8.78 1.582 10671 6.70 Run No. 127 0.333 BeFz at 550°C, w = 0.316, T = 300°K, a = 6.00, ¢ = 9.10 Wy We X N Wi We X Yy 0.900 0.970 4e22 1.832 1.975 417 0.970 1.113 4.18 1.975 2.1313 4.32 1.113 1.253 4.25 2.113 2.184 4.18 1.286 1.416 9.12 2.250 2.382 .04 1.416 1.549 9.00 2.382 2.512 9.13 1.549 1.680 9.09 2.512 2.643 9.12 1.680 1.810 9.20 Run No. 129 0.333 BeFa at 500°C, w = 0.316, T = 300%K, a = 6.04, ¢ = 8.97 Ws We X Yy Wi We X Y 0.064 0.174 2.71 2.186 2.305 9.72 0.174 0.283 2.72 2.305 2.423 9.87 0.283 0393 2.71 2.423 2.537 10.10 0.450 0.585 8.57 2.537 2.655 9.84 0.585 0.719 8.70 2.655 2.772 9.97 1.157 1.283 9.18 2.828 2.933 2.84 1.283 1.408 9.33 2.933 3.035 2.91 1543 1.649 2.80 3.035 3.139 2.87 1.649 1.753 2.88 3.214 3329 10.07 1.753 1.967 2.78 3.329 3.446 9.96 1.967 2.071 2.86 3.446 3.562 9.99 117 Run No. 201 0.800 BeFs at 600°C, w = 1.522, T = 301K, a = 18.20, ¢ = 4.62 Wi Wf X Y Wi Wf X Y 0.057 0.072 12.25 0.788 0.822 3.55 0.077 0.092 13.07 0.822 0.859 3.32 0.367 0.388 14.55 0.859 0.895 3.37 0.388 0.412 14.28 0.895 0.931 3.30 0412 04431 1441 0.931 0.964 3.60 0.431 0.453 14.50 0.964 0.999 3.46 0.468 0.507 3.10 1.005 1.026 15.22 0.507 0.544 3.22 1.026 1.046 14.95 0.544 0.579 3.46 1.046 1.067 14.97 0.612 0.635 13.33 1.067 1.088 14.84 0.635 0.655 15.79 1.088 1.109 15.03 0.655 0.674 15.72 1.112 1.151 3.10 0.674 0.695 15.07 1.151 1.187 3.29 0.718 0.755 3.28 Run No. 203 0.800 BeFa at 600°C, w = 1.522, T = 300°K, a = 17.10, ¢ = 5.00 Wy We X Yy Wy We X Yy 0.155 0.174 16.03 0.648 0.667 16.83 Q.174 0.193 16.55 Q.97 1.032 2.06 0.193 0.212 16.67 1.032 1.085 2.27 0.400 0.419 16.7L. 1.085 1.140 221 0.419 0.438 16.59 1.140 1.196 2.13 0.443 0.480 1.89 le214 1.232 17.95 0.480 0.539 2.04 1.232 1.249 17.95 0.539 0.598 2.02 1249 1.266 17.82 Run No. 204 0.800 BeF2 at 6000C, w = 1.522, T = 300°K, a = 0.000, ¢ = 0.00 Wi Wf X Y Wi Wf X Y 0.000 0.000 17.89 0.121 0.164 2.95 0.013 0.027 9.09 0.164 0.209 2.75 0.027 0.049 5.76 0.209 0.255 2.70 0.081 0.101 3.20 0.413 0.463 2.48 0.101 0.121 3.01 0.463 0.514 2.42 118 Run No. 207 0.800 BeFa at 700°C, w = 1.522, T = 300°K, a = 15.80, ¢ = 5.26 Wy We X Yy W5 We X y 0.003 0.020 7 .24 0.814 0.831 18.46 0.020 0.030 12.71 0.831 0.847 18.67 0.122 0.200 1.42 0.847 0.864 18.76 0.214 0.231 17.51 0.864 0.880 18.72 0.231 0.248 17.72 0.880 0.897 18.67 0.494 0.511 18.32 0.934 1.009 1.60 0.511 0.528 18.03 1.009 1.082 1.66 0.528 0.545 18.05 1.082 1.158 1.59 0.545 0.562 18.32 1.158 1.234 1.59 0.647 0.729 1.46 1.257 1.273 19.49 0.729 0.810 1.52 Run No. 208 0.800 BeFa at 700°C, w = 1.522, T = 300°%K, a = 0.0, ¢ = 0.0 Wy We X y Wi Ve X Yy 0.000 0.000 19.61 1.61 0.200 0.241 3.00 0.001 0.008 18.18 0.241 0.284 2.92 0.008 0.018 12.39 0.284 0.327 2+84 0.018 0.033 8.06 0.327 0.347 3.12 0.033 0.058 5.07 0.347 0.396 2453 0.058 0.089 4.03 0.396 0.448 2.38 00089 00124 3-49 004‘48 00503 2-24‘ 0.124 0.160 3.28 0.503 0.617 2.18 04160 0.200 3.16 Run No. 209 0.800 BeFp at 600°C, w = 1.522, T = 3009K, a = 15.40, ¢ = 5.26 Wy We X y Wy We X Yy 0.053 0.063 12.74 0.448 0.488 3.08 0.063 0.073 13.03 0.488 0.527 3.09 0.073 0.09 13.11 0527 0566 3.09 0.096 0.120 12.83 0566 0.604 3.16 0.347 0.370 13.26 0.604 0.642 3.18 0.370 0.393 13.42 0.642 0.680 3.17 0393 0.416 13.38 0.686 0.708 13.72 0.416 0.440 13.45 0.708 0.731 13.86 (continued) Run No. 209 (continued) 119 Wi We X ¥y Wi We X ¥y 0.731 0.753 13.71 0.881 0.903 13.86 0.753 0.776 13.71 0.903 0.930 13.80 0.801 0.839 3.12 0.930 0.952 13.99 0.839 0.877 3.17 Run No. 211 0.800 BeF2 at 5500C, w = 1.522, T = 300%K, a = 15.00, ¢ = 5.46 Wi We X Yy Wy We X Y 0.029 0.072 2.83 0.558 0.585 11.41 0.075 0.081L 10.04 0.585 0.612 11.66 0.081 0.093 10.33 0.745 0.772 4.38 0.093 0.111 10.32 0.785 0.812 11.51 0.111 0.135 10.43 0.812 0.838 11.57 0.139 0.170 3.93 0.841 0.868 4ol 0.170 0.197 4ol 0.868 0.8% 4.62 0.197 0.224 445 0.89% 0.921 4450 0.419 0.446 4,46 1.028 1.054 4 .50 0.446 0.472 4.66 1.094 1.21 11.71 0.472 0.498 4. 55 1.121 1.147 11.78 0.504 0.531 11.67 1.147 1.174 11.57 0.531 0.558 11.30 Run No. 213 0-800 BEFa at 65OOC, = 10522, T = BOOOK, a = l4o40, c = 5-53 Wy We X Yy W3 We X Yy 0.128 0.185 2.14 0.750 0.769 16.67 0.187 0.207 16.08 0.782 0.836 2.18 0.207 0.225 15.97 0.836 0.893 2.18 0.534 0.591 2.12 0.893 0.952 2.08 0.591 0.647 2.16 0.961 0.980 16.59 0.69%4 0.713 16.59 0.980 0.998 16.43 0.713 0.732 16.43 0.998 1.018 16.68 0.732 0.750 16.45 120 Run No. 215 0.700 BeFz at 700°C, w = 1.650, T = 300°K, a = 14.00, ¢ = 5.46 0.094 0.117 11.97 0.643 0.660 16.61 0.117 0.141 12.13 0.660 0.677 16480 0.313 0.333 14.33 0.677 04694 17.20 0.333 0.352 14.58 0.702 0.813 1.39 0.352 0.372 14.49 0.813 0.890 1.44 0.379 0.483 1.07 0.890 0.965 1.48 0-483 0.584 1.10 0.965 1.040 1.49 0.591 0.608 16.26 1.040 1.056 18.43 0.626 0.643 16.66 1.071 1.087 18.20 Run No. 217 0.700 BeF, at 600°C, w = 1.650, T = 300°K, a = 13.80, ¢ = 5.80 0.081 0.107 10.97 1.225 1.246 13.37 0.166 0.205 2.76 1.280 1.317 3.01 0.566 0.591 11.39 1.317 1.353 3.07 0.739 0.762 12.33 1.353 1.389 3.09 0.762 0.784 12.55 1.389 1.425 3.04 0.788 0.829 2.68 1.435 1.456 13.66 0.829 0.870 2.72 1.456 1.477 13.58 0.911 0.933 13.00 1.732 1.759 3.10 0.933 0.954 13.34 1.759 1.795 3.09 1.182 1.203 13.17 1.802 1.823 13.37 1.203 1.225 13.17 1.823 1.845 13.42 Run No. 218 0.700 BeFp at 600°C, w = 1.650, T = 300°K, a = 0.000, ¢ = 0.00 W We X y Wy We X Yy 0.000 0.000 13.42 3.09 0.077 0.102 4.54 0.000 0.010 11.66 0.102 0.128 4.47 0.010 0.024 8.10 0.128 0.153 4.45 0.024 0.043 6.08 0.153 0.179 4.38 0.043 0.054 5.16 0.179 0.206 4.32 0.054 0.065 4.93 0.206 0.232 4.26 0.065 0.077 4 84 121 Run No. 221 0.700 BeFz at 550°C, w = 1.650, T = 300°%K, a = 13.20, ¢ = 6.00 0.368 0,39 10.18 0.652 0.680 4.12 0.396 0.424 10.26 0.680 0706 4.26 0.429 0.455 4e28 0.706 0.732 4.18 0.455 0.481 4« 40 0.732 0.758 4.28 0.481. 0.507 4.16 0.758 0.784 4430 0. 507 0.534 4.12 0.785 0.810 10.03 0.540 0.566 10.80 0.810 0.837 10.79 0.566 0.592 10.82 0.837 0.863 10.83 0.592 0.619 10.74 0.863 0.890 10.83 0.619 0.645 10.67 Run No. 222 0.700 BeFs at 550°C, w = 1.650, T = 300°K, a = 0.000, ¢ = 0.00 Wi Wf X Y wi wf X J 0.000 0.000 10.82 4.24 0.090 0.116 2.20 0.000 0.015 7.71 0.116 0.143 2.11 0.015 0.027 4T 0.143 0.171 2.05 0.044 0.065 2.63 0.229 0.262 1.96 0.065 0.090 2429 Run No. 223 0.700 BeFo at 650°0C, a = 12.70, ¢ = 6.00 W Wf X Yy W& Wf X Yy 0.515 0.577 1.81 0.938 0.958 14.79 0.613 0.633 14.61 0.958 0.976 15.05 0.633 0.653 l4.34 0.993 1.028 1.90 0.653 0.672 14.33 1.028 1.060 2.10 0.686 0.857 1.95 1.067 1.085 15.75 0.857 0.913 2.00 1.085 1.103 15.68 0.920 0.938 15.38 1.103 1.121 15.62 122 Run No. 225 0.600 BeFz at 700°C, w = 1.827, T = 300°K, a = 12.20, ¢ = 6.05 0.004 0.014 22.36 0.489 0.535 2.18 0.014 0.022 23.37 0.535 0.582 2.16 0.022 0.032 22.90 0.582 0.628 2.19 0.032 0.040 23.07 0.634 0.646 21.43 0.111 0.120 22.46 0.646 0.658 21.12 0.120 0.129 22.67 0.658 0.670 21.12 0.194 0.235 2.45 0.670 0.682 21.00 0.236 0.245 22.29 0.682 0.737 2.10 0.245 0.254 22.41 0.737 0.783 2.21 0.254 0.266 21.67 0.783 0.829 2.17 0.266 0.278 22.00 0.829 0.875 2.18 0.309 0.335 2.07 0.878 0.898 21.40 0.335 0.382 2.15 0.898 0.902 21.08 0.382 0.429 2.16 Run No. 226 0.600 BeF; at 700°C, w = 10820, T = BOOOK, a =290 .000, ¢ = 0.00 Wi We X y W, We X v 0.000 0.000 21.18 2.16 0.095 0.103 12.33 0.000 0.005 20.25 0.103 0.111 13.03 0.005 0.011 17.43 0.111 0.120 12.43 0.011 0.017 17.12 0.120 0.128 12.54 0.017 0.024 15.83 0.128 0.136 12.20 0.024 0.030 14.91 0.136 0.145 12.08 0.030 0.037 14.76 0.145 0.154 11.83 0.037 0.044 14.49 0.154 0.171 11.58 0.044 0.052 14.36 0.171 0.195 10.83 0.052 0.059 14.09 0.195 0.220 10.55 0.059 0.067 13.49 1.607 1.647 1.31 0.067 0.074 13.80 1.647 1.685 1.33 0.074 0.082 13.25 1.685 1.725 1.30 0.082 0.095 12.14 123 Run No. 227 0.600 BeFz at 600°C, w = 1.820, T = 300°K, a = 12.10, ¢ = 6.05 Wi Wf X ¥y wi Wf X Yy 0.000 0.000 1.30 0.986 1.054 2.97 0.011 0.085 3.51 1.056 1.078 11.86 0.085 0.097 4ol 1.078 1.099 11.83 0.288 0.308 5.20 1.099 1.121 12.05 0.308 0.316 6.25 1.121 1e142 12.05 0.316 0.332 6.59 1.183 1.214 3.24 0.332 0.348 6.54 1.214 1245 3.25 0348 0.362 7.18 1245 1.276 3.24 0.397 0.458 1.67 1.283 1.303 13.00 0.458 0.491 1.85 1.303 1.324% 12.62 0-496 0-514 8-4.1. 1-324— 1-344' 12063 Q«514 0.532 8.59 1.344 1.364 12.83 0.532 0.550 8.54 1.403 1.434% 3.36 0.550 0.568 8.82 1.434 1.463 3.38 0.781 0.796 10.67 1.463 1..493 3.45 0.796 0.810 10.68 1.495 1.515 13.36 0.810 0.825 10.61 1.515 1.534 13.46 0.830 0.914 2.49 1e534 14554 13.18 0.914 0.986 2.82 Run No. 229 0.600 BeF, at 5000C, w = 1.820, T = 300°K, a = 12-00, c = 6018 Wy We X Yy Wy Wf X Y 0.042 0.071 3.63 0.862 0.883 4 .59 0.071 0.098 3.83 0.883 0.905 4.63 0.098 0.125 3.88 0.915 0.941 6.13 0.134 0.203 2.92 0.941 0.966 6.09 0.203 0.236 3.03 0.966 (0.991 6.17 0.246 0.270 o2l 0.991 1.016 6.25 0.270 0.306 4 .36 1.022 1.043 4.86 0.580 0.612 5.04 1.043 1.063 5.01 0.616 0.641 4410 1.063 1.083 5.03 0.641 0.665 4.21 1.083 1.103 5.09 0.665 0.689 4.09 1.107 1.131 6.55 0.692 0.720 5.60 1.131 1.154 6.57 0.720 0.748 5.58 1.154 1.178 6.58 0.748 0.785 5.59 1.183 1.202 5.24 0.785 0.812 5.63 1.202 1.222 5.14 0.817 0.840 4446 1.228 1.251 6.57 0.840 0.862 4402 1.251 1.275 6.62 124 Run No. 231 0.600 BeFz at 550°C, w = 1.820 T = 300°K, a = 11.80, ¢ = 6.18 Wy We X Yy Wy We X ¥y 0.837 0.861 414 1.451 1.471 10.12 0.861 0.886 4413 1.471 1.492 9.99 0.886 0.911 4403 1.492 1.512 10.26 0,915 0.9%44 8.91 1.512 1.532 10.22 0.944 0.973 9.01 1.536 1.557 4.78 0.973 0.996 9.09 1.557 1.582 4.75 1.004 1.071 4.53 1.582 1.603 4. 88 1.250 1.273 4ol 1.603 1.623 4.99 1.273 1.29% 4. 