OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION ORNL- TM- 1017 S0 TENSILE AND CREEP PROPERTIES OF INOR-8 FOR e ¢ il a4 bt S8 o oyt e . - G THE MOLTEN-SALT REACTOR EXF;ERIMENT J. T. Venard NCE OBTAINED. ggfiig 10 PUBLIC 1S APPROVED. \:R? EOURES WRE ON FILE IN THE RECE! NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. LEGAL NOTICE This report was prepared os an account of Government sponsored work, Neither the United States, nor the Commission, nor any person acting on beholf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completensss, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or 8. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any informatijon, apparatys, method, or process disclosed in this report, As used in the above, '‘person acting on behalf of the Commission®’ includes any empioyee or contractor of the Commission, or employee of such contracter, to the extent that such employee or contractor of the Commission, or omployee of such contractor prepares, disseminates, or provides access to, any infermation pursuant to his employment or contract with the Commission, or his employment with such contractor. [N | ORNL-TM~1017 Contract No. W-7405-eng-26 METALS AND CERAMICS DIVISION TENSILE AND CREEP PROPERTIES OF INOR-§ FOR THE MOLTEN-SALT REACTOR EXPERIMENT J. T. Venard FEBRUARY 1965 OAK RIDGE NATTONAL ILABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.5. ATOMIC ENERGY COMMISSION TENSILE AND CREEP PROPERTIES OF INOR-8 FOR THE MOLTEN-SALT REACTOR EXPERIMENT J., T. Venard ABSTRACT Tensile and creep Minimum Test Creep Test Temperature Stress Time to Reach Strain Ievel (hr) Rate Elongation at Number (°C) (°F) (psi) 0.2% 0.5% 1.0% 2.0% 5.0% Rupture (hr 1) Fracture (%) 2267 593 1100 81,000 0.80 5.1 7.8 x 1073 37.2 2262 593 1100 70,000 0.10 0.15 0.20 0.40 32.2 33.5 6.5 x 1074 19.6 2248 593 1100 61,000 0.50 2.0 14.0 53.0 140.4 2.2 x 107+ 4.6 2201 593 1100 50,000 10.0 18.0 40.0 100.0 875 1040.7 2.3 x 10 % 6.2 1833 593 1100 35,000 500 1800 3350 5350 9325 9818.7 2.6 x 10 © 5.4 2273 704 1300 52,000 0.10 0.40 1.6 6.2 3.5 % 10 ° 29.8 2264 704 1300 39,000 0.20 1.0 2.7 6.2 13.8 29.8 3.4 x 10 3 16.1 2254 704 1300 34,000 0. 50 2.5 5.2 11.0 26.2 68.3 1.9 x 102 15.9 2246 704 1300 31,000 2.0 5.0 12.0 25.0 64.0 160.3 7.8 x 104 38.0 1840 704 1300 27,500 4.0 14.0 30.0 60 144 346.7 3.5 x 10 % 29.1 2200 704 1300 25,000 5.0 15 30 60 160 859.7 3.0 x 104 50.3 2144 704 1300 22,000 5.0 14 34 75 185 526.4 2.6 x 10 % 14.9 1982 704 1300 20,000 10 30 95 210 530 1707.3 9.4 x 1073 26.8 1842 704 1300 18,000 5 70 160 400 950 2682.2 5.0 x 10 % 25.0 2274 816 1500 23,000 0.1 0.3 0.6 1.2 3.0 13.9 1.8 x 10 ? 