L 3 445k 0050L48 2 {?. 106 CRIGEN — THE ORNL ISOTOPE GENERATION AMD DEPLETION CODE M, 1 EBell Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Roval Road, Springfield, Virginia 22151 Price: Printed Copy $5.45; Microfiche $0.95 This report was prepared as an accouni of work sponsorzd by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or respansibility for the accuracy, completeness or usefulness of any information, appsratus, product or process disclosed, or represents that its use would not infringe privately owned rights, . ? ORNL~-L4628 UC-32 — Mathematics and Computers Contract No. W-7405-eng-26 CHEMICAL TECHNCOLOGY DIVISION ORIGEN — THE ORNI, ISOTOPE GENERATION AND DEPLETION CODE * M. J. Bell e A o R H . MAY 1973 s o o~ e e A XY e A Sy B AR 6 e 3 . 2 * : Present address: USAEC, Washington, D.C., . -..- A S s L !.‘..1 . 4 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Termessee 37830 operated by UNICN CARBIDE CORPORATICN cxe ] o.0. o s comessros || INEIGTARAN 3 445k 0050L48 &2 iiil CONTENTS Abstract e e e e e e e e e e e 1. TIntroduction 1.1 References for Section 1 . . . .+ & v v v v v « « « Description of Mathematical Method . 2.1 Computation of the Matrix Exponential Series 2.2 Use of Asymptotic Solutions of the Nuclide Chain BEquations for Short-Lived Isobtopes . . . . . . . « . . 2.3 Application of the Matrix Exponential Method for Nonhomogeneous Systems e e e e 2.4 Computation of Neutron Flux and Specific Power . 2.5 Construction of the Transition Matrix . . . . . . 2.6 References for Section 2 . . . v v v v v v v e e e 0. Description of Nuclear Data Library . . . . . . . . . 3.1 MNuclear Properties of Cladding snd Structural Materials 3.2 Nuclear Properties of the Isotopes of the Actinide Flements and Their Daughters . . . + « « + « « . 3.3 Nuclear Properties of the Fission Froducts 3.4 Photon Yield Library . . . . . . . . . 3.5 Miscellaneous Nuclear Properties . . . . . . . . 3.6 References for Section 3 . . . « v +v v v v 4 . o« . Uszer's Manual for the ORIGEN Code 4.1 Description of ORIGEN Code Programs . . . . . 4.2 Description of Card Input to the ORTGEN Program . . 4.3 Input for Sample Problem . . . . . L, )i Additional Programming Considerations . . . . . . . .5 References for Section % . . . . . ¢ v v v v 0 e e .. Page 12 13 14 18 19 19 5. 6. iv Glogsary of Warning and Error Messages . AppendiX . . 0 v 4 e e e e e e e e e e ORIGEN - THE ORNL T8OTOPE GENERATTON AND DEPLETION CODE M. J. Bell ABSTRACT ORIGEN is a versatlle point depletion code which solves the equations of radiocactive growth and decay for large numbers of isotopes with arbltrary coupling. The code uses the matrix exponential method to golve a large system of coupled, linesr, irst-order ordinary differential eguations with constant coef- icients, The general nature of the matrix exponential method ermits the {reatment of complex decay and transmutation schemes. An extensive library of nuclear data has been compiled, including alf-lives and decay schemes, neutron absorption cross sections, fission yields, disintegration energies, and multigroup photon release data, ORIGEN has been used to compute the compositions and radicactivity of fission products, cladding materials, and f'uel materials in LWHs, LMFBRs, MSBRs3, and HTGRs. The applica- tions are illustrated with calculated inventories and radiation levels for spent fuel irradiated to a2 burnup of 33,000 MWd/metric ton in a PWR spectrum. o Hy = 1. INTRODUCTION One of the problems commonly encountered in the field of nuclear energy is the solution of eguations involving nuclear transmutation and decsy. To a good approximation, these nuclide chain equations can bhe represented as a simultanecus system of linear, homogeneocus, Tirst-order ordinary differential equations with consgtant coefficients. In many ingtances, the matrix of nuclear transmutetion ccefficients is triangular and the system of equations can be zgolved using the method of Bateman,l which has been employed in a number of computer codes. =2 However, each of these codes has generally suffered from an inasbility to treat more than a few specific types of transmutations snd from difficulties encountered - ':é » - in treating 'feedback," despite some vrogress in these areas. ""Feedback” is a term used to describe a reaction in which an isotope decays to produce one of its precursors, as is encountered in alpha decay of the actinides, Mathematically, the appearance of such terms results in a transition matrix that is not triangular. N0 An alternative approach to solving the same system of eguations /’ utilizes the matrix expcnential method, which has been employed by Pease” and others.TnlO Although completely general, this method has been limited in the past by the storage that 1s regquired to generate the malrix expo- nential series and by computational inaccuracies, Computational difficul- ties