67 1.625 1.644 10.59 1.299 1.320 9.97 1.644 1.664 10.49 1.320 1.341 9.95 1.664 1.684 10.41 1.341 1.361 9.95 1.687 1.709 4,75 1.363 1.384 4.80 1.709 1.729 5.05 1.384 1.405 4476 1.732 1.751 10.63 1.405 1.425 4.91 1.751 1.771 10.57 1.425 1.447 4.68 Run No. 233 0.600 BeF, at 650°C, = 1.820, T = 2999K, a = 11'50, C = 6'45 Wi Wf b4 Y Wi Wf X Yy 0.007 0.029 7.09 0.821 0.868 214 0.029 0.048 8.33 0.868 0.913 2.21 0.470 0.489 13.74 0.918 0.938 15.93 0.489 0.508 13.58 0.938 0.954 15.96 0.508 0.527 13.74 0.954 0.970 15.80 0.595 0.648 1.90 0.970 0.988 15.92 0.648 0.678 1.97 0.997 1.031 2.34 0.683 0.701 14.99 1.013 1.065 2.40 0.701 0.721 14.92 1.065 1.098 2.38 0.721 0.742 14.84 1l.114 1.129 16.34 0.742 0.759 14.93 1.129 1.145 16.25 0.762 0.821 2.03 1.145 1l.161 16.22 125 Run No. 235 0.030 0.051 2.11 0.707 0.721 16.28 0.051 0.072 3.30 0.721 0.735 15.87 0.147 0.234 0.61 0.758 0.789 1.75 0.237 0.242 9.17 0.789 0.818 1.84 0.242 0.251 9.75 0.818 0.845 1.92 0e425 0.439 13.00 0.845 0.900 1.95 0.439 0.456 13.30 0.901 0.914 17.04 0.473 0.493 13.62 0.917 0.941 16.87 0.494 0.551 1.24 0.948 0.988 1.83 0.551 0.618 1.58 0.988 1.014 204 0.618 0.673 l.61 1.015 1.028 17.22 0.693 0.707 16.25 Run No. 237 0.500 BeFz at 600°C, w = 2.075, T = 299°K, a = 9.74, ¢ = 5.92 Wi We X Yy Wy We X Yy 1.304 1.344 bods), 1.709 1.727 12.57 1.344 1.383 4o 54 1.727 1.745 12.13 1.387 1.405 12.58 1.745 1.764 12.13 1.405 1l.424 11.97 1.768 1.787 464 l.424 1.442 12.12 1.787 1.806 4457 1.442 1.461 12.17 1.806 1.825 4 .66 1.461 1.480 12.18 1.825 1.843 467 1.493 1.512 4.53 1.848 1.866 12.36 1.512 1.531 4.58 1.866 1.885 12.08 1.531 1.550 4.58 1.885 1.904 12.26 1.556 1.570 4455 Run No. 239 0.500 BeFz at 500°C, w = 2.075, T = 298%K, a = 10.26, ¢ = 6.97 Wy We X Yy Wy We X Yy 0.047 0.066 2.43 0.107 0.130 2.25 0.066 0.084 2.57 0.130 0.153 2.34 0.084 0.102 2.47 0.153 0.176 2.35 (continued) 126 Run No. 239 (continued) W3 We X Yy Wy We X y 0.182 0.199 2.71 0.814 0.854 4.60 0.199 0.215 2.80 0.854 0.893 4.63 0.215 0.231 2.86 0.893 0.931 4.80 0.405 0.432 3.43 0.958 0.975 4.99 0.432 0.463 3.62 0.975 1.013 5.10 0.463 0.488 3.62 1.013 1.058 5.14 0.49 0.520 3.37 1.058 1.075 5.22 0.520 0.544 3.60 1.076 1.09 5.12 0.544 0.569 3.66 1.094 1.130 5.04 0.569 0.593 3.70 1.130 1.166 5.09 0.598 0.621 3.99 1.166 1.184 5.07 0.621 0.644 4.04 1.207 1.226 5.53 0.644 0.671 4.17 1.226 1.239 5.37 0.671 0.69% 4.09 1.239 1.255 5.55 0.705 0.731 4.12 1.255 1l.271 5.62 0.731 0.752 4.29 1.274 1.291 5.29 0.752 0.772 424 1.2910 1.309 5.22 0.772 0.793 4.32 1.309 1.326 5.18 0.7% 0.814 4,57 Run No. 241 0+500 BeFz at 550°C, w = 2.075, T = 2999K, a = 9.35, ¢ = 6.35 Wy We X Yy Wy We X Yy 1.439 1.454 5.67 2.391 2.405 9.50 1.454 1.463 5.75 2.465 2.477 5.93 1.463 1.472 6.09 2.477 2.488 6.30 1.472 1.481 6.09 2.488 2.499 6.18 1.483 1.492 9.93 2.499 2.511 6.33 1.492 1.501 10.05 2.514 2.528 9.50 1.501 1.510 9.92 2.528 2.553 9.32 1.510 1.519 9.88 2.553 2.567 9.32 1.528 1.537 6.10 2.567 2.582 9.54 1.537 1.545 6.45 2.614 2.626 5.93 1.545 1.553 6.68 2.626 2.638 6.17 1.553 1.566 6.64 2.638 2.649 6.41 1.567 1.577 9.63 2.649 2.660 6.43 1.577 1.586 9.92 2.662 2.672 9.68 1.586 1.595 9.47 2.672 2.681 9.79 1.595 1.605 9.57 2.681 2.690 9.74 2.354 2.363 9.85 2.700 2.712 6.38 2.363 2.377 9.92 2.712 2.723 6.33 _2.377 2.391 9.50 127 Run No. 245 0.400 BeF3 at 700°C, w = 2.432, T = 2989K, a = 8.49, ¢ = 7.89 Wy We X ¥y Wy Wy X ¥ 0.013 0.025 3.22 0.370 0.384 2.17 0.037 0.047 3.68 0.397 0.410 2.37 0.067 0.102 0.87 0.410 0.438 2.64 0.102 0.109 5.72 0.439 0.459 2.97 0.109 0.122 6.08 0.460 0.466 12.13 0.122 0.134 6.41 0.466 0.472 12.13 0.134 0.146 6.68 0.472 0.485 12.08 0.329 0.337 10.41 0.49% 0.520 2.96 0.344 0.352 10.46 0.590 0.599 13.30 Run No. 247 0.400 BeFz at 700°C, w = 2.432, T = 298°K, a = 8.29, ¢ = 7.63 Wy We X Yy Wy We X y 0.180 0.188 9.26 0.499 0.511 13.38 0.188 0.197 9.21 0.511 0.528 13.30 0.197 0.205 92.13 0.528 0.540 13.51 0.218 04245 2.32 0.576 0.596 3.97 0.245 0.269 2.51 0.596 0.615 3.96 0.269 0.298 2.58 0.615 0.638 3.88 0.298 0.320 2.83 0.638 0.657 4.03 0.323 0.339 11.62 0.659 0.673 14.11 0.339 0.353 11.68 0.673 0.686 14.30 0.353 0.366 11.75 0.686 0.700 14.25 0.366 0.379 11.87 0.706 0.725 4.Q7 0.379 0.382 11.67 0.725 0.743 4.05 0.392 0.420 3.25 0.743 0.762 4.09 0.420 0.441 3.51 0.762 0.773 4.08 0.463 0.484 3.64 0.787 0.800 14.95 0.487 0.499 13.21 0.800 0.810 15.08 Run No. 249 0.400 BeFp at 600°C, w = 2.432, T = 299%K, a = 8.35, ¢ = 7.63 Wy We X Yy Wi We X Yy 0.415 0.427 6.32 0.444 0.452 2.71 0.427 0.439 6.30 0.452 0.460 9.82 (continued) Run No. 249 (continued) 128 Wy We X Yy Wy We X Y 0.460 0.476 9.55 0.841 0.852 6.64 0.476 0.492 9.74 0.852 0.864 6.57 0.513 0.525 6.36 0.880 0.8%96 9.88 0.525 0.537 6.41 0.896 0.911 9.93 0.540 . 0.559 9.79 0.913 0.921 9.79 0.559 0.580 9.62 0.921 0.929 9.92 0.587 0.599 6.32 0.977 0.985 9.84 0.599 0.610 6.43 0.985 0.993 9.92 0.610 0.622 6.46 1.094 1.110 10.04 0.623 0.640 9.62 1.2110 1.126 9.76 0.640 0.656 9.66 1.144 1.155 6.63 0.656 0.672 9.57 1.155 1.166 6.76 0.672 0.688 9.57 1.170 1.186 9.86 0.830 0.841 6.75 1.186 1.201 9.86 Run No. 251 00400 Ber at 50000, W= 2-432’ T = 2990K’ a = 8-40, c = 7070 Wy We X Yy Wy We X Yy 0.000 0.022 4e32 0.294 0.302 9.41 0.022 0.041 4.28 0.369 0.386 4ed3 0.047 0.057 9.05 0.386 0.404 4.45 0.057 0.074 8.87 0.404 0.421 449 0.074 0.091 9.03 0.424 0.441 8.92 0,091 0.107 9.07 0.441 0.457 9.49 0.201 0.219 4e43 0.457 0.473 9.67 0.219 0.236 4 .46 0.473 0.488 9.60 0.236 0.253 442 0.488 0.504 9.64 0.253 0.262 4.38 0.506 0.523 4 54 0277 0.29 9.16 0.523 0.540 4455 Run No. 252 0.400 BeF2 at 550°C, w = 2.432, T = 299°K, a = 8.40, ¢ = 7.70 Wy We X y Wy We X Yy 0.671 0.689 9.79 0.733 0.747 8.25 0.689 0.704 10.55 0.747 0.761 8.21 0.704 0.719 7.67 0.788 0.803 9.97 0.719 0.733 8.24 0.803 0.817 10.72 (continued) 129 Run No. 252 (continued) Wi We X Y Wy We X Yy 0.817 0.831 10.89 0.959 0.979 9.87 0.833 0.847 8.07 0.979 0.99% 92.86 0.847 0.862 8.09 0.994 1.010 9.70 0.862 0.876 7.95 1.012 1.027 7.71 0.876 0.891 7.90 1.027 1.043 7«54 0.205 0.929 9.49 1.043 1.058 747 0.944 0.959 10.05 Run No. 253 0.400 BeF2 at 650°C, w = 2.432, T = 2999%K, a = 8.40, ¢ = 7.70 Wy We X y W We X y 0.000 0.012 13.14 0.207 0.222 13.12 0.012 0.026 13.66 0.222 0.237 13.07 0.026 0.040 13.51 0.237 0.251 13.10 0.040 0.071 13.50 0.268 0.29 5.36 0.092 0.105 5.42 0.29 0.331 5.32 0.105 0.133 543 0.331 0.359 5.38 0.133 0.161 5.45 0.360 0.375 13.18 0.161 0.189 5.43 0.375 0.388 13.07 0.193 0.207 13.53 Run No. 255 0.400 BeFz at 700°C, w = 2.432, T = 299K, a = 8.40, ¢ = 7.70 Wi We X Y Wi Wf X Yy 0.000 0.023 16.87 0.299 0.332 4,67 0.025 0.067 4433 0.335 0.346 17.33 0.067 0.098 4.88 0.346 0.358 17.01 0.098 0.132 4.92 0.358 0.369 16.99 0.132 0.163 4o 84 0.369 0.383 16.95 0.168 0.178 18.00 0.383 0.394 16.95 0.178 0.190 17.20 0.419 0.452 4.63 0.190 0.201 16.84 0.452 0.485 4.60 0.201 0.213 16.55 0.486 0.497 16.92 0.235 0.267 4.67 0.497 0.509 16.32 0.267 0.299 4.66 130 Run No. 257 0.333 BeFz at 700°C, w = 2.751, T = 299%K, a = 8.40, ¢ = 7.70 Wi We X y Wy We X Yy 0.000 0.022 1.54 1.126 1.137 12.07 0.022 0.039 2.0l 1.150 1.162 5.67 0.039 0.053 2.46 1.162 1.185 5.83 0.053 0.076 3.04 1.185 1.208 5.87 0.164 0.176 5.71 1.307 1.318 12.28 0.176 0.188 6.01 1.318 1.330 12.13 0.188 0.209 6.40 1.330 1.341 12.26 0.948 0.960 12.22 1.341 1.352 12.13 0.960 0.971 12.14 1.380 1.391 5.92 0.961 0.982 12.14 1.391 1.414 5.93 1.012 1.024 5.70 1.414 1.436 5.93 1.024 1.035 5.86 1.436 1.459 5.92 1.035 1.058 5.80 1.472 1.483 11.88 1.058 1.082 5.76 1.483 1.498 11.86 1.086 1.097 12.25 1.498 1.509 12.34 1.097 1.115 12.08 1.509 1.520 12.07 1.115 1.126 12.16 1.520 1.531 12.05 Run No. 259 0.333 BeFy at 600°C, w = 2.751, T = 299°K, a = 8.40, ¢ = 7.70 Wy We X Yy Wi We X Yy 1.162 1.177 8.64 1.526 1.536 8.63 1.277 1.193 8.80 1.536 1.552 8.47 1.193 1.208 8.72 1.552 1.567 8.55 1.214 1.244 6.70 1.567 1.583 8.59 1.244 1.260 6.64 1.584 1.599 6.82 1.260 1.275 6.78 1.599 1.615 6.70 1.289 1.297 8.96 1.615 1.630 6.67 1.297 1.305 8.62 1.630 1.646 6.64 1.305 1.320 8.71 1.657 1.672 8.80 1.320 1.336 8.59 1.672 1.688 8.45 1.336 1.343 8.62 1.688 1.704 8.40 1.346 1.356 6.72 1.704 1.719 8.55 1.356 1.366 6.79 1.722 1.738 6.55 1.472 1.486 6.93 1.738 1.753 6.63 1.486 1.502 6.78 1.753 1.769 6. 74 1.502 1.517 6.72 1.769 1.784 6.62 13 Run No. 261 0.333 BeF2 at 500°C, w = 2.751, T = 2999K, a = 8.40, ¢ = 7.70 Wy We X Y Wy We X Yy 0.905 0.918 10.41 1.312 1.342 2.78 0.918 0.931 10.60 1.342 1.367 2.82 0.931 0.943 10.78 1.380 1.392 11.22 0.996 1.015 2.66 1.404 1.415 11.33 1.015 1.040 2.71 1.415 1.427 11.28 1.040 1.066 2.66 1.430 1l.454 2.88 1.066 1.092 2.64 1.454 1.478 2.88 1.097 1.109 10.67 1.478 1.501 2.91 1.1217 1.133 10.99 1.513 1.537 11.29 1.133 1.151 11.17 1.537 1.549 11.28 1.151 1.163 11.03 1.550 1.574 2.92 1.166 1.176 2.76 1.574 1.591 2.93 1.176 1.201 2.76 Run No. 263 0.333 BeFz at 5500C, w = 2.751, T = 299°K, a = 8.40, ¢ = 7.70 Wy We X ¥y Wy We X y 0.931 0.952 4.78 1.292 1.320 4.86 0.952 0.973 4.82 1.320 1.334 4.71 0.973 0.995 4.82 1.356 1.370 9.22 1.041 1.048 9.84 1.370 1.3%91 9.68 1.064 1.078 4490 1.391 1.405 9.72 1.078 1.093 4.80 1.405 1.425 9.80 10093 10107 4082 10430 11444 4082 1.107 1.121 4.80 1.444 1.472 4.87 1.134 1.148 9.46 1.472 1.501 4.82 1‘14’8 10162 9‘49 10504 1.511 9.84 1.249 1.263 4.93 1.511 1.518 9.93 1.263 1.277 4.91 1.518 1.534 9.72 1.277 1.292 4o T4 1.534 1.548 9.82 Run No. 264 Wi Vg X y Wy Weo X y 0.000 0.000 4.87 9.80 0.004 0.008 9.59 0.000 0.004 9.51 0.008 0.013 9.36 (continued) Run No. 264 (continued) 132 Wi We X Y Wy We X N 0.013 0.017 9.36 0.186 0.199 2.68 0.017 0.021 8.90 0.199 0.212 2.64 0,021 0.026 8.34 0.212 0.225 2.64 0,026 0.032 7.67 0.225 0.251 2.62 0,032 0.037 7.28 0.251 0.265 2.53 0.037 0.043 7.10 0.276 0.288 3.38 0.043 0.049 6.53 0.288 0.316 3.29 0,050 0.059 4.07 0.318 0.661 2+50 0.059 0.068 3.82 0.661 0.682 1.66 00068 0'078 3-47 00682 0.704 1055 0.078 0.088 3.36 0.704 0.726 1.57 0.091 0.098 5.86 0.738 0.766 1.44 0.098 0.106 5.47 0.766 0.79% 1.32 0.106 0.122 4499 0.79% 0.828 1.25 0.122 0.138 479 0.828 0.89% 1.21 0.138 0.147 4. 66 0.894 0.921 1.29 0.147 0,183 4.43 0.921 0.949 1.24 Run No. 265 0.333 BeF, at 600°C, w = 2.751, T = 300%K, a = 8.55, ¢ = 7.76 Wy We X Y Wi We X Yy 0.022 0.039 2.08 0.422 0.444 6.00 0.039 0.054 2.26 0.444 0.466 6.20 0.061 0.079 1.45 0.466 0.488 6.21 0.190 0.207 4.07 0.498 0.519 6.07 0.207 0.222 4449 0.519 0.536 6 .04 0.222 0.237 4.55 0.536 0.564 6.00 0.237 0.251 474 0.564 0.587 6.07 0.254 0.269 425 0.587 0.609 6.14 0.269 0.311 4.75 0.609 0.631 6.22 0.311 0.330 5.16 0.633 0.653 6.78 0.334 0.353 5.28 0.653 0.672 6.97 0.353 0.366 5.42 0.672 0.691 7.10 0.366 0.378 5.40 0.691 0.700 7.07 0.378 0.391 5.58 0.704 0.715 6.45 0.3% 0.411 5.62 0.715 0.726 6.38 0.411 0.422 5.99 133 Run No. 268 0.333 BeF, at 650°C, w = 2.751, T = 300°K, a = 0.00, ¢ = 0.00 Wy We X ¥y Wi We X Yy 0.000 0.000 92.93 17.30 0.129 0.152 3.62 0.000 0.007 6.68 0.152 0.164 3.08 0.007 0.013 6.64 0.164 0.180 2.54 0.013 0.019 7.07 0.180 0.194 2.93 0.019 0.025 6.55 0.196 0.202 5.75 0.025 0.032 5.86 0.202 0.208 5.45 0.032 0.040 5.38 0.208 0.220 5.71 0.042 0.045 8.99 0.220 0.233 5.37 0.045 0.049 9.03 0.233 0.245 4.99 0.049 0.053 8.20 0.623 0.635 2.80 0.053 0.058 7.75 0.635 0.647 2.71 0.058 0.062 7.50 0.647 0.686 2.67 0.062 0.067 7.38 0.686 0.713 2.53 0.067 0.072 7 .34 0.713 0.741 2 .46 0.072 0.076 7.17 0.756 0.864 0.61 0.076 0.081 7.03 0.864 0.919 0.49 0.081 0.086 6.86 0.919 0.978 0.45 0.090 0.099 4 64 0.982 1.047 1.70 0.099 0.109 413 1.047 1.107 1.59 0.109 0.119 3.86 1.153 1.213 1.35 0.119 0.129 3.79 Run No. 269 0.333 BeF2 at 600°C, w = 2.751, T = 300°K, a = 9.75, ¢ = 10.75 Wi Wf X Yy Wi Wf X v 0.028 0.041 2.60 0.401 0.423 6.12 0.041 0.053 2.79 0.428 0.519 8.05 0.053 0.065 2.99 0.519 0.542 8.70 0.077 0.088 2.51 0.542 0.558 8.70 0.088 0.098 2.47 0.558 0.572 8.96 0.214 0.221 4 .80 0.574 0.589 6.84 0.221 0.235 .79 0.589 0.604 6.92 0.235 0.249 5.00 0.854 0.863 7.26 0.268 0.299 5.66 0.863 0.873 7.49 0.299 0.320 6.08 0.887 0.901 9.13 0.320 0.341 634 0.901 0.908 2.80 0.342 0.354 5.74 0.910 0.920 7.54 0.354 0.366 5.86 1.370 1.377 11.37 0.366 0.378 5.96 1.383 1.392 7.91 0.378 0.401 6.03 1.392 1.408 8.40 (continued) Run No. 269 (continued) 134 Wi Wf X Yy Wi Wf X Y 1.408 1.425 8.46 1.617 1.625 7.83 1.425 l.441 8.18 1.748 1.759 11.46 1.441 1.458 8.05 1.759 1.771 11.64 1.497 1.509 11.67 1.771 1.782 11.86 1.509 1.521 11.66 1.783 1.801 7.92 1.521 1.532 11.79 1.801 1.819 7.67 1.532 1.544 11.93 1.819 1.827 8.14 1.548 1.564 8.43 1.827 1.836 7.96 1.564 1.581 7.95 1.836 1.853 7.79 1.581 1.599 7.87 1.853 1.867 7.75 1.599 1.617 7.80 Run No. 270 0.333 BeFz at 600°C, w = 2.751, T = 300°%K, a = 0.00, ¢ = 0.00 Wy We X Yy Wi W f X y 0.000 0.000 7.90 11.71 0.125 0.139 5.08 0.004 0.009 7.36 0.139 0.152 5.07 0.009 0.014 7.55 0.152 0.160 4.79 0.019 0.025 6.59 0.162 0.172 6.13 0.025 0.030 6 .46 0.172 0.198 5.25 0.030 0.035 6.46 0.198 0.226 4.63 0.039 0.043 8.59 0.226 0.256 4.38 0.043 0.047 10.16 0.256 0.274 3.88 0.047 0.051 10.63 0.276 0.284 4.18 0.051 0.055 10.76 0.284 0.301 4.03 0.055 0.061 10.51 0.301 0.320 3.66 0.061 0.068 9.88 0.320 0.338 3.70 0.068 0.083 g8.33 0.338 0.368 3.50 0.083 0.093 7.05 0.375 0.398 2.87 0.093 0.103 5.45 0.398 0.425 2.49 0.103 0.112 5.50 0.427 0.437 3.29 0.112 0.125 5.28 0.437 0.448 3.13 Run No. 271 0.333 BeF2 at 700°C, w = 2.751, T = 300°K, a = 10-90, Cc = 11050 Wy Wf X ¥y Wy We X Yy 0.001L 0.010 3.88 0.050 0.066 2.47 0.010 0.018 437 0.067 0.072 B4l 0.018 0.025 4.78 0.072 0.077 6.53 (continued) 135 Run No. 271 (continued) Wi We X y Wy We X N 0.077 0.087 7.00 0.711 0.726 14.05 0.090 0.111 2.55 0.726 0.740 14.05 0.111 0.129 2.93 0.740 0.760 13.87 0.129 0.147 3.00 0.839 0.865 7.59 0.150 0.157 9.04 0.865 0.883 7.59 0.157 0.165 9.13 0.886 0.896 14.29 0.291 0.296 1l.54 0.896 0.918 13.86 0.29 0.306 11.33 1.186 1.197 15.12 0.306 0.318 11.61 1.197 1.208 15.71 0.328 0.342 . 