48.0 2272 816 1500 15,000 1.0 4.0 6.0 11 22 93.5 2.8 x 1073 42.9 2253 816 1500 12,500 1.0 4.0 8.0 16 42 189.0 1.2 x 1073 33.7 2239 816 1500 10,500 1.0 5.0 20 40 120 390.9 4.2 x 104 23.2 2188 816 1500 8,200 2.5 5.0 40 120 340 909.1 1.5 x 10 % 20.5 2263 816 1500 5,600 56 250 550 1250 3500 7593.8 1.1 x 10 3 20.1 1986 816 1500 5,600 100 280 660 1660 2377.1% 9.0 x 1074 aSpecimens of heat 5055 cut parallel to plate rolling direction. Discontinued. Table 4. Creep and Rupture Data for INOR-8 Tested in Air- Minimum Test Creep Test o Temperature Stress Time to Reach Strain Level (hr) Rate Elongation at Number (°C) (°F) (psi) 0.2% 0.5% 1.0% 2.0% 5. 0% Rupture (hr 1) Fracture (%) 3142(P) 593 1100 64,000 0.1 0.3 0.8 6.7 8.9 6.0 x 10 4 13.9 3127(P) 593 1100 59,000 0.2 0.5 1.2 3.0 18.0 23.5 2.0 x 10 4 10.8 2547(T) 593 1100 55,000 0.2 0.3 0.6 1.2 75.0 78.6 5.0 X 10 ° 9.1 2427 (P) 593 1100 48,500 33.0 103 133 135 135.6 5.5 x 10 ° 7.8 2564 (T) 593 1100 47,000 40.0 130 200 203 205.5 3.5 x 10 ° A 2826(T) 593 1100 42,000 130 465 732 885.2 6.0 x 106 1.6 2782(P) 593 1100 39,000 250 625 732 749.5 3,0 x 1076 1.5 3097(T) 593 1100 31,000 400 1400 2600 3890 3927.0 1.6 x 10 ® 3.9 2082(T) 704 1300 35,000 0.3 2.0 bods 10.0 22.6 2.0x 10 3 4.8 2952(P) 704 1300 26,000 1.5 4.5 11.0 50.0 75.7 2.1 x 10 % A 2944 (T) 704 1300 23,000 2.0 10.0 25.0 60.0 133 135.3 1.3 x 10 % 5.2 2637(P) 704 1300 22,000 25.0 48.0 77.0 114 137.9 1.3 x 10 4 4.2 2997(T) 704 1300 18,500 1.0 6.0 67.0 193.0 451.0 491.2 8.3 x 10 ° 7.5 2998 (P) 704 1300 16,500 10.0 50.0 126 305 645 680.2 5.1 x 1072 7.5 2888(T) 704 1300 15,000 10.0 65.0 195 450 855 924.8 4.2 x 10°° 7.1 2783(P) 704 1300 14,000 10.0 150 350 750 1410 1505.1 2.6 x 10 ° 7.6 2951(P) 704 1300 13,000 10.0 100 300 820 1605 1698.8 1.8 x 10°° 7.6 3086(T) 816 1500 19,000 0.1 0.4 0.9 2.0 6.5 20.6 6.3 x 10 3 28.9 3025(P) 816 1500 12,000 0.5 2.0 4.5 11.5 35.0 148.6 1.3 x 103 23.9 2977(T) 816 1500 10,000 2.0 11.0 20.0 46.0 121 358.1 3.9 x 10 % 19.9 2565(P) 816 1500 7,200 15.0 45.0 90.0 185 385 486.4 5.8 x 10 ° 11.2 2948(T) 816 1500 6,700 1.0 45.0 105 230 555 1034.3 8.3 x 10°° 12.8 2892(P) 816 1500 4,900 40.0 105 360 930 2175 2757.4 1.9 x 10°° 10.0 aSpecimens of heat 5075, b(P) indicates specimen cut parallel to plate rolling direction and (T) indicates specimen cut transverse to plate rolling direction. Table 5. Creep and Rupbure Data for INOR-8 Tested in Air~ Minimum Test Creep Test Temperature Stress Time to Reach Strain Level (hr) Rate Elongation at Number (°C) (°F) (psi) 0.2% 0.5% 1.0% 2.0% 5.0% Rupture (hr 1) Fracture (%) 3137(T) 593 1100 74,000 0.1 0.2 0.3 0.6 16.0 24.1 1.4 x 102 28.7 3119(P) 593 1100 66,000 0.1 0.3 0.4 0.5 72.0 93.4 2.8 x 104 20.3 3105(T) 593 1100 63,000 5.0 22.0 46.0 88.0 121 122.9 2.1 x 1074 14.6 3103(P) 593 1100 57,000 0.1 0.4 340 377.5 3.5 % 1075 13.5 2478(P) 593 1100 52,000 20.0 75.0 220 425 602 609.4 3.0 x 1073 7.6 2466(T) 593 . 