arise because the nuclide chain eguations constitute a classic example of a set of "stiff" ordinary differential equaticns, that is, one in which the eigenvalues of the characteristic equation for the system are widely Separated.ll The matrix exponential method has been employed in the ORTIGEN code in order to exploit its extreme generality. The limitation cn the number cf nuclides that can be treated, which results from the necessity to store large arrays, has been overcome by twe devices: (1) ORIGEN stores only the nonzero elements of the normally sparse tran- sition matrix and two vectors that are used to locate them; and {2) the cxpansion of the matrix exponential function is performed using a recursion relation which requires storage of only cne vector in addition to the solution. Computaticnal difficulties arising from eigenfunctions with very large eigenvalues (corresponding to nuclides with very short half- lives) are avoided by using asymptotic solutions of the nuclide chain equations for the conditions of secular and transient equilibrium. The ORIGEN code has been designed to be extremely versatile in its applications. It is capable of computing isotopic compositilions of fuel, fission products, and cladding in both fixed and fluid fuel reactors. The library of nuclear data that has been compiled for use with the code is sufficiently extensive to treat 235U and 239Pu fuels in both Tast and 233 thermal spectra, and fission of U in thermal spectra. The library also contains multigroup photon release rates for the Tission products and the heavy metals, which permits the calculation of gamma-ray spectra in spent and refabricated fuels. One other impcortant feature of the code is that The matrix exponential technigue has been developed to sclve a nonhomo- geneous systen of equations. This fealture makes it possible for ORIGEN to be employed in calculating the accumulation of activity in processing plants, in waste disposal operations, and in the environment. The remainder of this report consists of three major sections, Section 2 develops the mathematical techniques used in the ORIGEN cowputations. Section 3 summarizes the information that is contained in the library of nuclear data. Section 4 examines the function of each subroutine in the program, discusses programming considerations, describes the input for the code, and givesg input for a sample problem, Output for a sample calculation is included in the Appendix. The individual sections are intended to be independent, so that Section U4 can be employed as a user's manual without reference to preceding sectlons. A complete code package has been deposited with the Radiation Shielding Tnformation Center. Inguirieg or requests for the code may be mailsd to: Codes Coordinator Radiation Shielding Information Center Oak Ridge National Laboratory - - 5 Oak Ridge, Tennessee 37830 $ c Al J P or telephoned to: Area code 615, W83-8611, ext. 3-694k4, or FTS XX - 615-L83-60LL, Acknowledgments. — The author is deeply Indebted to a number of individuals who contributed to the development of the ORIGEN code over a period of several years. The program was initiated by J. P, Nichols, who supervised the development of the code. Much of the nuclear data was compiled by E. D, Arnold” with the assistance of H. P, Soard. The author was assisted in the programming by R. S. Dillon "~ and Mrs. L. G. Knauer,* and is deeply grateful for the efforts of Mrs. 1. G. Loope, who prepared the manuscript. Editing was done by C. W. Kee, who now has the task of data revisions and program modifications. TFinally, the author appreciates the encoursgement and suggestions of a number of userz of the program who have patiently awaited the publication of this report. * Pregsent address: Osk Ridge Gaseous Diffusion Plant. Present address: AECOP, Oak Ridge, Tenmn. TPresent address: Robertsville Junior High School, Cak Ridge, Tenn. 1. z. 4= i0. 11, 1.1 References for Section 1 H. Bateman, Proc. Cambridge Phil. Soc. 15, 423 (1910). M. P. Leitzke and H. C. Claiborne, CRUNCH — An TBM-70L Code for Calculating N Successive First Order Reactions, ORNL-2958 (Cet. 24, 1960). D. R. Vondy, Development of a General Method of Explicit Solution to the Nuelide Chain FMquations for Digital Machine Caleunlations, ORNL-TM-361 (Oct. 17, 1952). H. H. Van Tuyl, ISOGEN — A Computer Code for Radioisoctope Generation Calculations, HW-83755 (1964). R. 0. Gumprecht, "Computer Code RIBD," Trans. Am. Nucl. Soc. 12(1), 1h1-hb2 (June 1969), L. Peage, DEEMS, A FORTRAN Program for Solving the First Degree Coupled Differential Equations by Expansion in Matrix Series, TSI-49 (October 1963). H. H. Poynter and J. Suez, "Automatic Digital Set-up and Scaling of Analog Computers,” Proc. 1963 Joint Automatic Control Conf., . 156. B. H. Duane, in Physics Research Quarterly Report, Ccl.