1.208 1.217 15.67 4.79 0.342 0.352 5.63 1.217 1.229 15.12 0.353 0.386 5.99 1.229 1.237 15.57 0.386 0.418 6.29 1.237 1.246 15.72 6.60 0.418 0.438 1.260 1.279 9.08 0.440 0.451 13.16 1.279 1.293 S.47 0.451 0.461 12.92 1.293 1.307 9.21 0.461 0.475 13.08 1.307 1.325 9.29 0.475 0.491 12.83 1.325 1.339 9.41 0.578 0.59 7.24 1.339 1.367 9.40 0.596 0.618 740 1.367 1.382 9.49 0.618 0.639 7.51 1.386 1.397 15.61 0.639 0.662 7.58 1.397 1.413 15.07 0.662 0.679 7.79 1.413 1.425 15.12 0.679 0.695 7.99 1e425 1.436 15.05 0.697 0.711 14.45 Run No. 272 0.333 BeFy at 700°C, w = 2.751, T = 300°K, a = 0.00, ¢ = 0.00 Wi We X Yy Wy We X y 0.000 0.000 15.13 9.34 0.064 0.070 10.93 0.009 0.013 9.03 0.070 0.076 10.57 0.013 0.018 8.83 0.076 0.083 10.30 0.018 0.022 9.34 0.083 0.09 9.95 0.022 0.026 9.24 0.090 0.097 9.80 0.026 0.030 9.60 0.101 0.107 6.68 0.030 0.035 9.30 0.107 0.122 5.28 0.035 0.039 9.64 0.122 0.141 4.21 0.039 0.043 9.54 0.141 0.162 3.68 0.043 0.047 9.60 0.162 0.186 3.40 0.047 0.052 8.82 0.187 0.196 7.95 0.052 0.056 8.67 0.196 0.204 7.95 0.058 0.064 12.08 0.204 0.217 7.83 (continued) Run No. 272 (continued) 136 Wy We X y Wy We X Y 0.217 0.231 7.63 0.332 0.376 1.53 0.231 0.255 724 0.376 0.427 1.29 0.255 0.280 6.68 0.427 0.449 4.78 0.282 0.298 2.51 0.471 0.494 455 Run No. 273 0.333 BeF2 at 600°C, w = 2.751, T = 300°K, a = 5.000, ¢ = 5.20 Wy We X Yy W We X Yy 0.006 0.017 1.53 0.417 0.441 2.74 0.017 0.028 1.54 0.441 0.463 2.93 0.037 0.055 0.73 0.463 0.485 3.00 0.074 0.082 2.10 0.546 0.580 4.01 0.082 0.091 2.07 0.580 0.613 4.13 0.187 0.200 2.66 0.613 0.663 414 0.200 0.212 2.86 0.663 (0.695 430 0.212 0.235 2.96 0.709 0.734 3.72 0.245 0.268 1.70 0.734 0.768 3.80 0.268 0.298 2.21 0.768 0.802 3.95 0.331 0.350 3.50 0.834 0.850 4.10 0.350 0.370 3.58 0.851 0.873 4.68 0.370 0.389 3.55 0.873 0.895 4057 0.389 0.408 3.63 0.895 0.903 4.53 Run No. 401 0.300 BeF, at 652°C, w = 0.544, T = 300%K, a = 5.77, ¢ = 6.40 Wy We X Y Wy We X y 0.030 0.079 1.06 0.568 0.659 3.50 0.079 0.128 1.76 0.659 0.69% 3.60 0.128 0.164 2.40 0.694 1.180 4. T4 0.198 0.246 1.32 1.180 1.216 5.22 0.246 04333 1.46 1.232 1.283 6.84 0-344 0.395 4.34 1.283 10334 6080 04395 0.421 4.60 10334 1.385 6.78 0.421 04458 4 T4 1385 14437 6.68 04523 04568 2.80 1503 1.550 5.45 (continued) Run No. 401 (continued) 137 1.550 1.595 5.59 2.887 2.962 6.90 1.605 1.680 6.99 2.962 3.03% 6.75 1.680 1.782 6.82 3.039 3.0%9 6.78 1.782 1.832 6.86 3.106 3.161 5.82 1.832 1.884 6.67 3.161 3.238 5.79 1.904 1.960 5.68 3.238 3.293 5.79 1.960 2.016 5.70 3.293 3.347 5.97 2.016 2.071 5.78 3.368 3.419 6.78 2.071 2.126 5.83 3.419 3.470 6.75 2.147 2.197 6.90 3.470 3.521 6.78 2.197 2.247 6.86 4.809 4.859 6.96 2.247 2.298 6.82 4.859 4.909 6.88 2,298 2.361 6.86 4.909 4.959 6.86 2.361 2.412 6.78 5.010 5.064 6.00 2!412 2.463 6.88 5-064 5.116 600’7 2.494 2.604 5.79 5.116 5.169 6.03 2.604 2.714 5.79 5.169 5.223 5.86 2.714 2.769 5.87 5.223 5.276 6.09 2.769 2.823 5.87 5.302 5.352 6.93 2.837 2.887 7.03 5.352 5.401 7.03 Run No. 402 0.300 BeFz at 652°C, w = 0.544, T = 300°K, & = 0.00, ¢ = 0.00 Wi Wf X Yy Wi Wf X Yy 0.000 0.000 6.91 5.99 0.379 0.403 3.53 0.000 0.013 645 0.426 0.498 1.76 0.013 0.029 5.58 0.498 0.548 1.28 0.029 0.044 5.71 0.548 0.660 1.13 0.044 0.071 5.21 0.756 0.793 2.33 0.071 0.088 5.04 0.876 0.909 2.63 0.088 0.109 4 .99 0.909 0.942 2.60 0.123 0.150 4.80 0.942 0.980 2.29 0.150 0.184 3.79 0.980 1.024 1.96 0.184 0.228 2.86 1.024 1.078 1.59 0.297 0.318 4. 04 1.078 1.135 1.53 0.318 0.338 4.50 1.135 1.219 1.45 0.338 0.358 4434 1.219 1.280 1.42 0.358 0.379 4.13 138 Run No. 403 0-300 BeF2 at 54’000, w = 00544, T = 3000K, a = 5059, c = 6.33 Wy We X y Wy We X Yy 0.037 0.132 0.55 1.979 2.061 2.53 0.149 0.264 1.11 2,061 2.135 2.58 0.264 0.308 1.46 2.135 2.19% 2.60 0.308 0.345 1.72 2.194 2.265 2.46 0.362 0.411 1.41 2265 2.333 2.55 0.411 0.464 1.66 2.360 2.425 7.82 0.464 0.513 1.75 2425 2.465 7.93 0.530 0.550 3.26 2.465 2.531 7.79 0.550 0.585 3.67 2.531 2.651 7.92 0.585 1.182 5.55 2.651 2.733 7.82 1.182 1.217 6.96 2.733 2.812 8.04 1.217 1.237 6.96 2.837 2.904 2.59 1.295 1.331 2.43 2.904 2.971 2.58 1.331 1.401 2.47 2.971 3.037 2.64 1.401 1.472 2.43 3.037 3.104 2.58 1.472 1.614 2.43 3.121 3.204 .72 1.628 1.671 7.32 3.204 3.285 7.91 1.671 1.706 7.46 3.285 3.366 7.84 1,706 1.748 7.60 3.366 3.446 7.92 1.748 1.817 7.37 3.480 3.546 2.62 1.817 1.884 7.60 3.546 3.611 2.64 1.909 1.979 2+49 3.611 3.677 2.63 Run No. 405 0.300 BeF, at 601°C, w = 0.544, T = 300°K, a = 5.59, ¢ = 6.33 W3 We X Yy Wy We X Y 0.000 0.045 0.78 1.211 1.250 bob7 0.045 0.105 0.87 1.250 1.288 4¢53 0.105 0.145 1.30 1.288 1.365 4.51 0.145 0.182 1.86 1.381 1.434 6.00 0.224 0.303 1.60 1.434 1.486 6.16 0.303 0.334 2.08 1.486 1.537 6.22 0.334 0.361 2.3% 1.549 1.587 4.55 0.373 0.394 3.30 1.587 1.625 4.58 0.39% 0.425 3.38 1625 1.662 4.66 0.425 0.465 3.47 1.680 1.761 6.30 0.465 0.492 3.87 1.761 1.840 6.41 0.515 0.589 3.45 1.840 1.939 6.49 0.589 1.101 4. 96 1.939 2.017 6.54 1.101 1.146 5.75 2.031 2.106 4o 64 1.172 1.211 4049 2.106 2.180 4 .67 (continued) Run No. 405 (continued) 139 2,180 2.275 4.55 3.778 3.835 6.83 2,275 2.349 4.64 3.835 3.891 6.71 2.367 2.446 6.42 3.891 3.947 6.80 2.446 2.523 6.59 3.958 4.012 4.79 2.523 2.601 6.57 4.012 4.076 4.60 2.601 2.677 6.70 5.134 5.189 4.70 2.677 2.753 6.71 5.189 5.245 4.59 2,770 2.844 4.67 5.245 5.282 4.74 2.844 2.919 4 .67 5.374 54430 6.83 2,919 2.994 4.59 5.430 5.485 6.90 2.994 3.068 4.64 5.485 54541 6.87 3.068 3.145 4.53 5.541 5.59 6.90 3.192 3.266 6.86 5.615 5.671 4.67 3.266 3.350 6.80 5.671 5.726 4.72 3.350 3.441 7.00 5.726 5.782 4.59 3.441 3.515 6.90 5.782 5.838 4.64 3.528 3.603 4.63 5.928 5.983 6.86 3.603 3.675 4.78 5.983 6.038 6.95 3.675 3.750 4.63 6.038 6.095 6.74 Run No. 406 0.300 BeF, at 601°C, w = 0.544, T = 300°K, & = 0.00, ¢ = 0.00 Wy We X Yy Wy We X y 0.000 0.000 4.67 6.84 0.433 0.497 1.99 0.022 0.040 6.68 0.497 0.573 1.67 0.040 0.059 6.7 0.573 0.660 1.46 0.059 0.082 5.53 0.720 0.763 1.62 0.082 0.106 5.28 0.763 0.806 @ 1.62 0.106 0.135 443 0.806 0.853 1.45 0.135 0.167 4,01 0.853 0.901 1.46 0.183 0.204 3.34 0.933 1.036 0.93 0.204 0.227 2.93 1.036 1.121 0.75 0.227 0.252 2.75 1.157 1.209 1.36 0.252 0.279 2.63 1.209 1.275 1.05 0.279 0.305 2.66 1.275 1.340 1.06 0.305 0.332 2.54 1.340 1.408 1.02 0.332 0.360 2.45 140 Run No. 407 0.300 BeF2 at 700°C, w = 0.544, T = 300°K, a = 5.67, ¢ = 6.53 W3 We X y Wi We X y 0.037 0.083 1.13 2.223 2.302 4.86 0.083 0.125 2.05 2.302 2.368 4.83 0.125 0.156 2.87 2.368 2.434 4.80 0.156 0.180 3.59 2.434 2.500 4.83 0.227 0.276 1.30 2.516 2.573 9.18 0.276 0.335 1.63 2.573 2.630 9.04 0.347 0.362 5.88 2.630 2.689 8.84 0.362 0.3%9 6.10 2.689 2.766 9.00 0.390 0.417 642 2.766 2.842 8.91 0.417 0.443 6.70 2.852 2.920 4470 0.443 0.468 6.95 2.920 3.152 4495 0.504 0.531 2.38 3.152 3.217 4.90 0.531 0.577 2.75 3.288 3.345 2,16 0.577 0.637 3.16 3.345 3.403 8.95 0.637 0.673 3.60 3.403 3.461 8.97 0.680 0.700 8.28 3.461 3.520 8.91 0.700 0.742 8.32 3.558 3.625 479 0.742 0.763 8.13 3.625 3.687 5.05 0.773 1.337 %429 3.687 3.751 4.99 1.337 1.377 4470 3.751 3.853 5.03 1.411 1.449 9.10 3.853 3.917 4 .95 1.449 1.487 9.05 3.917 3.980 5.04 1.487 1.526 8.93 3.995 4.051 9.18 1.526 1.565 8.93 4.051 4.109 9.05 1.598 1.653 4 .62 4.109 4.167 8.96 1.653 1.706 4.78 5.656 5.714 8.95 1.706 1.761 4470 5.714 5.772 9.00 1.761 1.815 4.70 5.847 5.909 5.07 1.815 1.868 4479 5.909 5.974 4.99 1.882 1.958 9.09 5.974 6.037 5.00 1.958 2.016 8.99 6.037 6.113 5.04 2.016 2.074 8.95 6.130 6.187 9.14 2.074 2.131 9.00 6.187 6.245 9.04 2.154 2.223 4.62 6.245 6.303 8.95 Run No. 408 0.300 BeF2 at 700°C, w = 0.544, T = 3009, a = 0.00, ¢ = 0.00 Wy We X y Wy We X Yy 0.000 0.000 9.01 5.00 0.099 0.128 7.16 0.040 0.070 6.78 0.128 0.152 7.16 0.070 0.099 7.36 0.152 0.180 6.36 (continued) Run No. 408 (continued) 141 Wy We X ¥y Ws We X Y 0.180 0.206 6.32 0.598 0.628 2.91 0.206 0.236 5.87 0.628 0.658 2.82 0.288 0.346 2.21 0.680 0.752 0.88 0.346 0.380 1.83 0.752 0.862 0.58 0.380 0.430 1.28 0.862 0.927 0.49 0.444 0.490 3.80 0.952 0.999 1.86 0.490 0.514 3.58 0.999 1.072 1.67 0.514 0.541 3.24 1.072 1.128 1.54 0.541 0.569 3.08 1.128 1.187 1.45 0.569 0.598 3.00 1.187 1.252 1.34 Run No. 409 0.300 BeFz at 500°C, w = 0.544, T = 300°%K, a = 5.67, ¢ = 6.53 W4 Wf X Yy Wi We X vy 0.083 0.177 0.68 1.974 2.033 1.76 0.260 0.305 0.78 2.142 2.219 8.30 0.305 0.345 0.87 2.219 2.279 8.34 0.373 0.407 1.88 2.279 2.354 8.49 0.407 0.436 2.21 2:464 2.517 1.97 0.436 0.482 2.72 2.517 2.605 1.97 0.482 0.526 2.90 2.605 2.698 1.87 0.556 0.587 1.13 2.698 2.772 1.87 0.587 0.649 1.26 2.793 2.853 8.38 0.649 0.701 1.33 2.853 2.928 8.49 0.709 0.754 4.28 2.928 3.003 8.49 0.754 0.795 4 .64 3.003 3.077 8.51 0.820 0.845 4.90 3.196 3.288 1.87 0.866 0.912 1.51 3.288 3.362 1.88 0.912 0.958 1.50 3.362 3.436 1.88 0.958 1.490 1.63 3.436 3.510 1.86 1.490 1.528 1.83 3.536 3.596 8.38 1.576 1.610 7.29 3.596 3.704 8.29 1.610 1.644 7.63 3.704 3.764 8.40 1.644 1.677 7.60 3.778 3.834 1.88 1.677 1.710 7.75 3.834 3.888 1.88 1.710 1.775 7.72 3.909 3.955 8.22 1.792 1.855 1.67 3.955 4.000 8.51 1.855 1.914 1.74 4.000 4.046 8.25 1.914 1.974 1.74 142 Run No. 413 0.250 BeF2 at 607°C, w = 0.633, T = 299°K, a = 5.59, ¢ = 6.33 Wi Wf X Y Wi Wf X Y 0.043 0.09 0.64 1.881 1.944 7.04 0.090 0.143 1.12 1.944 2.008 7.04 0.180 0.222 1.32 2.089 2.159 4418 0.222 0.255 1.70 2.159 2.233 4,09 0.255 0.284 1.91 2.233 2.306 b o Ode 0.303 0.325 2.63 2.306 2.344 3.95 0.325 0.347 2.78 2.366 2.428 7.13 0.347 0.378 2.79 2.428 2.492 6.97 0.378 0.408 3.00 2.492 2.586 7.13 0.408 0.437 3.12 2.586 2.649 7.12 0.48% 0.509 3.43 2.672 2.708 412 