1100 50,000 786.2 1.8 x 10 ° 8.9 2571(P) 593 1100 46,000 400 800 1300 1612 1615.3 1.2 x 1072 7.0 2991(T) 704 1300 48,000 0.1 0.2 0.5 3.0 13.2 1.3 x 102 28.6 2958 (P) 704 1300 39,500 0.5 1.5 3.0 6.5 16.0 53.3 3.2 x 103 26.1 2943(T) 704 1300 28,500 2.0 9.0 19.0 39.0 92.0 150.9 5.1 x 10 % 12.8 2968 (P) 704 1300 25,500 5.0 20.0 42.0 g82.0 200 469.3 2.6 x 10 % 17.2 2559(T) 704 1300 20,500 10.0 40.0 80.0 175 460 1194.6 1.1 x 10 “ 23.2 1958(P) 704 1300 20,000 60.0 135 270 425 910 1152.1 3.7 x 1077 5.9 2900(P) 704 1300 19,300 10.0 50.0 120 280 735 1596.7 6.8 x 10°° 17.9 3067(T) 816 1500 21,000 0.2 0.8 2.0 5.0 25.2 9.0 x 1073 46,8 3072(P) 816 1500 16,000 0.5 1.0 2.5 5.5 12.0 52,8 4.3 x 10 2 38.2 3014(T) 816 1500 14,000 1.0 4.5 6.5 13.5 34.0 125.2 1.4 x 10 3 30.0 2976(T) 816 1500 11,000 2.0 6.0 15.0 35.0 95.0 422.8 5.1 x 10 4 35.8 2949(P) 816 1500 8,700 5.0 20.0 45,0 100 275 834.2 1.8 x 10 4 23.2 2575(T) 816 1500 8,000 5.0 30.0 65.0 145 385 1429.8 1.1 x 1074 20.3 3071(P) 816 1500 6,300 12.0 50.0 150 325 1330 4896.3 2.3 x 10°° 26.5 aSpecimens of heat 5081. b(T) indicates specimen cut transverse to plate rolling direction and (P) indicates specimen cut parallel to plate rolling direction. TENSILE STRENGTH (1000 psi) 0.2% YIELD STRENGTH {1000 psi) 10 ORNL-DWG 64-4414R2 TEMPERATURE (°C) 0 100 200 300 400 500 600 700 800 900 1000 140 - T T T I T = | i i ! | | ] l | | 120 L 4~7i e o i % _—~SCATTER BAND FOR 7% 4éééy)4//yéégy 4, & EXPERIMENTAL HEATS 100 t-—— ~ g Z @’" e — ) i o 7 77 O o — o i | 4 | L ' A 60 —t+r — At — - — HEAT 5075 APARALLEL TO R.D. a0 | e NORMAL TO R.D. | i | HEAT 5084 | o PARALLEL TO R.D. | | vNORMAL TO R.D. | 0 200 400 600 800 1000 1200 1400 1600 1800 TEMPERATURE (°F) Fig. 5. Ultimate Tensile Strength of MSRE INOR-8. ORNL-DWG 64—4445R2 TEMPERATURE (°C) 0 t00 200 300 400 500 600 700 800 900 4000 o T T T T T T T a | i 60 L L ’ —— l 1 0 N R 7 | _~SCATTER BAND FOR Sy, T N . N 50 t i A 30 7 20 i e S HEAT 5075 ; ] 4 PARALLEL TO R.D. ; * NORMAL TC R.D. _ ’ I | e 10 1 * HEAT 5084 o PARALLEL TO R.D. v NORMAL TO R.D. O ! . ‘ : E | 0 200 400 600 800 1000 1200 4400 1600 1800 TEMPERATURE (°F) Fig. 6. Two Percent Yield Strength of MSRE INOR-8. ELONGATION (%) 20 t - 0 11 ORNL-DWG 64-4416R2 TEMPERATURE (°C) 100 200 300 400 500 600 700 800 900 1000 T T T 7] " _-SCATTER BAND FOR EXPERIMENTAL HEATS HEAT 5075 Ty A PARALLEL TC R.D. e NORMAL TO R.D. - HEAT 5081 a o PARALLEL TO R.D. ! v NORMAL TO R.D. I U | ,Wfi} ] O 200 400 600 800 1000 1200 1400 1600 1800 TEMPERATURE (°F) Fig. 7. Elongation in 2 in. of MSRE INOR-8. REDUCTION IN AREA (%) i2 ORNL-DWG 64-4417R TEMPERATURE {°C) 0 100 200 300 400 500 600 700 800 900 1000 T T T T T r T | _—-SCATTER BAND FOR EXPERIMENTAL HEATS ,/// . /a 7 / 7 b 2/ . / 2/ 30 . HEAT 5075 A 0 : s PARALLEL TO R.D. 1 : /// // | 50 L— ®eNORMAL TO R.D. .. | ‘ | //’ HEAT 508f //47 o PARALLEL TO R.D. v NORMAL TO R.D. 10 |~ | — e = T | O _ i - . 0 200 400 600 800 1000 1200 1400 1600 1800 TEMPERATURE (°F) Fig. 8. Reduction of Area of MSRE INCR-8. 