-Dec. 1963, HW-30020 (196L). H. B. Krug, J. E. Olhoeft, and J. Alsina, Chap. 8 in Supplementary Report on Evaluation of Mass Spectrometric and Radiochemical Analyses of Yankee Core T Spent Fuel, Including TIsotopes of Elements Thorium through Curium, WCAP-56086 (August 1969). S. J. Ball and R. K. Adams, MATEXP, A General Purpose Digital Computer Program for Solwving Ordinary Differential Equations by the Matrix Exponential Method, ORNL-TM-1933 (August 1907). M. ®, Fowler and R. M. Warten, 1BM J. Res. Develop. 11, 537 (1967). 2. DESCRTPTION OF MATHEMATICAL METHOD A general expression for the formation and disappearance of a nuclide by nuclear transmutatlon and radioactive decay may be written as Tollows: N v I Lij?\jxj + ¢ Z IikUka - (?\i + qfioi).zs.i (1 =1,...N), (1) J=1 =1, where Xi ig the atom density of nuclide i, hi is the radioactive disinte- gration constant for nuclide 1, S; is the spectrum-averaged neutron absorption c¢ross section of nuclide i, and 4.. and fik are the fractions of radicactive disintegration and neutron absorption by other nuclides which lead to the formation of species 1. Also in Eg. (1), ¢ is the position- and energy-averaged neutron flux, which is also assumed to be constant over short intervals of time, Rigorously, the system of equations described by Eq. (1) is nonlinear since the neutron flux will vary with changes in the composition of the fuel. However, the variation with time is slow and, if the neutron flux is considered to be constant over short time intervals, the gystem of Eq. (1) is a homogeneous set of simultaneous first-order crdinary differential equations with constant coefficients, which may be written in matrix notation: » f-ax. (2) Equation (2) has the known solution X - exs (48) £(0) (3) S where %(O) is a vector of initial atom densities and A dis a transition matrix containing the rate coefficients for radiocactive decay and neutron capture. The function exp (At) in Eg. (3) is the matrix exponential N 2 function, a matrix of dimension N7, which is defined as (46)° D (at)” exp (A) = L+ At + o+ ... = ) o () if one can generate this function accurately from the transition matrix, then the solution of the nuclide chain equations is readily obtained, 2.1 Compuctation of the Matrix Exponential Series Two principal difficulties are encountered in employing the matrix exponential technique to solve large systems of equations: (1) a large amount of memory is required to store the transition matrix and the matrix exponential function, and (2) computational problems are encoun- tered in applying the matrix exponential method to systems of equations with widely separated elgenvalues. The generation and storage of the transition matrix are explained in Sect. 2.5. 'The computation and storage of the matrix exponential function have been facilitated by developing a recursion relation for this function which does not require storage of the entire matrix, Thus it is possible to derive an expression for one nuclide in Eg. (3) which is given by @© n Xi(t) = ) Ci 3 (5) ] n=0Q n . . . where Ci 1s generated by use of a recursion relation 0 ¢ = x;(0) (62) N ntl 0t ‘ n - Cl Con+l E; aijcj 2 J=1 Here, aij is an element in the transition matrix that is the first-order rate constant for the formstion of species i from species j. This algorithm } N n . .y . i requires storage of only one vector C° in addition to the current value of the solution. In performing the summation indicated by Eq. (5) it is necessary to ensure that precision in the answer will not be lost due to the addition and subtraction of nearly equal large numbers. In the past, this objective has been accomplished by scaling the time step by repeatedly dividing by 2 until the norm of the matrix is less than some acceptable small value, computing the matrix exponentizl functicn Tor the reduced time step, and repeatedly squaring the resulting matrix to obtain the desired — tine step. Such a procedure would be impractical for a computation involving large numbers of nuclides (many of which have short half-lives) corresponding to large norms of the é} matrix. However, it is ,just for these short-lived isotopes that the conditions of secular and transient equilibrium are known to apply. Thus, in the compubtations performed by ORIGEN, only the compositions of those nuclides whose diagonal matrix elements are less than a predetermined value are computed by the matrix eprnential method. The concentrations of the isotopes with large diagonal matrix elements are computed using an analytical expression for the condi- tions of secular or transient eguilibrium, as described in Sect, 2.2. . h 2 Lapidus and Luu53 have shown fthat the accuracy of the computed mabrix exponential function can be maintained at any desired value by controlling the time step such that the norm of the matrix At is less than a predeter- mined value which 1s fized by the word length of the