0.509 0.536 4.05 2.708 2.784 3.91 0.536 0.562 4.40 2.784 2.868 &e22 0.579 0.605 3.50 2.868 2.912 4.09 0.605 0.630 3.63 2.978 3.017 7.18 0.630 0.655 3.53 3.017 3.08L 7.00 0.655 0.680 3.55 3.081 3.121 7.03 0.717 1.075 5.92 3.144 3.180 4.13 1.075 1.092 6.46 3.180 3.216 bol2 1.110 1.134 3.83 3.216 3.252 4.18 1.134 1.164 3.95 4.130 4.166 4.05 1.164 1.19 3.95 4.166 4.203 4.07 1.194 1.224 3.99 4284 4.323 7.08 1.224 1.253 4.12 4,323 4.378 7.17 1.302 1.346 6.38 4.378 4.416 7.20 1.346 1.388 6.57 4416 4.455 7.13 1.388 1.429 6.74 L.A&TT 4.514 4.08 1.429 1.485 7.05 4.514 4.588 4.01 1.497 1.526 4.07 4.588 4.661 405 1.526 1.572 3.88 4,709 4.748 7.21 1.572 1.608 414 4748 4.786 7.28 1.608 1.645 4.07 4.786 4.825 7.10 1.645 1.681 4.03 4.835 4.872 3.96 1.738 1.778 7.00 4.872 4.909 407 1.778 1.817 7.08 4.909 4.946 4 .00 1.817 1.881 7.03 Run No. 415 0.250 BeFz at 702°C, w = 0.633, T = 299K, a = 5.40, ¢ = 6.51 Wy We X y Wy We x Yy 0.029 0.057 1.05 0.080 0.112 1.82 0.057 0.080 1.33 0.145 0.200 1.01 (continued) Run No. 415 (continued) 143 Wj_ Wf X y Wi Wf X vy 0.200 0.254 1.04 1.828 1.869 7.29 0.254 0.302 1.32 1.869 1.910 7.22 0.309 0.321 4.95 1.920 1.951 7.26 0.321 0.338 5.12 1.951 1.994 7.03 0.338 0.357 4,92 1.994 2.035 7.17 0.357 0.374 5.13 2.113 2.163 5.57 0.399 0.430 1.82 2.163 2.213 5.60 0.430 0.474 2.50 2.213 2.283 5.58 0.474 0.514 2.84 2.283 2.332 5.63 0.539 0.558 6.10 2.332 2.382 5.64 0.558 0.577 6.26 2.401 2442 7.34 0.577 0.596 6.36 2:442 2.491 7.20 0.634 0.668 3.25 2.491 2.542 7.01 0.668 0.698 3.80 2542 2.583 7.30 0.698 0.741 4.00 2.583 2.623 7.36 0.772 0.794 6.78 2.678 2.728 5.53 0.794 0.816 6.88 2.728 2.788 5.66 0.830 1.336 4. 96 2.788 2.836 5.74 1.336 1.388 5.40 2.836 2.885 5.72 1.400 1.420 7.34 2.885 2.934 5.66 1.420 1.441 7.17 2.948 2.989 7.29 1.441 1.482 7 .24 2.989 3.03%1 7.17 1.482 1.524 714 3.031 3.073 7.10 1.555 1.605 5.50 3.073 3.115 7.08 1.605 1.657 5.38 3.154 3.204 5.57 1.657 1.718 5.46 3.204 3.254 5.63 1.718 1.768 5.67 3.254 3.353 5.66 1.768 1.819 5.42 Run No. 419 0.250 BeFz at 5200¢, = 0.633, T = 3009K, a = 5.40, ¢ = 6.35 W We X y Wy We X ¥y 0.032 0.080 0.55 0.422 0.452 1.95 0.080 0.119 0.75 0.452 0.484% 1.89 0.119 0.150 0.96 0.507 0.530 4.72 0.150 0.178 1.05 0.530 0.551 5.41 0.209 0.258 2.21 0.551 0.569 5.76 0.258 0.293 3.20 0.569 (0.588 5.95 0.293 0.325 3.45 0.588 0.614 6.43 0.325 0.352 4.03 0.635 0.665 2.00 0.372 0.390 1.65 0.665 0.692 2.17 0.390 0.422 1.90 0.692 0.746 2.22 (continued) Run No. 419 (continued) 144 Wi wf X y Wi Wf X y 0.746 0.773 2.23 1.960 2.016 7.87 0.789 0.814 6.62 2.016 2.086 7.82 0.814 0.838 7.08 2.086 2.156 7.87 0.838 0.869 7.08 2.156 2.212 7.84 0.869 0.899 7.21 2+.240 2.301 2.42 0.900 0.937 743 2.301 2.388 2.39 0.937 0.966 742 2.388 2.450 2442 0.990 1.017 2.23 2.450 2.510 2.48 1.017 1.447 2.35 2.510 2572 241 1.566 1.601 7. 74 2.637 2707 7.93 1.601 1.636 7.92 2.707 2777 7.82 1.636 1.664 7.75 2777 2.847 7.86 1.685 1.714 2.50 2.847 2.916 7.95 1.714 1.777 2.36 2.952 3.011 2.51 1.777 1.839 2.42 3.011 3.072 2.46 1.839 1.912 2443 3.072 3.133 2 e bs 1.932 1.960 7.75 Run No. 421 0.250 BeFp at 6550C, = 0.633, T = 300%K, a = 5.60, ¢ = 6.55 0.032 0.085 0.56 1.187 1.226 5.99 0.085 0.125 1.12 1.226 1.273 5.92 0.125 0.143 1.62 1.309 1.336 5.50 0.143 0.159 1.91 1.336 1.363 5.58 0.159 0.178 2.24 1.363 1.400 5.58 0.238 0.281 1.27 1.400 14427 5.53 0.281 0.332 1.74 1.457 1.514 5.74 0.337 0.356 3.92 1.514 1.561 5.90 0.356 0.375 3.96 1.561 1.606 6.09 0.375 Q0.392 4.25 1.606 1.667 6.30 0.392 0.410 4.10 1.667 1.710 6.34 0.410 0.428 4e21 1.733 1.760 5.47 0.475 0.498 2.41 1.760 1.787 5.55 0.498 0.841 416 1.787 1.851 5.58 0.841 0.863 5.00 1.851 1.905 5.53 0.882 0.930 4.68 1.905 1.970 5.45 0.930 0.959 5.21 2.028 2.069 6.63 0.959 0.986 5.42 2.069 2.126 6.76 0.986 1.013 5.46 2.126 2.167 6.64 1.013 1.041 5.28 2.167 2.208 6.82 1.081 1.133 5.37 2.208 2.248 6.68 1.133 1.187 5.74% (continued) 145 Run No. 421 (continued) 2.249 2.289 6.80 2.638 2.'720 6.76 2.317 2.424 5.57 2.720 2.761 6.71 2424 2.478 5.53 2.801 2.841 5.60 2.478 2.532 5.46 2.841 2.868 5.46 2.599 2.639 6.83 Run No. 423 00250 Ber_ at 54300, W= 00633, T = 2980K, a = 5040, c = 6.35 Wi We X Y Wy We X y 0.021 0.061 0.73 1.716 1.760 7.38 0.061 0.093 0.% 1.760 1.804 7.58 0.093 0.116 1.28 1.804 1.892 7.53 0.116 0.136 1.48 1.922 1.993 3.12 0.171 0.225 2.04 1.993 2.044 2+96 0.225 0.249 2.37 2.044 2.104 2.93 0.249 0.267 2.95 2.104 2.155 2.+96 0.267 0.284 3.41 2.155 2.204 3.03 0.307 0.327 2.20 2.245 2.299 7.22 0.327 0.356 2.10 2.299 2.364 7.62 0.356 0.381 2.34 2.364 2.408 7.54 0.381 0.406 2.36 2.408 2.451 7.76 0.406 0.430 2.47 2.451 2.501 7T 0.456 0.485 3.91 2.501 2.545 7.51 0.485 0.905 6.17 2.565 2.615 2.99 0.905 0.921 6.93 2.615 2.665 2.99 0.921 0.943 7.21 2.665 2.714 3.01 0.963 0.984 2.76 2.714 2.764 2.97 0.984 1.016 2.80 2.827 2.870 7.59 1.016 1.046 2.92 2.870 2.912 "7.87 1.046 1.076 2.95 2.912 2.955 7.59 1.076 1.106 2.97 2.955 2.998 7.75 1.228 1.264 747 2.998 3.041 7.67 1.264 1.302 7.40 3.041 3.085 7.59 1.302 1.347 7.38 3.108 3.157 3.04 1.370 1.395 2.95 3.157 3.207 2.97 1.395 1.421 2.90 3.207 3.282 2.97 1.421 1.471 2.93 3.282 3.332 2.99 1.471 1.548 2.93 3.332 3.381 3.01 1.548 1.598 2.97 3.431 3.468 7.3% 1.64) 1.678 745 3.468 3.505 7.58 1.678 1.716 7.29 3.505 3.540 7.72 146 APPENDIX B Partial Pressures from Studies on Unsaturated (with respect to Be0) Melts The experiments are arranged according to a three digit "Run No." which indicates chronological order. There are three series (300, 500, 600) included. A brief history of each series is given in Chapter III. The information provided for each experiment includes: Run No. Composition of melt (expressed as mole fraction BeF3) Temperature of melt, °C w = weight of melt, kg T = temperature of wet~test meter, Ok 1 a + bW = influent Pi, atm x 102 7 2 3 + N = c + dh influent PHgO’ atm x 10 The effluent partial pressures, PHF = x and PHgO =y, are tabulated (atm %x 103) with the corresponding initial and final values of W. Note that the use of W allows consistent comparison of experiments independent of the weight of melt or temperature of gas-measurement. The equilibrium quotients evaluated from each experiment are presented in Table 4. 147 Run No. 301 0.333 BeFp at 600°C, w = 0.500, T = 2999°K, a = 3.68, ¢ = 11.00 Wi We X Y Wy We X Yy 0.000 0.000 0.107 1.700 1.753 6.51 0.000 0.030 3.72 1.753 1.807 6.46 0.030 0.053 11.55 1.814 1.852 9.71 0.053 0.080 13.92 1.852 1.89 9.93 0.080 0.106 14.39 1.890 1.930 9.53 0.106 0.133 14.36 1.930 2.011 9.3 0.133 0.159 14.26 2.038 2.090 6.72 0.249 0300 2.70 2.090 2.141 6.71 0.307 0.334 14.05 2.141 2.272 6.92 0.334 0.361 13.88 2.272 2.321 7.03 0.361 0.389 13.67 2.327 2.369 9.08 0.403 0.445 3.30 2.369 2.431 9.09 0.445 0.484 3.59 2.431 2.494 9.00 0.484 0.519 3.95 2.494 2.538 B.57 0.519 0.571 4ea 01 2.568 2.616 7.28 0.582 0.612 12.70 2.616 2.722 7.22 0.612 0.642 12.49 2.722 2.825 7 .40 0.642 0.673 12.26 2.845 2.888 8.64 0.673 0.704 12.26 2.888 2.930 9.12 0.725 0.769 475 2.930 2.995 8.71 0.769 0.812 492 2.995 3.062 8.46 0.812 0.856 4 o776 3.102 3.192 7.66 0.856 0.897 5.10 3.192 3.284 7.62 0.897 0.937 5.21 3.284 3.373 7.82 0.946 0.978 11.55 3.373 3.464 7.66 0.978 1.011 11.43 3.464 3.508 7.8% 1.492 1.528 10.41 3.509 3.579 8.14 1.528 1.565 10.28 3.579 3.648 8.09 1.565 1.601 10.20 3.648 3.719 g.03 1.610 1.645 5.99 3.719 3.814 7.88 1.645 1.700 6.32 Run No. 302 0.333 BeF, at 600°C, W a = 0.000, ¢ = 0.00 Wi Wf X N wi Wf X Y 0.000 0.000 7.90 7.90 0.244 0.297 3.58 0.000 0.020 7.72 0.297 0.350 3.58 0.020 0.056 5.17 0.360 0.419 2.37 0.056 0.091 5.45 0.419 0.506 1.62 0.091 0.127 5.13 0.506 0.601 1.46 0.137 0.159 6.32 0.635 0.722 2.17 0.159 0.190 4451 0.722 0.819 1.93 0.190 0.234 3.17 0.819 0.924 1.79 148 Run No. 303 0.333 BeF, at 600°C, w = 0.500, T = 299K, a = 3.82, ¢ = 10.53 W; We X N Wy We X y 0.008 0.068 1.26 2.165 2.217 7.26 0.068 0.120 2.16 2.217 2.309 7.37 0.120 0.162 2.70 2.335 2.417 8.54 0.193 0.246 2.64 2.417 2.498 8.57 0.246 0.295 2.82 2.498 2.579 8.55 0.306 0.344 4.90 2.579 2.661 8.53 0.344 0.380 5.30 2.706 2.783 7.33 0.380 0.414 5.43 2.783 2.857 7.63 0.414 0.447 5.74 2.857 2.932 7.57 0.447 0.479 5.91 2.932 3.013 6.99 0.522 0.547 5.51 3.013 3.066 7.08 0.547 0.582 5.93 3.097 3.189 8.40 0.582 0.629 5.97 3.189 3.270 8.59 0.629 0.671 6.53 3.270 3.360 8.49 0.685 0.712 6.78 3.360 3.401 8.55 0.712 0.740 ©.78 3.407 3.488 7.00 0.740 0.79 7.00 3.488 3.570 6.93 0.79% 0.821 7.00 3.712 3.793 6.97 0.844 0.892 724 3.839 3.919 8.78 0.892 0.939 742 3.919 4.008 8.54 1.492 1.542 754 4.008 4.088 8.78 1.542 1.592 7.50 4.088 4.185 8.54 1.654 1.696 8.28 4.198 4.253 6.87 1.696 1.779 8.42 4.253 4.336 6.79 1.779 1.942 8.54 4.336 4.420 6.76 1.942 2.024 8.46 4.420 4.476 6.68 2.035 2.086 7.37 4.582 4.623 8.67 2.086 2.165 7.17 Run No. 305 0.333 BeF2 at 600°C, w = 0.500, T = 299K, a = 3.82, ¢ = 10.53 Wy Vfif X y Vfii We X Y 0.000 0.023 3.22 0.263 0.290 14.32 0.023 0.042 10.09 0.290 0.316 14.00 0.042 0.065 13.30 0.337 0.404 3.08 0.065 0.090 14.63 0.404 0.462 3.63 0.090 0.116 14.49 0.469 0.497 13.39 0.116 0.143 14.26 0.497 0.526 13.13 0.156 0.200 1.60 0.526 0.569 12.91 0.200 0.232 2.16 0.569 0.599 12.76 0.236 0.263 14.09 0.621 0.669 4.38 (continued) 149 Run No. 305 (continued) Wi Pflf X Yy W We X Yy 0.669 0.713 470 3.626 3.713 8.01 0.713 0.786 474 3.713 3.799 8.08 0.786 0.828 5.07 3.815 3.913 7.71 0.842 0.890 11.83 3.913 4.022 7.79 0.890 0.939 11.41 4,031 4.129 7.67 0.939 0.989 11.34 4,129 4,179 7.62 1.030 1.095 5.37 4.239 4.321 - 8.43 1.095 1.158 5.58 4e32]1 4.407 8.08 1.158 1.218 5.72 4407 4,493 8.16 .102.18 10278 5-84 4-493 4--602 8-29 1.292 1.344 10.83 4.630 4.706 747 1.344 1.396 10.80 4,706 4.800 7.99 2.119 2.160 9.34 4.800 4.900 7.55 2.160 2.221 9.25 4.900 5.003 7.32 2.295 2.344 7.08 5.003 5.054 7.32 2.344 2.391 7.30 5.103 5.187 8.26 2.391 2.488 7.21 5.187 5.272 8.22 2.488 2.535 7.40 5.272 5.355 8.37 2.543 2.607 8.82 5.355 5.438 8.38 2.607 2.672 8.74 5.453 5.560 7.10 2.672 2.760 8.55 5.560 5.693 7 .0 2.771 2.836 7.51 5.693 5.800 7.09 2.836 2.930 7.40 5.844 5.924 8.74 2.930 3.022 7.62 5.924 6.006 8.45 3.022 3.068 7.59 6.006 6.088 8.58 3.069 3.137 8.28 6.100 6.207 7 .04 3.137 3.229 8.20 6.207 6.289 6.83 3.229 3.322 8.09 6.289 6.372 6.86 3.322 3.416 8.01 6.407 6.490 8.43 3.448 3.538 7.71 6.490 6.572 8.47 3.538 3.626 7.91 6.572 6.654 8.4 Run No. 306 0.333 BeFz at 600°C, w = 0.500, T = 299°K, a = 0.000, ¢ = 0.00 Wy We X y W3 Wf X y 0.000 0.000 6.84 8.42 0.256 0.319 3.36 0.040 0.058 7.76 0.319 0.366 2.91 0.058 0.081 6.09 04383 0.414 3.08 0.089 0.110 470 0.414 0.447 2.84 0.110 0.130 4 .57 0.447 0.503 2.70 0.130 Q.174 434 0.503 0.546 2.60 0.188 0.220 4436 0.571 0.655 1.67 0.220 0.256 3.84 0.655 0.748 1.50 (continued) 150 Run No. 306 (continued) Wi Wf X Y wi Wf X Y 0.748 0.865 1.18 1.022 1.082 1.55 0.885 0.941 1.68 1.082 1.146 1.47 0.941 1.022 1.64 1.146 1.284 1.37 Run No. 307 0.333 BeFy at 700°C, w = 0.500, T = 297°%K, a = 3.95, ¢ = 10.50 Wy We X Yy Wy We X Yy 0.000 0.031 6.08 2.288 2.388 4o 21 0.031 0.055 