100 Lfi I T 80 - 40 ° STRESS (1000 psi) N O OJ Fig. 9. Creep and Rupture Data for MSRE INOR-8. ORNL— DWG 64 4438R 1 7o0aec - BO | —1 T (1300°F) ‘+' et T HEAT 5055 T 60 1ttt L AIR *lr* 7 e M s © 40 | Twx Q T o | o ’ B ] @) ooy = — . ' +o—f b L1 - | L] (500 || v L 3 L_(27} J% Y SR (251 5 I Y ' \.fi.Xl' ! ! 0.5 *0 20 50 RUPTURE L H‘ L LRI T 0.4 1.0 10 100 1000 10,000 TIME (hr) Fig. 10. Creep and Rupture Data for MSRE INOR-8. 14 ORNL—-DWG 64—4444R L [ o o [(g) HEAT 5055 AIR i | a ' {1sd 00O} SS3Y 1S 10 10Q 1000 10,000 1. 04 TIME (hr) Creep and Rupture Data for MSRE INOR-8. Fig. 11. ORNL-DWG 64-443€ER 593°C (1100°F) HEAT 5075 {1sd OOOL) SS3HLS AIR 10 il | 10 100 1000 10,000 1.0 0A TiME (hr) Creep and Rupture Data for MSRE INCR-8. 12. Fig. STRESS (1000 psi) STRESS (1000 psi) 100 o o N O H O no C 10 Fig. 13. 40 no o ®» O [} OR 1.0 - ~ 01 1.0 Fig. 14. 15 ORNL-DWG 64-4439R 704°C (1300°F) HEAT 5075 AIR | @) - N4 (8) (7] (8) 8) ! 10 > RUPTURE 100 1000 10,000 TIME (hr) Creep and Rupture Data for MSRE INOR-8. ORNL—DWG 64-4442R g16°C {(4500°F) HEAT 5075 AIR _(29) . < t 0.5 1.0 2.0 *5.0 RUPTURE u(24) 20— ~ 10) 100 1000 10,000 TIME (hr) Creep and Rupture Data for MSRE INOR-8. STRESS (1000 psi) STRESS {1000 psi) 16 e’ ORNL-DWG 64—4437R 100 . 8 (29) + - 60 Vi T i 14) (8). -~ - 9 RS ‘ ; )”-(7 : 40 SR 0.5% 1.0 zjo\lRUPT‘iJRE . | | T | 3 : | 593°C o . | | 20 (M00°F) T T S ' HEAT 5081 AIR 10 0.1 1.0 10 100 1000 10,000 TIME (hr}) Fig. 15. Creep and Rupture Data for MSRE INOR-8. CRNL—-DWG 64—4440R 100 T T " T R R R ‘le B L e Th (1300°F) | 60 o il EEH I } %;;iHEALIF?Om Jr— - ; } ; _ . o . I ! i - (23) | “, | TS UL - 0.2% \ S - . = | 1 05 1.0 2.0 50 RUPTURE Lol R 10 L : i ] ] ;i i I A i g : 0.1 1.0 10 100 1000 10,000 TIME (hr) Fig. 16. Creep and Rupture Data for MSRE INOR-8. ~ ol STRESS (1000 psi) STRESS (1000 psi} ORNL-DWG 64-4443R 40 816 °C . 30 (1500°F) - HEAT 5081 20 ‘ 10 8 6 | 10| 20 5.0 |RYFTURE 4 . 0.1 1.0 10 1000 10,000 Fig. 17. Creep and Rupture Data for MSRE INOR-8. ORNL-DWG €4-4418R 100 - T T . 593°C (11D0°F I 1 11 | : SO 704sc (1300°F) | )b = f 1 bt bt B16°C (1500°F) ™~ : i [ R . i P . i e 101 L _do HEAT 5055 =-ri i~ =14 HEAT 5075 o 0 HEAT 5081 N 5 B t 1 _OPEN SYMBOLS - PARALLEL TO R.D. CLOSED SYMBOLS-TRANSVERSE TO ED_SYMBOLS-TRANSVERSE } | | b bl Do | ‘ o f ! ] ‘ ! : i | Pl i 1 10 100 1000 10,000 TIME TO RUPTURE (hr) Fig. 18. Stress-Rupture Behavior of MSRE INOR-8. 18 3 ORNL-DWG 64-4434R {x 407 80 60 e 593°C (1100°F) 40 — o + = e 20 w) w w o ’.— w 10 ‘ i . INOR—8 8 4l AS RECEIVED-TESTED IN AIR . : - MATERIAL FROM MSRE PLATE 6 - o HEAT 5055 HgngF); ’ & HEAT 5075 | . 0 HEAT 508 4 | . OPEN SYMBOLS ~PARALLEL TO R.D. CLOSED SYMBOLS ~TRANSVERSE TO R.D 1078 10”3 10”4 1072 1072 10~! MINIMUM CREEP RATE ( ) in in.—hr Fig. 19. Creep Behavior of MSRE INOR-&. CONCTLUSIONS These experiments on three heats of INOR-8 used in the MSRE construc- tion can be summarized with the following conclusions: 1. The tensile properties are equivalent to those for earlier experi- mental heats of INOR-8. 