digital computer used in the calculations. They define a norm of the matrix é, denoted by [AT, which is given by the smaller of the maximum-row sbsolute sum , max E: i 7 J and the maximum~column absolube sum: [A] = min {max >: ‘a . . i I3 aijl} ’ (7) where Iaij’ denotes the absolute value of the element ajj' They show that the maximum term in the summation for any element in the matrix exponential n - . n . . function cannot exceed ai oo where n is the largest integer not larger than [A7t, Consideration of the word length of the computer used to perform the calculations will indicate the maximum value of n that can be used while obtaining a desgired degree of significance in the results. Using double precision arithmetic, the IBM 360 cperating system can perforn operations retaining 16 significant decimal figures. In the ORIGEN code the norm of the transition matrix is restricted to be legs than [A] < -2 1n 0.001 = 13.8155, so that the maximum term that will be celculated will be approximately 49,000. Thus, a value as small as exp (-13.8155) = 10"6 can be computed, while retaining five significant figures. A sufficient number of terms must be added to the infinite summation given by FEg. (5) to ensure that the series has converged. The m mth term in the series for e[A] is equal to [i? , waich, for large values -1/2 of m, can be approximated by (Léfifs)m(Bmfl) 1/ using Stirling's approxi- mation. The value of the norm, [A], is calculated by the code; and m is set equal to the largest integer in % [A] + 5, which has been determined as a "rule of thumb" for the number of terms necessary to limit the error to <0.1%. Thus, for [A] equal 13.8155, 53 terms will be reguired in the summation., The absolute value of the last term added to the summation in this case will be less than 6.4 x 10_10, which is sufficiently small compared with 10"6. It has been observed that the norm is usually less than its maximum value and, in most cases, 3C or fewer terms are required Lo evaluate the series. It has been mentioned that, in previous applicationgsof the malrix exponential method, the restricticn of the size of the norm of the transition matrix necessary to treat nuclides with large elgenvalues was accomplished by repeatedly dividing the matrix by 2, and the final value of the matrix exponential function was obtained by repeatedly squaring the resulting intermediate matrix exponential function. In the present application, the suggestion of Ball and Adamsh that the transitions involving isotopes with large decay constants be considered "instantaneous" was adopted; that is, if A » B - C and if the decay constant for B is large, the matrix is reformulated as if C were formed from A directly, and the concentration of B is obtained by an alternative technique. Similarly, if the time constant for A is very large, the transition matrix is rewritten as if the amcunt of isotope B initially present were equal to A + B, and only the transition B - C is obtained by the matrix exponential technique. This reduction of the transition maltrix and the generation of the solution by the matrix exponential method are performed by the subrcutine TERM (see Sect. 4.1). 2.2 Use of Asymptotic Solutionz of the Nuclide Chain Equations for Short-Lived Isotopes The numerical technigues described in Sect. 2.1 are applied only to obtain the golutions for isotopes that are sufficiently long-lived to satisfy the criterion thal the norm of the transition matrix be less than 2 1ln 1000. Short-lived isotopes are treated by using linear combi- nations of the homogeneous and particular solutions of the nuclide chain equations that are computed using alternative procedures. The guantity of a short-lived nuclide (originally present at the begimning of an interval) that remains at the end of the interval is computed in subrou- tine DECAY using a generalized form of the Bateman equations which treats an arvitrary forward-branching chain. The generalized treatment is achieved by searching thréugh the transition matrix and forming a queue of all short~lived precursors of an isotope. The Bateman equation solution ig then applied to this queue. The queue is terminated when an isotope having no short-lived precurscrs is encountered. The algorithm also has provisions for treating two isotopes with equal eigenvalues and for treating cyelic chains. Bateman's solution for the ith member in az chain at time t may be written in the form:5 . ~ds b Ni(t) = Ni(O)e i-1 i-1 . - Py omoy | ) 2yt e () Pt | k — (d' - d') uj"}l)j ‘1‘ d]:-] - d-' ? k=1 e 1 J n=k R J J n#]j where NJ(O) is the amount of isotope J initially present and the members of the chain are numbered consecutively for simplicity. This method of i-1 solution used the conventicn that T[] n=kK and that the empty product (x = 1) is equal an+l,n is equal to the product "k1,k, Tkie, kel P4,1.17 to unity. The