15.95 2.388 2.455 4ol 0.055 0.076 17.46 2.458 2.508 14.96 0.076 0.107 18.32 2.508 2.585 14.71 0.107 0.138 17.99 2.585 2.649 14.78 0.138 0.168 18.87 2.649 2.714 14.39 0.168 0.199 18.71 2.761 2.838 4o Dby 0.199 0.230 18.32 2.838 2.931 453 0.230 0.260 18.82 2.931 3.023 4459 0.260 0.290 18.41 3.023 3.112 470 0.290 0.331 18.37 3.114 3.195 13.99 0.378 0.431 2.26 3.195 3.262 14.00 0.431 0.478 2.92 3.262 3.330 13.88 0.492 0.523 18.37 3.330 3.425 13.88 0.523 0.555 17.84 3.455 3.541 4487 0.555 0.587 17.47 3.541 3.644 476 1.018 1.039 17.33 3.644 34730 4.90 1.039 1.073 16.71 3.730 3.814 4.97 1.108 1.170 3.40 3.827 3.909 13.80 1.170 1.229 3.55 3.909 3.978 13.66 1.229 1.292 3.30 3.978 4.048 13.50 1.301 1.336 15.83 4.048 4.118 13.49 1.336 1.372 15.97 4.185 4.269 5.01 1372 1431 15.92 4269 40354 4.95 1.431 1.479 15.78 4354 4.439 4.93 1479 1.525 16.22 4.439 4551 5.01 1.563 1.623 3.53 4e563 4.633 13.33 1.623 1.716 3.75 4.633 4.706 13.04 1.716 1.813 3.63 4706 4777 13.20 1.822 1.871 15.33 b 777 4.849 13.05 1.871 1.920 15.33 4.883 5.020 5.09 1.920 1.982 15.20 5.020 5.155 5.18 1.982 2.056 15.29 5.155 5.288 5.29 2.121 2.205 4o 17 5.288 5.419 5.32 2.205 2.288 4e22 5.433 5.505 1293 (continued) 151 Run No. 307 (continued) Wi We X Yy Wy We X y 5.505 5.580 12.67 6.020 6.147 5.50 5.580 5.653 12.87 6.163 6.239 12.37 5.653 5.727 12.64 6.239 6.316 12.30 5.753 5.888 5.17 6.331 06.3% 5.57 5.888 6.020 5.32 Run No. 309 0.333 BeF, at 600°C, Wy We X y Wy We X y 0.000 0.037 2+55 5.107 5.188 5.20 0.037 0.051 6.49 5.188 5.256 5.21 0.051 0.075 7.92 5.256 5.337 5.21 0.075 0.118 8.92 5.337 5.403 5.32 0.118 0.157 9.49 5.424 5.489 5.82 0.199 0.245 1.53 5.489 5.588 5.79 0.253 0.291 9.93 5.588 5.688 5.66 0.291 0.328 10.18 5.740 5.819 5.40 0.328 0.366 9.96 5.819 5.925 5.32 0.366 0.403 9.99 5.925 6.000 5.64 0.435 0.472 1.87 6.000 6.076 5.53 0.472 0.505 2.14 6.100 6.164 5.91 0.505 0.534 2.38 6.164 6.265 5.63 0.546 0.585 .62 6.265 6.368 5.51 0.585 0.664 9.53 6.368 6.464 5.95 0.664 0.747 9.03 6.502 6.577 5.60 0.780 0.835 254 6.577 6.652 5.62 0.835 0.88% 2.86 6.652 6.728 5.63 0.88 0.952 3.05 6.728 6.806 5441 0.960 1.023 8.96 6.811 6.881 5.45 1.023 1.089 8.60 7.574 7.645 5.36 1.089 1.177 8.58 7.645 7.755 5.18 1.211 1.276 3.26 7.804 7.878 5.75 1.276 2.017 3.78 7.878 7.951 5.4 2.035 2.110 7.59 7.951 8.026 5.07 2.110 2.186 7.37 g.026 8.101 5.58 2.186 2.265 7.22 8.124 8.192 5.57 2.310 2.377 417 8.192 8.261 5.54 2.377 2.428 4 .09 8.261 8.334 5.18 2.428 2.478 422 8.336 8.408 5.09 2.478 2.559 4.33 8.440 8.515 5.63 R+564 2.670 Te1l4 8.515 8.591 5454 2.670 2.750 7.04 8.596 8.671 5.08 4.879 4.973 6.05 8.671 8.745 5.08 4.973 5.036 6.01 8.764 8.827 5.66 5.036 5.099 6.00 g.827 8.89 5.57 0.333 BeF, at 600°C, w = 0.500, T = 297°K, 152 Run No. 310 a = 0.000, ¢ = 0.00 Vs We X Yy Wy We X ¥y 0.000 0.000 5.08 5.59 0.345 0.411 2.13 0.000 0.028 4.92 0.420 0.456 2.66 0.028 0.054 5443 0.456 0.494 249 0s054 0.082 4 .99 0s424 0.578 2.26 0.082 0.115 4.32 0.616 0.712 1.46 0.127 0.148 3.68 0.712 0.835 1.14 0.148 0.180 3.59 0.835 0.903 1.03 0.180 0.209 3.22 0.903 0.978 0.94 0.209 0.240 3.10 1.016 1.078 1.53 0.250 0.294 3.22 1.078 1.208 1.46 0.294 0.345 2.72 Run No. 311 0.333 BeFz at 700°C, w = 0.500, T = 300°K, a = 2.35, ¢ = 7.35 W i Wf X Y wi Wf X Y 0.016 0.029 7.29 1.637 1.707 1.99 0.029 0.054 11.37 1.773 1.818 12.70 0.054 0.083 12.88 1.818 1.878 12.45 0.083 0.111 13.49 1.878 1.939 12.46 0.111 0.139 13.49 1.939 1.969 12.57 0.255 0.311 1.35 2.017 2.124 1.96 0.317 ©0.344 1l4.14 2.124 2.225 2.05 0.344 0.370 14.09 2.236 2.281 12.49 0.370 0.398 13.76 2.281 2.344 12.04 0.398 0.425 13.68 2.344 2.406 12.12 0.425 0.481 13.58 2.406 2.468 12.08 0.481 0.508 13.80 2.504 2.605 2.07 0.556 0.667 1.25 2.605 2.700 2.18 0.667 0.793 1.66 2.700 2.796 2.17 0.812 0.885 12.95 2.811 2.874 11.86 0.885 0.914 12.99 2.874 2.938 11.82 0.914 0.943 13.03 2.938 3.003 11.70 0.943 0.972 12.82 3.003 3.066 11.84% 1.032 1.121 1.55 5.386 5.453 3.10 1.121 1.204 1.68 5.453 5.520 3.10 1.210 1.239 13.13 5.616 5.666 11.32 1.239 1.283 12.82 5.666 5.719 10.63 1.283 1.328 12.67 5.719 5.771 10.86 1.328 1.373 12.58 5.771. 5.824 10.68 1.444 1.526 1.71 5.862 5.972 3.16 1.526 1.637 1.87 5.972 6.127 3.12 (continued) 153 Run No. 311 (continued) Wi We X Yy Wy We X y 6.127 6.258 3.18 9.359 9.497 3.53 6.264 6.335 10.63 9.497 9.614 3.54 6.335 6.388 10.55 9.614 9.771 3.54 6.388 6.460 10.45 9.786 9.863 9.74 6.460 6.515 10.37 9.863 9.942 9.49 6.597 6.703 3.25 9.942 10.06 9.25 6.703 6.813 3.18 10.06 10.14 9.43 6.813 6.921 3.20 10.18 10.30 3.54 6.921 7.028 3.26 10.30 10.42 3.60 7.089 7.144 10.22 10.42 10.53 3.66 7.244 7.218 10.20 10.60 11.01 9.59 7.250 7.353 3.36 11.02 11.13 3.57 7.381 7.998 3.37 11.13 11.25 3.59 7.998 8.099 3.43 11.26 11.32 9.40 8.185 8.259 10.18 11.32 11.38 9.32 8.259 8.335 9.92 11.38 1l1.44 2.16 g.335 8.410 10.00 12.05 12.13 9.38 8.410 8.487 9.84 12.13 12.21 9.10 8.530 8.655 3.34 12.21 12.29 9.22 8.655 8.775 3.46 12.33 12.45 3.59 g8.775 8.898 3.40 12.45 12.56 3.72 8.898 8.958 3.49 12.56 12.68 3.72 8.965 9.041 9.90 12.68 12.75 3.88 9.041 9.119 9.72 12.75 12.84 9.28 9.144 9.221 9.70 12.84 12.92 9.09 9.221 9.301 9.50 12.92 13.01 9.08 Run No. 313 0.333 BeFz at 500°C, w = 0.500, T = 298°K, a = 0.00, ¢ = 16.30 Wi We X y Wi We X Yy 0.023 0.051 6.70 0.501 0.542 8.79 0.051 0.071 9.51 0.542 0.580 9.17 0.071 0.089 10.20 0.593 0.641 7.83 0.08% 0.126 10.37 0.641 0.690 7.62 0.154 0.202 5.97 0.690 0.740 7 .64 0.202 0.232 6.87 0.740 0.804 734 0.232 0.263 6.88 0.830 0.898 10.39 0.270 0.310 9.26 0.898 0.965 10.66 0.310 0.351 9.30 0.965 1.029 11.07 0.351 0.393 8.95 1.039 1.067 6.60 0.393 0436 8.84% 1.067 1.096 649 0.450 0.477 775 1.096 1.155 6.42 0.477 0.501 8.80 1.174 1.205 11.13 (continued) 154 Run No. 313 (continued) 1.205 1.237 11.28 2.685 2.725 4,75 1.513 1.546 5.75 2.725 2.806 4« 60 1.546 1.613 5.58 2.834 2.917 12.82 1.613 1.648 5.43 2.917 2.971 13.16 1.660 1.690 11.86 2.971 3.036 13.07 1.690 1.748 12.22 3.036 3.089 13.25 1.748 1.806 12.18 3.100 3.143 4 o 40 1.806 1.864 12.18 3.143 3.187 4.28 1.864 1.923 12.03 3.187 3.233 4.10 1.947 2.021 5.07 3.233 3.321 426 2.021 2.095 5.08 3.340 3.3%9% 13.08 2.095 2.172 4 .88 3.39 3.448 13.16 2.172 2.211 4.88 3.448 3.501 13.32 2.265 2.322 12.62 3.501 3.606 13.57 2.322 2.377 12.83 3.635 3.730 3.99 2.377 2.432 12.93 3.730 3.825 3.96 2.432 2.486 12.97 3.825 3.921 3.93 2.486 2.540 13.13 3.942 4.049 13.21 2.568 2.646 4.84 4.049 4.154 13.55 2.646 2.685 4.83 Run No. 314 0.333 BeFz at 500°C, w = 0.500, T = 298°K, a = 0.00, ¢ = 0.00 Wi Wf X Yy Wi Wf X Y 0.000 0.000 2.79 14.47 0.580 0.657 3.64 0.078 0.124 7.63 0.867 0.969 0.92 0.124 0.175 6.91 1.002 1.142 2.53 0.204 0.272 1.39 l.142 1.244 2.08 0.272 0.358 1.32 1.244 1.373 1.93 0.388 0.445 497 1.399 1.511 0.67 0.509 0.580 4.00 155 Run No. 315 0.333 BeFz at 550°C, w = 0.500, T = 300°%K, a = 0.00, ¢ = 20.00 Wy We X y Wy We X y 0.020 0.039 10.08 1.584 1.729 7.78 0.039 0.038 14.92 1.729 1.775 8.34 0.058 0.075 16.25 1.775 1.821 8.07 0.075 0.099 15.72 1.821 1.882 9.25 0.099 0.121 17.30 1.933 1.984 13.47 0.121 0.132 16.80 1.984 2.034 13.87 0.158 0.189 4e351 2.055 2.105 7.62 0.189 0.215 5.36 2.105 2.154 7.66 0.219 0.244 15.11 2.154 2.204 749 0.244 0.270 14.96 2.252 2.317 13.89 0.270 0.295 1l4.54 2.317 2.365 1447 0.321 0.354 6.37 2,365 2.403 14.70 0.354 0.380 7.93 3.672 3.733 6.18 0.380 0.406 7.84 3.733 3.795 6.09 0.406 0.432 8.21 3.795 3.859 5.90 0.434 0.464 13.07 3.942 3.988 14.96 0.464 0.492 13.07 3.988 4.033 15.39 0.492 0.522 12.92 4.033 4.077 15.79 0.522 0.567 12.32 4.077 4.121 15.79 0.585 0.609 8.71. 4143 4.206 6.04 0.609 0.631 9.36 4.206 4.206 6.21 0.631 0.652 10.01 4.266 4.328 6.07 0.652 0.686 10.29 4.328 4.390 6.08 0.686 0.718 10.54 4440 4.506 15.76 0.731 0.764 11.51 4.506 4.570 16.26 0.764 0.798 11.12 4.570 4.633 16.42 0.798 0.833 10.63 4.633 4.697 16.34 0.833 0.887 10.55 4,716 4.780 5.91 0.975 1.007 10.84 4.780 4.845 5.78 1.007 1.040 10.62 4.845 4.909 5.88 1.040 1.070 11.30 4.909 4.993 5.60 1.070 1.101 11.21 5.017 5.082 16.00 1.113 1.151 9.80 5.082 5.145 16.38 1.150 1.212 9.37 5.145 5.221 16.39 1.212 1.285 9.05 5.221 5.283 17.04 1.285 1.348 8.93 5.313 5.358 5.12 l.411 1.453 13.07 5.358 5.479 5.43 1.453 1.491 12.80 5.479 5.525 6.16 1.491 1.528 13.29 5.325 5.59 5.46 1.528 1.580 13.18 5.5% 5.646 5.42 156 Run No. 316 0.333 BeF, at 550°C, w = 0.500, T = 300°K, a = 0.00, ¢ = 0.00 Wy We X Yy Wy We X ¥y 0.000 0.000 4.74 16.71 0.268 0.308 2.36 0.000 0.063 4.80 0.308 0.348 2.36 0.063 0.079 4e63 0.348 0.390 2. 24 0.079 0.103 3.96 0.390 0.477 2.17 0.103 0.131 3.29 0.477 0.574 1.95 0.131 0.162 3.01 0.574 0.676 1.82 0.162 0.195 2.87 0.676 0.796 1.58 0.195 0.232 2.55 0.796 1.674 1.31 0.232 0.268 2.62 1.674 1.808 0.84 Run No. 319 0.333 BeFa at 650°C, w = 0.500, T = 2999K, a = 0.00, ¢ = 19.90 W3 We X v Wi We X y 0.024 0.038 13.92 1.007 1.028 6.45 0.038 0.067 19.53 1.028 1.049 6.82 0.067 0.092 22.14% 1.049 1.078 7.00 0.092 0.118 22.51 1.084 1.106 17.32 0.118 0.142 23.18 1.106 1.128 16.68 0.142 0.166 23.66 1.128 1.163 16.20 0.166 0.190 23.26 1.174 1.288 6.68 0.204 0.255 2.70 1.288 1.675 8.07 0.255 0.298 3.20 1.675 1.715 8.68 0.298 0.334 3.88 1.728 1.755 1400 0.342 0.359 22.21 1.755 1.782 14.05 0.359 0.385 22.37 1.782 1.809 14.09 0.385 0.411 21.66 1.809 1.834 14.63 0.411 0.438 21.08 1.834 1.861 14.05 0.438 0.464 21.20 1.891 1.948 8.60 0.465 0.512 LN 1.948 1.984 9.50 0512 0.541 4.83 1.984 2.023 8.91 0.541 0.567 5.29 2.023 2.060 9.29 0.567 0,593 5.30 2.066 2.095 13.36 0.595 0.623 20.16 2.095 2.122 13.51 0.623 0.652 19.26 2.122 24149 14.45 0.652 0.682 18.95 2.149 2.176 13.80 0.682 0.712 18.68 2.176 2.204 13.51 0.769 0.806 5.54 2.277 2.315 8.95 0.806 0.829 6.17 2.315 2.353 9.17 0.870 0.902 17.78 2.353 2.392 8.96 0.902 0.932 18.53 2.392 2.429 9.33 0.932 0.993 18.55 157 Run No. 501 0.333 BeFz at 650°C, w = 0.500, T = 298%K, a = 9.75, b = -0.24, ¢ = 0.65, 4 = -0.0095 Wi Wf X vy Wi Wf X ¥ 0.000 0.000 0.46 2.025 2.086 6.17 0.038 0.075 1.0l 2.086 2.117 6.13 0.075 0.105 1.26 2.117 2.178 6.16 0.105 0.132 1.40 2.225 2.305 2.55 0.132 0.154 1.71 2.305 2.388 2.49 0.215 0.313 0.70 2.388 2.468 2.58 0.313 0.398 0.82 2.468 2.546 264 0.409 0.427 4.08 2.564 2.595 6.16 0.427 0.456 4.03 2.595 2.654 6.29 0.456 0.484 3.93 2.654 2.714 6.3% 0.484 0.511 422 2.714 2.774 6.32 0.511 0.536 4 o 46 2.897 2.952 2+53 0.536 0.569 4453 2.952 3.009 242 0.613 0.657 1.59 3.009 3.064 2449 0.657 0.697 1.71 3.064 3.118 2.54 0.697 0.771 1.86 3.118 3.203 242 0.771 0.841 1.95 3.203 3.289 241 0.859 0.886 5.49 3.312 3.372 6.33 0.886 0.922 5.22 3.372 3.432 6.32 0.922 0.956 5.62 3.432 3.493 6.17 0.956 0.989 5.67 3.493 3.553 6.20 0.989 1.030 5.49 3.553 3.614 6.25 1.059 1.122 2.20 3.672 3.799 2.17 1.122 1.180 2.37 3.799 3.925 2.20 1.180 1.237 2440 3.925 4.021 2.14 1.255 1.288 5.86 4.021 4.117 2.13 1.288 1.320 5.84 4,200 4.274 6.32 1.336 1.855 2.51 4274 44335 6.25 1.855 1.930 2.76 4.335 4.394 6.34 1.957 1.987 6.20 439 4.453 6.42 1.987 2.025 6.03 4.502 4.567 2.13 Run No. 503 0.333 BeFa at 500°C, w = 0.500, T = 2989%K, a = 5.15 b = -0.10, ¢ = 0.26, d = -0.0050 Wy Wp X y Wi We X ¥ 0.049 0.138 0.21 0.720 0.795 0.92 0.229 0.437 0.33 0.795 0.865 0.98 0.466 0.523 0.66 0.865 0.934 1..00 0.523 0.576 0.71 0.973 1.005 1.18 (continued) 158 Run No. 503 (continued) Wy Wf X Yy Wi Wf X Yy 1.005 1.070 1.17 4.098 beld2 2+54 1.070 1.157 1.29 4142 4.183 2.75 1.157 1.219 1.22 4.183 4.237 2.78 1.237 1.305 1.52 4o 237 4.292 2.78 1.305 1.373 1.52 40322 4.398 1.82 1.373 3.147 1.98 4.398 b 75 1.78 3,147 3.211 2.14 bo&75 4559 1.80 3.278 3.310 2.38 4.559 4 .637 1.77 3.310 3.341 2.37 4« 666 4.731 2.91 3.341 3.405 2.36 4.731 44796 2.88 3.434 3.497 240 4,796 4.859 2.97 3.680 3.724 2.61 4879 4,958 1.73 3.724 3.766 2.66 4.958 5.046 1.56 3.795 3.860 2.10 5.046 5.142 1.43 3.860 3.928 2.03 5.142 5232 1.53 3.928 3.997 1.99 5.261 5.319 3.20 3.997 4. 