2. The three heats tested show no tensile strength variation with plate orientation or with heat. 3. One heat (5075) exhibited somewhat less ductility at tempera- tures above approximately 538°C {1000°F) compared with heats 5055 and 5081. 4. Rupture strength in creep for these 3 heats is somewhat better than those for the earlier heats. 5. The minimum creep rate behavior of all three heats is the same. Since the design of the MSRE was based on the data from earlier experimental heats of INOR-8, it would appear that an extra measure of confidence in the integrity of the INOR-8 components of the reactor components is in order. - 19 ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Graphic Arts Department and the Metals and Ceramics Division Reports Office for their help in preparing this document. The work of C. W. Walker, who ran the creep experiments; C. W. Dollins, who ran the tensile tests; and V. G. Iane, who helped prepare the data, is also appreciated. 1-2. 46, 10. 11. 12. 14. 15. 16. 17. 18. 19. 20. 21. 22, 23. 24 25. 20. 27. 28, 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41, 42, 43. 4ty 45, 46. 47, 48, 49, 50-52. Central Research Library 53, ORNL — Y-12 Technical Library 54, Document Reference Section 55, Iaboratory Records 56. ILaboratory Records, ORNL RC 57. ORNL Patent Office 58. G. M. Adamson, Jr. 59, L. G. Alexander 60. S. E. Beall 61. C. E. Bettis 62. E. S. Bettis 63. D. S. Billington 64, F. F. Blankenship 65. G. E. Boyd 66, A, T. Boch 67. S. E. Bolt 68. C. J. Borkowski 69, E. J. Breeding 70-72. F. R. Bruce 73. 0. W. Burke T4, D. O. Campbell 75. S. Cantor 76. W. G. Cobb 77 J. A, Conlin 78. W. H. Cook 79. L. T. Corbin 80. G. A. Cristy g1. J. L. Crowley 82. ¥. L. Culler 83. J. E. Cunningham 84 . W. W. Davis 85. J. H. DeVan 86. C. W. Dollins 87. R. G. Donnelly 88. D. A, Douglas, Jr. 89. E. P, Epler 0. W. K. Ergen 91. A. P. Fraas 2. J. H Frye, Jr. 93, C. H. Gabbard 94, . W. R. Gall 95. R. B. Gallaher %6—101. R. G. Gilliland 102. W. R. Grimes 103. A. G. Grindell 104. D. G. Harmon 105. C. S. BHarrill 106. M. R. Hill 107. 21 INTERNAI, DISTRIBUTION PP OHENE P H PN NP AN E R RPN N OIS EER SR QR UL Y AHEQFORPYHIT@He@I DDz uEQ ORNL-TM-1017 Hise Hof'fman Holz Howell Kasten Kedl Kennedy Kinyon Knight Lane Tundin MacPherson Mann Martin McCoy McDonald McGlothlan Miller Moore Moyers Nestor Northup Parsly Patriarca Richardson CEHERIRO Robertson Roche Savage Shaffer Slavghter Smith ocmith Spiewak L. Stephenson W. Swindeman Taboada mERoEXaAEE T Tallackson Thoma Trauger Venard Ulrich Weir Walker Watkin Weinberg Westsik 108. 109. 110. 111. 112—113. 114—-115. 116-118. 119. 120~-134, 22 Wilson Wodtke Woods G Q =S EXTERNAL DISTRIBUTION C. M. Adams, Jr., Massachusetts Institute of Technology A, E. Carden, University of Alabama David F. Cope, AEC, CRO J. Simmons, AEC, Washington Research and Development, AEC, ORO Division of Technical Information Extension