067 1.98 5.319 5.377 3.25 Run No. 509 Qs 333 Ber at 54400, W = 00470, T = 2980K, a = 4035, c = 7070 W3 Wr X y Wy We X Yy 0.000 0.018 2.26 0.611 0.647 8.18 0.018 0.034 4.92 0.674 0.717 4o22 0.034 0.058 6.75 0.717 0.748 451 0.058 0.078 7.84% 0.748 0.780 4o 54 0.078 0.104 7.83 0.780 0.810 4.62 0.1.04 0.128 8.22 0.823 0.857 8.36 0.128 0.152 8.29 0.857 0.891 8.08 0.161 0.193 2+ 24 0.891 0.927 7.91 0.193 0.220 2.67 0«927 0.963 7.80 0.220 0.24% 2.88 0.963 0.999 7.80 0.252 0.276 8.53 1.072 1.131 4.83 0.276 0.299 8.63 1.131 1.185 5.29 0.299 0.322 8.53 1.185 1.225 5.34 0.322 0.345 8.76 1.240 1.278 7.32 0.345 0.368 8.72 1.278 1.316 7.38 0.387 0.412 2.90 1.316 1.354 7.38 0.412 0.434 3.20 1.354 1.393 .25 0.434 0.474 3.60 1.393 1.432 7.28 0.474 0.511 3.88 1.493 1.543 5.71 0.518 0.541 8.63 1.543 1593 5.71 0.541 0.574 8.97 1.593 1.642 5.83 0.574 0.611 8.30 1.642 1.692 5.76 (continued) 159 Run No. 509 (continued) Wi Wf X Yy Wi Wf X y 1.714 1.809 6.78 3.061 3.116 6.43 1.809 1.911 6 .67 3.137 3.184 6.37 1.951 1.997 6.16 3.184 3.231 6.33 1.997 2.044 6.05 4433 4.485 5.76 2.044 2.093 5.91 4.485 4.537 5.76 2.093 2.139 6.17 4.537 4.589 5.84 2.139 2.186 6.03 4.651 4.703 6.90 2.206 2.246 6.92 4.703 4.756 6.82 2.246 2.288 6.67 4,756 4.807 6.92 2.288 2.330 6.67 4.807 4.912 6.83 2.330 2.37 6.55 4.938 4.989 5.86 2.417 2.462 6.32 4.989 5.042 5.71 2.462 2.508 6.24 5.042 5.09% 5.70 2.508 2.553 6.30 5.094 5.148 5.62 2.553 2.644 6.29 5.214 5.265 6.99 2.662 2.723 6.60 5.265 5.368 6.99 2.723 2.796 0.63 5.368 5.468 7.13 2.79% 2.858 6.42 5.468 5.567 7.22 2.858 2.921 6.4 5.590 5.668 5.66 2.947 3.005 6.17 5.668 5.740 5.57 3.005 3.061 6.41 Run No. 511 0.333 BeFz at 550°C, w = 0.470, T = 298°K, a = 10.30, b = -0.10, ¢ = 0.40, d = ~0.004 Wy We X Yy Wi We X v Oo004 0-095 0044 On9‘74 10019 3021 0.161 0.263 0.35 1.035 1.066 3.90 0.274 0.309 1.70 1.066 1.097 3.96 0.309 0.340 1.95 1.097 1.145 4410 0.340 0.379 2.09 1.145 1.194 4.17 0.413 0.471 1.23 1.194 1.241 425 0.471 0.531 1.78 1.262 1.365 3.42 0.531 0.584 2.01 1.365 1.424 3.58 0.605 0.640 2.87 1.424 1.520 3.70 0.640 0.679 3.05 1.520 1.576 3.83 0.679 0.718 3.10 1.592 1.633 4 .88 0.718 0.754 3.32 1.633 1.673 5.00 0.783 0.836 2.70 1.673 1.736 5.09 0.836 0.883 3.00 1.736 1.776 5.01 0.883 0.928 3.10 1.805 1.881 3.68 0.928 0.974% 3.08 1.881 1.961 3.57 (continued) 160 Run No. 511 (continued) Vfli Dflf X Yy V{i Vfif X y 1.961 2.039 3.62 3.692 3.742 8.05 2.039 2.117 3.64 3.780 3.867 247 2.117 2.195 3.62 3.867 3.958 2.32 2.219 2.254 5.62 3.958 4.055 2.20 2.254 2.290 5.67 4.061 4.107 8.60 2.290 2.358 5.88 4.107 4.154 8.66 2.358 2.425 5.95 4.154 4.209 8.99 2.450 2.543 3.05 4.209 4.244 8.59 2.543 2.608 3.26 4.285 4.341 1.90 2.608 2.676 3.1% 4.341 4.403 1.72 2.676 2.742 3.20 4.403 4.469 1.61 2.742 2.812 3.04 409 4.538 1.52 2.836 2.915 6.66 4.538 4.608 1.52 2.915 2.985 6.87 4.622 4.606 8.97 2.985 3.054 6.93 4666 4.711 9.08 3.054 3.111 7.04 4.711 4.755 9.05 3.158 3.243 2.51 4755 4.799 9.05 3.243 3.321 2.72 4.838 4.892 1.30 3.402 3.488 247 4,945 4.997 1.37 3.524 3.576 7.62 4.997 5.115 1.20 3.576 3.643 7.87 5.129 5.171 9.46 3.643 3.692 8.00 5.171 5.214 9.42 Run No. 513 0.333 BeF, at 650°C, w = 0.470, T = 298%K, a = 4.60, ¢ = 7.90 Vi We X Y W We X y 0.000 0.016 2.55 0.504 0.536 2.26 0.016 0.037 7.53 0.552 0.582 13.43 0.037 0.072 11.34 0.582 0.612 13.71 0.072 0.104 12.68 0.612 Q.656 13.39 0.104 0.137 13.20 0.656 0.702 13.18 0.137 0.167 13.39 0.781 0.832 2.79 0.187 0.220 2.18 0.832 0.878 3.10 0.220 0.253 2.13 0.878 0.922 3.20 0.270 0.298 14.22 0.941 0.989 12.66 0.298 0.326 14.00 0.989 1.050 12.43 0.326 0.356 13.79 1.050 1.102 12.30 0.356 0.385 13.71 1.136 1.181 3.18 0.405 0.440 1.99 1.181 1.222 3.41 0.440 0.473 2.17 1.222 1.262 3.54 0.473 0.504 225 1.262 1.303 3.47 (continued) 161 Run No. 513 (continued) 1.320 1.370 12.04 2.686 2.724 10.68 1.370 1.421 11.91 4.185 4.227 2.63 1.421 1.472 11.79 4227 4.268 9.63 1.558 1.595 3.82 4.350 4.389 543 1.595 1.629 421 4.389 4.428 5.41 1.629 1.681 407 4428 4467 5.45 1.697 1.749 11.38 bod7 4 507 5.38 1.749 1.802 11.38 4.529 4.591 9.71 1.802 1.874 1l.14 4.591 4.654 9.46 1.874 1.929 11.05 4e654 4.718 9.40 1.997 2.048 417 4,718 4.783 9.33 2.048 2.134 413 4.846 4.905 5.41 2.134 2.230 b ode2 4.905 4.953 5.88 2.253 2.307 11.25 4.953 5.005 5.49 2.307 2.363 10.82 5.005 5.055 5.63 2.363 2.419 10.66 5.073 5.137 9.40 2.458 2.505 451 5.137 5.201 9.37 2.505 2.552 4e53 5.201 5.266 9.17 2.552 2.599 4o 54 5.266 5.309 9.33 2.615 2.650 11.29 5.309 5.353 9.25 2.650 2.686 11.13 Run No. 514 0.333 BeF, at 650°C, w = 0.470, t = 298°K, a = 0.00, ¢ = 0.00 Wy We X y Wy Wf X Yy 0.000 0.000 9.34 5.59 0.287 0.343 4.26 0.000 0.010 8.38 0.343 04374 3.87 0.025 0.041 7.28 0.406 0.439 3.64 0.041 0.059 6.84 0.478 0.529 1.41 0.059 0.077 6.62 0.529 0.590 1.15 0.115 0.151 3.96 0.590 0.660 1.01 0.151 0.171 3.47 0.660 0.742 0.86 0.171 0.19% 3.09 0.761 0.814 2.30 0.19%4 0.221 2.63 0.814 0.89 2.16 0.221 0.249 2.50 0.869 0.931 1.96 0.261 0.287 4.62 0.931 0.972 1.92 162 Run No. 523 0.333 BeF, at 700°C, w = 0.470, T = 298°K, a = 4.30, ¢ = 7.65 Wi We X Yy Wy We X Y 0.000 0.016 243 2.279 2,317 13.00 0.016 0.036 8.18 2.317 2.359 12.93 0.036 0.061 11.96 2.359 2.395 12.89 0.061 0.092 13.20 2.395 2.434 12.86 0.092 0.120 13.92 2.590 2.637 3.09 0.120 0.148 14.21 2.637 2.685 3.04 0.148 0.189 14.80 2.685 2.731 3.14 0«322 0.348 15.57 2.731 2.777 3.12 0.348 0.386 15.78 2.793 2.840 12.70 0.386 0.425 15.36 2.840 2.914 12.32 0.425 0.465 15.12 2.914 2.946 12.49 0.496 0.549 1.37 2.958 3.006 12.59 0.549 0.596 1.55 3.006 3.054 12.51 0.596 0. 644 1.51 3.054 3.103 12.29 0.644 0.691 1.52 3.141 3.185 3.29 0.705 0.738 15.00 3.185 3.228 3.36 0.738 0.772 14.72 3.228 3.292 341 0.772 0.806 14.72 3.292 3.355 3.43 0.806 0.841 14.58 3.355 3.418 347 0.841 0.875 14.39 3.432 3.482 12.21 0.886 0.976 1.64 3.482 3.531 12.12 0.976 1.054 1.85 3.531 3.581 12.04 1.054 1.127 2.00 3.581 3.631 12.01 1.170 1.205 14.50 3.631 3.682 11.91 1.205 1.240 14.25 3.741 3.802 3.62 1.240 1.275 l4.14 3.802 3.862 3.60 1.275 1.311 13.88 3.862 3.941 3.67 1.311 1.347 13.95 3.941 4.020 3.70 1.432 1.496 2.28 4.020 4.097 3.7 1.496 1.556 24l 4.107 4.158 11.82 1.556 1.617 241 4158 4.209 11.79 1.617 1.675 249 4.209 4.260 11.71 1.701 1.737 13.74 4.260 4.312 11.63 1.737 1.775 13.45 4.312 4.363 11.62 1.775 1.836 13.12 %0420 4493 3.99 1.836 1.881 13.18 4493 4.566 3.96 1.965 2.019 2.68 4566 4.640 3.95 2.019 24072 2.70 o640 4.712 3.99 2.072 2.124 2 .80 4845 4.898 11.33 2.124 2.176 2.82 4.898 4.952 11.26 2.176 2.226 2.86 4,952 5.005 11.33 24240 2.279 13.14 163 Run No. 525 0.333 BeF, at 550°C, w = 0.470, T = 298%K, a = 10.20, b = -0.19, ¢ = 0.40, d = -0.007 Wi Wf X Yy Wy wf X Yy 0.039 0.181 0.28 3.371 3.246 3.86 0.213 0.301 0.41 3.276 3.340 3.10 0.301 0.395 0.39 3.340 3.407 3.00 0.435 0479 0.90 3.437 3.500 3.14 0479 0.519 1.00 3.500 3.565 3.13 0.519 0.553 1.18 3.585 3.662 3.75 0.553 0.586 1.24 3.662 3.738 3.80 0.653 0.715 1.16 3.738 3.813 3.88 0.715 0.762 1.53 3.813 3.886 3.96 0.762 0.808 1.58 3.920 4.048 3.42 0.808 0.870 1.76 4.04L 4.107 342 0.899 0.934 1.71 4.007 4.164 3.51 0.934 0.980 1.75 4.185 4.240 3.99 0.980 1.037 1.75 4,240 4.313 3.96 1.037 1.092 1.82 4.313 4.387 3.90 1.114 1.177 2.32 4.387 4.461 3.93 1.177 1.232 2.63 4.498 4.553 3.64 1.232 1.284 2.75 4.553 4.634 3.72 1.284 1.351 271 4.634 4.713 3.80 1.396 1446 2445 4713 4.766 3.75 1.446 1.519 2.17 4.785 4.864 3.68 1.519 1.5%94 2.16 4.864 4.943 3.66 1.594 1.665 2+26 4.943 5.024 3.59 1.679 1.747 3.20 5.024 5.105 3.60 1.747 1.809 3.50 5.105 5.187 3.55 1.809 1.871 3.5 5.207 5.280 4014 1.871 1.932 3.62 5.280 5.355 4+ 01 1.958 2.029 2.51 5.355 5.428 .12 2.029 2094 249 5.428 5.500 4.18 2.09 2.157 2+54 5.500 5.571 4.20 2.157 2249 2.62 5.595 5.684% 3.24 2275 2333 3.78 5.684 5.771 3.33 2.333 2.390 3.82 5.771 5.858 3.33 24390 2.465 3.87 5.882 5.948 454 2.465 2560 3.82 5.948 6.014 4457 2.584 2655 2.83 6.014 6.057 4o 66 24655 2.726 2.83 6.084 6.147 4.80 2726 2.799 2.75 6.166 6.241 2.91 2.799 2.869 2.84 6.241 6.312 3.08 2.869 2969 2.80 6.312 6.383 3.05 2.+984% 3.040 3.90 6.383 6.454 3.05 3.040 3.096 3.92 6.454 6.527 3.00 3.096 3.171 3.86 6.554 6.614 5.00 (continued) Run No. 525 (con‘tinued_) 164 Wy We X Yy Vi3 We X y 6.614 6.674 4.84 7.035 7.115 2.72 6.676 6.737 5.00 7.115 7.197 2.67 6.737 6.797 4.96 7.197 7.278 2.68 6.797 6.856 5.12 7.309 7.344 5.62 6.856 6.916 5.03 7.3 7.399 5.51 6.952 7.035 2.60 7.399 7.453 5.54 Run No. 527 0.333 BeFz at 651°C, w = 0.470, T = 298%K, a = 4.30, ¢ = 7.63 W3 Wy X Yy Wy We X Y 0.017 0.037 4.08 1.481 1.536 10.96 0.037 0.058 5.88 1.536 1.592 10.82 0.058 0.085 7.20 1.592 1.655 10.79 0.085 0.135 8.04 1.718 1.773 4.01 0.135 0.169 9.38 1.773 1.827 4.05 0.169 0.203 9.64 1.827 1.879 4 e 20 0.203 0.234 10.21 1.879 1.930 4028 0.234 0.264 10.78 1.930 1.981 430 0.264 0.29% 10.78 2.019 2.075 10.59 0.294 0.322 11.17 2.075 2.133 10.42 0.402 0.438 1.99 2.133 2.192 10.21 0.438 04470 2.29 2.192 2.251 10.22 0.470 0.499 2.53 2.251 2.318 10.12 0.509 0.526 11.82 2.401 2.452 436 0.526 0.552 12.12 2.452 2.502 438 0.552 0.593 11.87 2.502 2.568 PAvAL 0.593 0.627 11.87 2.568 2.640 b 57 0.627 0.661 11.8% 2.640 2.703 4.63 0.718 0.769 2.87 2.741 2.802 9.80 0.769 0.816 3.07 2.802 2.864 9.7 0.816 0.863 3.10 2.864 2.9%7 9.70 0.912 0.947 11.51 2:.947 3.030 9.58 0.947 1.000 11.51 3.076 3.140 4455 1.000 1.052 11.46 3.140 3.203 b o 64 1.052 1.087 11.34 3.203 3.264 478 1.120 1.164 3.30 3.264 3.325 475 1.164 1.206 3.49 3.325 3.386 4480 1.206 1.268 3.54 3.386 3.447 4.83 1.268 1.326 3.78 3.459 3.541 9.67 1.326 1.383 3.79 3.541 3.625 = 9.63 1.401 1.428 11.18 3.625 3.709 9.51 1.428 1.481 11.20 3.709 3.793 9.47 (continued) 165 Run No. 527 {(continued) W i W. f X Y W i Wf X Yy 3.863 3.931 4.80 4,167 4.225 5.07 3.931 3.991 4,92 4e246 4.311 9.17 3.991 4.050 4.96 4,310 4,377 9.10 4.050 4.109 4.91 4377 bbb 9.01 4109 4.167 5.00 Run No. 529 b = -0.20, ¢ = 0.70, d = -0.007 Wy We X Yy Vs We X N 0.056 0.088 1.05 1.647 1.690 5.84 0.088 0.115 1.24 1.690 1.734 5.88 0.161 0.203 0.76 1.734 1.776 6.10 0.203 0.231 1.09 1.832 1.947 8.14 0.253 0.272 2.62 1.947 1.986 8.01 0.272 0.299 2.54 1.986 2.025 8.01 0.299 0.354 2.82 2.025 2.064 7.97 0.383 0.404 2.92 2.089 2.137 7.16 0.404 0.431 3.50 2.137 2.185 722 0.431 0.454 4 .00 2.185 2.232 7.24 0.454 0.674 5.40 2.232 2.279 7.33 0.674 0.701 6.84 2.279 2.325 74l 0.74 0.734 4o22 2.342 2.389 6.70 0.734 0.774 4426 2.389 2.436 6.63 0.774 0.814 4.30 2.436 2.485 6.37 0.814 0.853 4443 2.485 2.536 6.04 0.853 0.891 4a51 2.554 2.593 g.79 0.943 0.985 742 2.593 2.632 8.71 0.985 1.024 7.96 2.632 2.671 8.76 1.024 1.063 7.96 2.671 2.710 8.84 1.063 1.102 8.07 2.751 2.799 5.21 1.102 1.140 8.25 2.799 2.853 459 1.145 1.179 5.09 2.853 2.911 4432 1.179 1.245 5.14 2.911 2.956 4el2 1.262 1.29% 5442 2.963 2.995 10.68 1.294 1.326 5.38 2.995 3.042 10.92 1.364 1.401 8.46 3.042 3.088 11.14 1.401 1.439 8.36 3.088 3.133 11.37 1.439 1.476 g.38 3.156 3.190 3.75 1.476 1.512 8.64 3.190 3.221 3.91 1.512 1.548 8.55 3.221 3.252 4,07 1.558 1.602 5.79 3.252 3.300 3.90 1.602 1.647 5.76 3.300 3.332 3.93 (continued) 166 Run No. 529 (continued) Wy We X Yy Wi We X Yy 3.346 3.384 13.39 3.622 3.656 3.60 3.384 3.422 13.68 3.669 3.702 15.63 3.434 3.457 14.76 3.702 3.734 15.88 3.457 3.494 13.96 3.734 3.765 16.57 3.517 3.553 3.42 3.765 3.797 16.22 3.553 3.586 3.78 3.876 3.904 3.36 3.586 3.622 3.51 3.904 3.932 3.37 Run No. 533 0.273 BeFz at 700°C, w = 0.520, T = 298°K, a = 4.47, ¢ = 7.63 Wi Wf X Y Wi Wf X Y 0.016 0.024 4 .66 1.152 1.196 2.96 0.024 0.039 7.20 1.196 1.248 3.16 0.039 0.058 9.37 1.248 1.296 3.36 0.058 0.075 10.62 1.296 1.344 3.41 0.075 0.106 11.84 1.400 1.462 11.67 0.118 0.152 1.90 1.462 1.509 11.59 0.152 0.185 1.99 1.509 1.556 11.43 0.185 0.217 2.03 1.556 1.619 11.47 0.228 0.241 13.63 1.619 1.683 11.39 0.241 0.268 13.75 1.730 1.783 3.71 0.268 0.29% 13.55 1.783 1.836 3.70 0.294 0.321 13.71 1.836 1.904 3.82 0.321 0.348 13.43 1.904 1.954 3.96 0.393 0.425 2.07 1.954 2.004 3.90 0.425 0.453 2.28 2.005 2.070 11.21 0453 0.483 2.21 2.070 2.136 10.92 0.483 0.512 2.20 2.136 2.203 10.83 0.523 0.550 13.36 2.203 2.270 10.79 0.550 0.577 13.28 2.304 2.352 4.08 0.577 0.606 12.91 2.352 2.413 4430 0.606 0.634 12.93 2.413 2.472 bodel 0.634 0.662 12.68 Re4T72 2.531 4o 40 0.700 0.753 246 2:540 2.590 10.76 0.753 0.802 2.67 2.590 2.641 10.71 0.802 0.850 2.71 2641 2.692 10.64 0.850 0.897 2.78 2.692 2.744 10.55 0.904 0.946 12.89 2.744 2.795 10.50 0.946 0.989 12.68 2.831 2.892 4.28 0.989 1.033 12.50 2.892 2.951 bodel 1.033 1.070 12.05 2.951 3.009 4451 1.070 1.115 12.16 3.009 3.067 4 46 (continued) 167 Run No. 533 (continued) 3.075 3.128 10.20 3.323 3.378 470 3.128 3.182 10.16 3.378 3.434 4.67 3.182 3.236 10.04 3.441 3.498 10.12 3.264 3.323 b4obi2 3.498 3.552 10.08 Run No. 535 0.273 BeFa at 650°C, w = 0.520, T = 298%K, a = 15.00, b = "0'24‘, c = 0.55, & = =-0.006 Wy We X y Wy We X Y 0.098 0.121 1.63 1.712 1.788 4.30 0.121 0.158 1.95 1.788 1.864 4429 0.177 0.260 0.79 1.864 1.957 .21 0.260 0.310 1.29 1.957 2.035 4.18 0.310 0.581 264 2.045 2.108 8.59 0.581 0.616 3,67 2.108 2.192 8.60 0.629 0.665 6.09 2.226 2.284 9.30 0.665 0.709 6.16 2.312 2414 3.83 0.709 0.752 6.28 2.414 2.466 3.75 0.752 0.796 6.21 2.466 2.538 3.67 0.796 0.838 6.43 2.538 2.609 3.67 0.838 0.879 6.59 2.632 2.681 9.32 0.912 0.945 4.01 2.681 2.740 9.25 0.945 0.991 4.25 2.740 2.817 9.38 0.991 1.062 4 .58 2.817 2.875 9.43 1.062 1.134 4o 54 2.922 2.978 3.47 1.134 1.204 4.63 2.978 3.036 3.37 1.231 1.281 722 3.036 3178 3.21 1.281 1.332 7.14% 3.193 3.247 10.08 1.332 1.406 7.26 3.247 3.301 10.08 1.406 1.481 7.28 3.301 3.355 10.11 1.481 1.554 745 3.382 3.426 2.96 1.592 1.636 449 3.426 3.470 2.92 1.636 1.712 4.28 3.470 3.514 2.96 Run No. 537 0.273 BeFz at 650°0C, w = 0.520, T = 298%K, a = 4.08, ¢ = 7.63 Wy We X Yy Wy We X Yy 0.016 0.028 3.07 0.071 0.090 5.64 0.028 0.048 3.62 0.110 0.139 2.20 0.048 0.071 4.62 0.139 0.169 2.07 (continued) Run No. 537 (continued) 168 Ws We X N Wy We X Y 0.169 0.198 2.17 1.958 2.010 5.51 0.216 0.259 8.42 2.010 2.075 5.34 0.259 0.299 9.05 2.075 2.131 5.63 0.299 0.339 9.03 2.159 2.226 8.10 0.339 0.379 9.20 2.220 2.2% 7.99 0.379 0.419 9.05 2.294 2.362 8.0l 0.476 0.495 3.29 2.362 2.430 7.96 0.495 0.546 3.68 2.430 2.499 7.86 0.546 0.594 3.97 2.548 2.595 5.43 0.594 0.641 4.09 2.595 2.642 5.38 0.649 0.687 9.47 2.642 2.698 5.60 0.687 0.725 9.55 2.698 2.765 5.70 0.725 0.764 9.34 2.765 2.822 5.51 0.764 0.802 9.34 2.839 2.902 7.79 0.802 0.842 9.10 2.902 2.979 7.70 0.869 0.912 4.37 2.979 3.050 7.67 0.912 0.954 4.50 3.050 3.121 7.63 0.954 0.995 e s B4 3.157 3.243 5.93 0.995 1.036 4 .66 3.243 3.309 5.76 1.036 1.075 4.83 3.309 3.374 5.79 1.093 1.133 9.14 3.374 3.440 5.74 1.133 1.173 9.03 3.440 3.506 5.83 1.173 1.214 8.84 3.593 3.692 7.36 1.214 1.255 8.84 3.692 3.766 7.36 1.255 1.297 8.64 3.766 3.840 7.32 1.317 1.356 4+ 90 3.840 3.914 7.32 1.356 1.408 4.84 3.948 4.012 5.95 1.408 1.459 4.99 4.012 4.076 2.90 1.459 1.510 5.01 4.076 4.140 5.95 1.510 1.558 5.18 4.140 4.203 6.00 1.581 1.623 8.47 4,203 4.265 6.12 1.623 1.675 8.40 4.286 4.360 7.32 1.675 1.719 8.33 4.360 4.436 7.21 1.719 1.763 8.24 4.436 4,512 7.12 1.763 1.828 8.30 4545 4.598 6.03 1.864 1.911 5.33 4,598 4.650 6.05 1.911 1.958 5.38 4.650 4.702 6.09 169 Run No. 539 0.273 BeFz at 600°C, w = 0.520, T = 298°K, a = 14.50, -b = -0'20, c = 0.55, d = =0.006 Wi We X Yy Wi We X Yy 0.055 0.104 0.56 2.522 2.579 beodi] 0.104 0.151 0.76 2.579 2.639 4o 24 0.224 0.256 0.98 2.639 2.700 4.13 0.256 0.300 1.44% 2.721 2.761 9.10 0.300 0.338 1.66 2.761 2.809 9.01 0.350 0.384 2.12 2.854 2.893 9.17 0.384 0.425 2.67 2.893 2.953 9.10 0.425 0.465 2.74 2.980 3.034 3.53 0.465 0.502 2.90 3.034 3.087 3.62 0.523 0.547 2.66 3.087 3.140 3.55 0.547 0.576 3.26 3.140 3.213 3.46 0.576 0.614 3.29 3.224 3.278 10.04 0.614 0.649 3.63 3.278 3.332 10.09 0.649 0.681 3.99 3.332 3.386 10.12 0.696 0.729 3.84 3.386 3.438 10.34 0.729 0.766 3.88 3.438 3.490 10.51 0.766 0.812 3.99 3.507 3.578 2.67 0.812 0.856 4.08 3.578 3.649 2.68 0.909 0.947 4 .96 3.649 3.725 2.51 0.947 0.984 5.12 3.725 3.807 2.29 0.984 1.019 5.45 3.822 3.867 11.95 1.038 1.077 462 3.807 3.914 11.75 1.077 1.135 4470 3.914 3.960 11.75 1.135 1.191 4 .86 3.960 4.021 11.76 1.191 1.246 4,96 4.050 4.116 1.%1 1.266 1.302 5.22 4.116 4.190 1.72 1.302 1.349 5.40 4.190 4.269 1.60 1.349 1.393 5.76 4.269 4.35]1 1-54 1.393 1.437 5.74% 4.365 4.422 12.55 1.437 1.481 5.82 4422 4.480 12.61 1.502 1.567 5.57 4.480 44536 12.78 1.567 1.632 5.60 4.536 4.592 12.68 1.632 1.695 5.72 beb624 4670 1.37 1.695 1.756 5.90 4.670 4.720 1.29 1.756 1.816 6.10 4.720 4.773 1.18 1.848 1.870 5.64 4.785 4.827 13.13 1.870 1.916 5.59 4.827 4.869 12.89 1.916 1.961 5.64 4.869 4.912 12.68 1.961 2.008 5.37 4e912 44954 12.78 2.008 2.077 5.45 4.982 5.041 1.07 2.096 2.147 7.08 5.041 5.103 1.01 2.147 2.198 7.10 5.103 5.163 1.06 2.198 2.248 7.16 5.163 5.230 0.94 2.248 2.298 7.33 5.272 5.314 12.87 2.465 2.522 4.50 5.314 5.342 12.93 170 Run No. 601 0.600 BeFa at 600°C, w = 0.424, T = 2979K, a = 13.7, ¢ = 3.88 Wy Wp X y Wy We X Yy 0.000 0.024 5.50 0.714 0.751 2.16 0.024 0.055 A 0.760 0.789 11.36 0.055 0.091 854 0.789 0.8192 11.09 0.091 0.128 9.10 0.819 0.849 11.21 0.128 0.164 9.20 0.849 0.879 11.13 0.164 0.200 9.34% 0.879 0.908 11.13 0.266 0.312 1.73 1.027 1.09% 2.41 0.312 0.357 1.80 1.094 1.158 2.49 0.373 0.406 9.91 1.158 1.256 2.46 0.406 0.439 10.14 1.256 1.320 2+49 0.439 0.472 10.22 1.331 1.358 12.37 0.472 0.504 10.30 1.358 1.385 12.20 0.504 0.537 10.14 1.385 1.439 12.17 0.571 0.614 1.86 1.439 1.49% 12.17 0.614 0.675 1.96 1.494 1.566 12.38 0.675 0.714 2.09 1.597 1.663 2.4 Run No. 603 0.600 BeFa at 7019C, w = 424, T = 297°K, a = 13.7, ¢ = 3.88 Wy Wf X Yy Wi Wf X Yy 0.000 0.035 2.54 1.140 1.191 17.59 0.035 0.056 4.22 1.239 1.353 1.35 0.056 0.087 5.7 1.353 1.471 1.31 0.087 0.120 6 .64 1.471 1.581 1.40 0.120 0.149 7.75 1.581 1.693 1.38 0.149 0.181 8.45 1.723 1.769 19.05 0.237 0.301 1.20 1.769 1.818 18.95 0.301 0.362 1.26 1.818 1.866 18.74 0.362 0.433 1.31 1.866 1.913 18.89 0.440 0.456 14.07 1.913 1.960 18.97 0.456 0.487 14.38 2.153 2.265 1.37 0.487 0.534 14.30 2.265 2.322 1.36 0.534 0.579 14.66 2.335 2.358 19.21 0.579 0.638 15.08 2.358 2.406 18.74 0.694 0.752 1.32 2.406 2.453 18.70 0.752 0.808 1.38 2.453 2.477 18.74 0.808 0.865 1.36 2+564 2.623 1.32 0.865 0.949 1.40 2.623 2.680 1.36 0.987 1.038 17.39 2.685 2.709 19.13 1.038 1.089 17.46 2.709 2.732 19.13 1.089 1.140 17.29 0.600 BeFy at 500°C, w = 0.424, T = 2970K, Run No. 605 a =13.7, ¢ = 3.88 Wy We X Yy Wy We v 0.010 0.046 245 2.143 2.201 3.99 0.046 0.070 3.76 2.201 2.253 4+50 0.070 0.104 3.82 2253 2.300 beo 34 0.164 0.235 1.09 2.306 2.355 470 0.235 0.304 1.12 2.400 2.483 5.34 0.304 0.372 1.15 2.483 2.563 5.58 0.372 0.434 1.24 2.563 2.657 5.66 0.434 0.494 1.27 2.657 2.734 5.74 0.494 0.548 1 obde 2.734 2.810 5.84% 0.549 1.019 1.96 2.896 2.946 4o 97 1.113 1.174 3.66 2.946 2.988 5.54 1.174 1.233 3.72 2.988 3.033 5.22 1.233 1.293 3.75 3.033 3.076 5.38 1.293 1.350 3.86 3,097 3.166 1.350 1.408 3.86 3.166 3.235 1.408 1.464 3.96 3.235 3.304 1.481 1.508 2.80 3.387 3.427 5.82 1.508 1.557 3.17 3.427 3.465 6.12 1.557 1.629 3.20 3.465 3.531 5.79 1.660 1.771 4 o240 3.531 3.607 6.12 1.771 1.867 4 .60 3.668 3.726 1.867 1.963 4.62 3.726 3.813 1.963 2.056 479 3.813 3.902 Run No. 607 0.600 BeF2 at 5000C, w = 0.424, T = 297°%K, a b = -1.15, ¢ = 0.136, d = -0.041 Wi P{f X y Pfii Vfif Yy 0.039 0.065 5.91 0.908 1.009 0.065 0.114% 6.30 1.045 1.110 5.97 0.114 0.163 6.33 1.110 1.171 6.28 0.174 0.230 7.95 1.171 1.293 6.33 0.230 0.286 7.99 1.293 1.413 6.41 0.286 0.341 7.99 1.432 1.525 0.377 0.439 6.29 1.525 1.620 0.439 0.500 6.34% 1.620 1.713 0.500 0.572 6.38 1.713 1.805 0.572 0.631 6.54 1.858 1.948 5.97 0.648 0.726 8.54 1.948 2.038 6.03 0.726 0.804 8.54 2.038 2.218 6.00 0.804 0.908 8.58 2.218 2.401 5.91 {continued) 172 Run No. 607 (continued) Wy Wp x y Wy We x y 2.419 2.527 10.29 3.452 3.564 9.90 2.551 2.662 10.03 3.564 3.677 9.91 2.662 2.77% 9.93 3.706 3.79 429 2.835 2.906 5.47 3.796 3.900 FAAY 2.906 2.978 5.34 3.900 3.978 4,95 2.978 3.127 5.18 3.978 4.060 4 .66 3.127 3.202 5.13 %0084 4.191 10.39 3.227 3.339 9.91 4 191 4.255 10.37 3.339 3.452 9.84 4.255 4.319 10.37 Run No. 611 0.600 BeFz at 600°C, w = 0.424, T = 2979%K, a = 6.45, ¢ = 5.90 Wi We X vy Wi We X Yy 0.000 0.019 2.29 1.669 1.701 13.91 0.019 0.038 7.13 1.701 1.733 13.87 0.038 0.065 10.01 1.733 1.765 13.67 0.065 0.088 11.34 1.853 1.912 1.31 0.088 0.123 11.47 1.912 1.973 1.26 0.123 0.160 12.05 1.973 2.034 1.27 0.160 0.196 12.25 2.034 2.140 1.45 0.227 0.314 1.34 2.148 2.180 14.17 0.314 0.371 1.34 2.180 2.212 13.75 0.371 0.430 1.31 2.212 2.245 13.67 0.443 0.475 13.79 2:245 2.277 13.63 0.475 0.508 13.63 2.277 2.310 13.46 0.508 0.541 13.54 2.395 2.556 1.44 0.541 0.573 13.66 2.556 2.653 1.59 0.573 0.606 13.83 2.661. 2.693 13.79 0.677 0.750 1.06 2.693 2.726 13.67 0.750 0.827 1.00 2.726 2.759 13.46 0.827 0.974 1.05 2.797 2.950 1.51 0,992 1.023 14.43 2.950 3.090 1.66 1.023 1.054 14.21 3.090 3.219 1.79 1.054 1.086 13.79 3.219 3.389 1.82 1.086 1.118 13.91 3.389 3.551 1.90 1.118 1.150 13.75 3.576 3.609 13.50 1.244 1.315 1.08 3.609 3.643 13.01 1.315 1.382 1.16 3.643 3.676 13.42 1.382 1.515 1.16 3.676 3.710 13.12 1.515 1.578 1.21 3.710 3.744 13.12 1.606 1.637 14.43 3.818 3.9 1.68 1.637 1.669 14.13 3.941 4.057 1.99 (continued) Run No. 611 (continued) 173 Wy We X Yy Wy We X Yy 4.057 4.171 2.03 2.022 5.073 13.25 4171 4.282 2.09 5.073 5,123 13.25 4.297 4.348 13.07 5.123 5.174 13.07 4.399 4.451 12.86 5.250 5.354 2.21 4.451 4.504 12.71 5.354 5.456 2.28 46572 4.681 2.13 5.468 5.518 13.09 4.681 4.788 2.16 5.518 5.570 12.87 4.788 4.897 2.13 5.570 5.622 12.95 4.897 5.003 2.18 Run No. 619 0.400 BeFp at 550°C, w = 0.567, T = 2999%K, a = 21.0, ¢ = 0.68 Wi Wf X Y Wi Wf X N 0.000 0.000 7.63 5.00 0.884 0.929 11.13 0.000 0.050 8.34% 0.929 0.975 10.87 0.050 0.148 8.50 0.975 1.035 11.04 0.148 0.195 g8.83 1.035 1.095 11.11 0.294 0.337 6.66 1.169 1.210 6.99 0.337 0.379 6.90 1.230 1.266 7.18 0.379 0.419 7.17 1.266 1.314 7.25 0.431 0.481 2.96 1.366 1.477 11.93 0.481 0.531 9.96 1.477 1.545 12.29 0.531 0.582 9.92 1.545 1.613 12.17 0.582 0.632 9.99 1.694 1.746 6.57 0.742 0.782 7.28 1.746 1.799 6.64 0.782 0.819 7 .64 1.815 1.868 12.63 0.819 0.865 7.55 1.868 1.921 12.54 Run No. 621 0.400 BeFz at 604°C, w = 0.567, T = 299°K, a = 6.45, ¢ = 5.90 Wy We X vy Wy We X Yy 0.004 0.017 2.5 0.216 0.261 1.27 0.017 0.026 7.22 0.261 0.329 1.24 0.026 0.041 8.84 0.385 0.409 13.47 0.041 0.058 9.79 0.409 0.458 13.59 0.058 0.083 10.47 0.458 0.490 13.29 0.083 0.107 10.57 0.496 0.520 13.39 0.107 0.129 11.08 0.5397 0.637 1.42 (continued) Run No. 621 (continued) 174 0.637 0.672 1.63 1.797 1.907 2.63 0.672 0.707 1.67 1.907 2.014 2.75 0.722 0.747 13.43 2.014 2.099 2.72 0.747 0.785 13.32 2.131 2.172 12.24 0.785 0.822 13.36 2.172 2.214 12.00 0.822 0.847 13.09 2.214 2.256 11.75 0.863 0.896 1.75 2.256 2.298 11.87 0.89% 0.975 1.88 2.333 2.416 2.76 0.975 1.034% 1.97 2.416 2.496 2.88 1.042 1.079 13.43 2.496 2.574 2.95 1.079 1.117 13.21 2.685 2726 11.97 1.117 1.156 12.82 2.726 2.7692 11.75 1.156 1.183 12.39 2.769 2.811 11.79 1.247 1.300 2.17 2.811 2.847 11.59 1.300 1.375 2.32 2.857 2.916 2.95 1.375 1.447 2.41 2.916 2.972 3.07 1.447 1.544 2.38 2.972 3.027 3.13 1.574 1.626 12.91 3.027 3.084 3.08 1.626 1.678 12.72 3.098 3.141 11.63 1.678 1.730 12.64 3.141 3.184 11.63 Run No. 625 0.400 BeF, at 5500C, w = 0.567, T = 299K, a = 6.45, ¢ = 5.90 Wi We X Yy Wy Ve X Yy 0.004 0.020 2.08 0.649 0.677 11.95 0.020 0.034 6.93 0.677 0.706 11.42 0.034 0.052 9.47 0.706 0.734 11..83 0.052 0.076 10.38 0.734 0.779 11.26 0.076 0.092 10.80 0.779 0.807 11.64 0.099 (0.121 11.04 0.834 0.873 2.16 0.154 0.200 1.23 0.873 0.947 2.28 0.200 0.242 1.33 0.947 0.981 247 0.242 0.284 1.36 0.981 1.014 2.51 0.297 0.317 12.38 1.035 1.065 11.22 0.317 0.337 12.47 1.065 1.094 11.28 0.337 0.365 12.04 1.094 1.125 10.91 0.365 0.392 11.92 1.125 1.155 10.80 0.392 0.421 11.59 1.186 1.231 2.51 0.464 0.501 1.52 1.231 1.271 2.75 0.501 0.533 1.72 1.271 1.324 2.64 0.533 0.563 1.88 1.324 1.361 3.09 0.563 0.609 1.83 i.361 1.396 3.13 0.622 0.649 12.01 1.402 1.431 11.20 (continued) Run No. 625 (continued) 175 1.431 1.462 10.78 2.256 2.291 9.60 1.462 1.494 10.53 2.325 2.374 3.50 1.494 1.590 10.38 2.374 2.418 3.78 1.625 1.662 3.01 2.418 2.463 3.75 1.662 1.699 3.03 2.480 2.514 9.66 1.699 1.733 3.25 2.514 2.549 9.57 1.733 1.767 3.29 2.549 2.584 9.57 1.790 1.821 10.51 2.584 2.619 9.49 1.821 1.854 10.37 2.670 2.712 4a 017 1.854 1.886 10.34 2.712 2.754 3.96 1.886 1.918 10.21 2.754 2.797 3.93 1.955 1.990 3.25 2.818 2.853 9.53 1.990 2.037 3.53 2.853 2.897 9.45 2.037 2.069 3.50 2.897 2.932 9.36 2.069 2.118 3.50 2.932 2.968 9.25 2.138 2.172 10.05 2.997 3.040 3.96 2.172 2.205 9.96 3.040 3.081 4.08 2.205 2.526 9.75 3.081 3.122 i1 Run No. 627 0.400 BeFp at 702°C, w = 0.567, T = 2999K, a = 6.70, ¢ = 6.05 Wi We X y Wy We X Y 0.000 0.011 3.00 0.744 0.808 0.88 0.011 0.022 5.82 0.808 0.856 0.91 0.022 0.033 9.18 0.856 0.914 0.97 0.033 0.048 11.12 0.942 0.961 17.12 0.048 0.068 12.43 0.961 0.992 16.32 0.068 0.087 13.08 0.992 1.022 16.28 0.087 0.106 13.49 1.022 1.043 16.17 0.106 0.123 14.88 1.053 1.142 0.95 0.123 0.143 14.64 1.142 1.197 1.02 0.288 0.308 16.28 1.197 1.255 1.07 0.308 0.328 16.16 1.283 1.312 17.29 0.328 0.349 16.51 1.312 1.341 16.87 0.349 0.380 16.13 1.341 1.381 16.82 0.413 0.472 0.96 1.381 1.421 16.49 0.472 0.542 0.81 1.421 1.462 16.13 0.542 0.602 0.93 1.495 1.576 1.03 0.611 0.631 16.87 1.576 1.648 1.17 0.631 0.651 16.51 1.648 1.717 1.22 0.651 0.671 16.28 1.736 1.766 16.59 0.671 0.692 16.34 1.766 1.796 16.51 0.692 0.712 16.05 1.796 1.837 16.20 (continued) Run No. 627 (continued) 176 Wy We X Yy Wy We X y 1.837 1.878 16.30 2.265 2.296 16.01 1.905 1.975 1.20 2.318 2.382 1.32 1.975 2.041 1.28 2.382 2.442 1.40 2.041 2.102 1.37 2.442 2.502 1.41 2.120 2.151 16.36 2.502 2.561 1.43 2.151 2.181 16.36 2.581 2.611 16.43 2.181 2.223 15.96 2.611 2.642 15.87 2.223 2.265 16.05 2.642 2.674 15.80 177 APPENDIX C Glossary a (or a + bW) - influent partial pressure of HF A - (a + 2c) aBer - thermodynamic activity of BeF:2 ,B - parameters expressing the variation in "BeTa with composition at a specified temperature according to the equation - ox? 4 10g Ypep, = Kpip ¥ PX 14w ¢ (or ¢ +dW) - influent partial pressure of Hz0 C - integration constants ACP - heat capacity change at constant pressure PW - (x + y) f - correction factor = ——m——— w ~ Py AFr - free energy of reaction Tpep, - octivity coefficient of BeFp = aBng/XBng AHOf - standard heat of formation Pusson heat of fusion AH& - heat of reaction Afiéubl - heat of sublimation AH%ap - heat of vaporization fiéer - partial molal heat content of BeF2 in solution HPBer - partial molal heat content of pure liquid BeF, K - thermodynamic equilibrium constant 2 K, = % /yaBng = Q/aBer 178 k, 1, m - parameters used in correlation of Q as a function of melt composition according to the equation log (@/Xpp,) = k + L p)? + mix, )% kp, lo, m° - temperature independent portions of k, 1, and m, respectively k', 1', m* - temperature dependent portions of k, 1, and m, respectively Ny and anO - moles of HF and Hz20 as measured at TW, Pw P and P - partial pressures of HF and H20, respectively. HrF H20 p, = Vapor pressure of water at Tw v total pressure at wet-test meter Py - partial pressure of HF or Hz0 leaving melt P> - measured partial pressure of HF or Hz0 Q - x°/y for BeO saturated melt Qy - xsfy Q, - s?/yr = (QA)Z/QO oy - s*fy = ()3/ Q - s/x =9q,/q, Q@ - s/x=09/Q QO - xar/y r - [0%7] - oxide concentration in moles per kilogram of melt s - [0H ] - hydroxide concentration in moles per kilogram of melt r and Sy - values of r and s at W = 0 in unsaturated experiments S~ - standard entropy at specified temperature ASr - entropy of reaction O - standard deviation t -~ degrees Centigrade (generally used to indicate melt temperatures) T =~ degrees Kelvin (used to indicate wet-test meter temperatures) 179 Tw - temperature of wet-test meter, °k E . M BeF, excess chemical potential of Bel's Vé - volume of dry carrier gas going through system measured at Tw’ PW VE - volume of gas entering titration assembly at TW, Pw “m - volume of gas space above the melt Vw -~ volume of gas through melt measured at TW, PW (1iters) dV -~ increment of gas flowing through system as measured at Tw’ PW w - weight of melt (kg) W - V/‘WfiRTw (mole kg™ * atm™t) Xé - mole fraction BeF; el x = effluent partial pressure of HF effluent partial pressure of Ha0 1. 2-6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 18. 19. 20. 21. 22. 23. 2 s 25. 26. 27 28. 29-31. 32. 33. 3. 35. 36. 69. 70-84. 85. 86. 87. 88. 89. 90. 181 ORNL TM-1129 INTERNAL DISTRIBUTION R. F. Apple 37. D. Scott C. F. Baes, Jr. 38. D. R. Sears J. T. Bell 39, J. H. Shaffer C. M. Blood 40. S. H. Smiley F. F. Blankenship 41. P. G. Smith G. E. Boyd 42. H. H. Stone M. A. Bredig 43. A. Taboada R. B. Briggs 44. R. E. Thoma D. W. Cardwell 45. G. M. Watson G. I. Cathers 46. A. M. Weinberg E. L. Compere 47. M. E. Whatley J. L. Crowley 48. J. C. White F. L. Culler 49. B. J. Youn J. M. Dale 50. L. Brewer {(consultant) R. B. Evans III 51. J. W. Cobble (consultant) D. E. Ferguson 52. D. G. Hill (consultant) R. A. Gilbert 53. H. Insley (consultant) W. R. Grimes 54. G. Mamantov (consultant) M. T. Harkrider 55. T. N. McVay (consultant) B. F. Hitch 56. R. F. Newton {consultant) S. 8. Kirslis 57. J. E. Ricci (consultant) K. A. Kraus 58. G. Scatchard (consultant) R. B. Lindauer 59. H. Steinfink (consultant) D. L. Manning 60. T. F. Young (consultant) H. F. McDuffie 61-62. Central Research Library R. J. McNamee 63. Document Reference Section R. L. Moore 64-66. Laboratory Records Department K. A. Romberger 67. Iaboratory Records, ORNL R.C. M. W. Rosenthal 68. ORNL Patent Office H. C. Savage EXTERNAL DISTRTIBUTION Research and Development Division, ORO Division of Technical Information ¥F. A. Anderson, Chemical Engineering Dept., University of Miss., University, Mississippi M. J. Blander, North American Aviation Science Center, 8437 Fallbrook Avenue, Canoga Park, California A. Buchler, Arthur D. Little, Inc., 30 Memorial Drive, Cambridge 42, Massachusetts S« F. Clark, University of Mississippi, University, Mississippi P.A.D. deMaine, University of California, Santa Barbara, Calif. G. Dirian, Commissariat a 1'Energie Atomique (CEN Saclay) 69, Rue de Varemne, Paris, France 91. 92. 93. e 95. 96. 9‘7. 98. 99. 100. 101. 102. 103-112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123‘ 124. 182 C. F. Dodson, Western Carolina College, Cullowhee, North Carolina. F. R. Duke, Texas A and M College, College Station, Texas J. E. Eorgan, Kawecki Chemical Co., Boyertown, Pennsylvania H. Flood, Institute of Silicate Science, Norwegian Institute of Technology, Trondheim, Norway Tormod Férland, The Institute of Theoretical Chemistry, Trondheim, Norway R. M. Fuoss, Yale University, New Haven, Connecticut M. A. Greenbaum, Rocket Power Inc., Research lLaboratories, Pasadena, California Marwin Kemp, University of Arkansas, Fayetteville, Arkansas 0. J. Kleppa, Chemistry Department, University of Chicago, Chicago, J1linois S. langer, General Atomics, P.0. Box 608, San Diego, California G. Long, Chemistry Dept., UKAEA, Harwell, Didcot, Berks., England C. R. Masson, National Research Council of Canada, Atlantic Regional Laboratory, Halifax, Nova Scotia A. L. Mathews, Western Carolina College, Cullowhee, North Carolina D. A. Mathewes, Western Carolina College, Cullowhee, North Carolina J. L. Margrave, Rice University, Houston, Texas N. J. Meyer, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio G. Nessle, Kawecki Chemical Co., Boyertown, Pennsylvania S. Pizzini, BEuratom, CCR, Ispra, Italy P. A. Reid, Western Carolina College, Cullowhee, North Carolina Rustum Roy, Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania S. D. Squibb, Asheville-Biltmore College, Asheville, North Carolina B. R. Sundheim, New York Univeristy, New York, New York E. L. Topol, 19806 Gilmore Street, Woodland Hills, California W. J. Wallace, Muskegon College, Muskegon, Michigan J. Zarzycki, Compagnie de Saint-Gobain, 52 Bd De la Villette, Paris 19€, France