notation a. 5 Lor the first~order rate constant is the -2 10 il 1 w© same as that described in Sect. Z.1, and di In the present spplication, Egq. (8) is recast in the form ~dit N, (t) = I, (O)e -1 i1 qvfi i-1 Bil 1l * exp (mdjt) - + ZJ N (0) 1 2 E: d k 9y ] (ds k=1 n= jak 11 by multiplication and division by N d . The first product in Eg. (9) n=k has significance because it is the fraclion of atoms of isolope k that follow a particular sequence of decays and captures. If this product becones less than 10—6, contributions from nuclide k and its precursors to the concentration of nuclide 1 are neglected. The inner summation in Eq. (9) is performed in double precision arithmetic to preserve accuracy. This procedure is unnecessary for evaluating the outer summation because all the terms in this sum are known to be positive. The difficulties described by Vondy in applying the Bateman equations for small wvalues of dit do not occur in the present application since, when this condition occurs, the matrix exponential solution is employed. The matrix exponen- tial method and the Bateman equations complement each other; that 1s, the former method is qguite accurate when the magnitude of the characteristic values of the equations tc be solved 1s small, whereas the Bateman solution encounters numerical problems in this range. TFor the case where two isotopes have equal removal constants (d; = dj), the second summation in Egq. (9) becomes: i-1 ] \ -d st i-~1 d, E; d.t e I —— (10) :{_ Il i ik n { J n#gj An analogous expression is derived for the case when 4, = dj. These forms of the Bateman equations are applied when two isotopes in a chain have the same diagonal element or when a cyclic chain 1s encountered, in which case & nuclide is considered to be its own precursor. 11 In the situation where a short-lived nuclide has a long-lived precursor, a second alternative solution is employed. 1In this instance, the short-lived daughter is assumed to be in secular equilibrium with ite parent at the end of any time Interval. The concentration of the parent is obtalined from subroutine TERM, and the concentration of the daughter is calculated in a subroutine named EQUIL (see Sect. 4.1) by setting Eq. (3) equal to zero: [ S N . =0 = : Xy ) E: aij Xj . (11 J=1 Equation (11), which is a set of linear algebraic equations Tor the concentrations of the short-lived isotopes, is readily solved by the Gauss-Seidel iterative technique.6 The coefficients in Eq. (11) have the property that all the diagonal elements of the matrix are negative : and all off-diagonal elements are positive. The algorithm involves inverting Eq. (11) and using assumed or previously calculated values for the unknown concentrations to estimate an improved value, that is, N +1 . i & :....;.Ll . (12) 1 ciii :LJ J 3=1 JH The iterative procedure has been found to converge very rapidly since, for these short~lived isotopes, cyclic chains are not usually encountered and the procedure reduces to a direct sclution. 2.3 Application of the Matrix Exponential Method for Nonhomogeneous Systems Certain problems that involve the accumulation of radicactive materials at a constant rate and are of engineering interest require the solution of a nonhomogeneous system of first-order linear, ordinary differential eguations. I[n matrix notation, one writes %: ,\X_,Jr%' (13) Q= This set of equations has the particular solution x(t) = [exp (88) - 1A B (14) ~ ¢ . ~1 . . . s axo s . - provided that A = exists. Substituting the infinite series representation for the matrix exponential function, one obtains At (at)” X(6) = [L+ Sr+ =+ .1 B (152) A 2 \ =\ /) T ) B (15b) m=0 The particular solution may also be expressed as the sum of an infinite serles: whose terms are generated by use of a recursion relation 1 Dy =bst, (17a) N a+1 t ja Yoot o 43 DJ (170) J=1 Once again, the algorithm isg applied only to long-lived nuclides, and the concentrations of the short-lived nuclides are obtained by an alternative technique. In this situation, Hg. (11) is modified to the form N ¥, = 0 = 24 Ay Xs b, (18) J=1 and is solved by the Gauss-Seidel method. After the homogeneous and partlicular sclutions have been cobtalned, they are added to obtain the complete solution of the gsystem of eguations. 2.4 Computation of Neutron Flux and Specific Power In order to compute changes in fuel composition during irradiation at constant power, it is necessary to take into account changes in the neutron flux with vime as the fuel is depleted. At the start of the computation, the known parameters are the initial fuel composition and the constant specific power that the fuel must produce during a time interval. The instantaneous neubtron flux may be related to the fuel composition at a fixed time by the equation P 3.20x 107 5, (19) where P is the specific power, in MW per unit of fuel; ¥ is the macroscopic fission cross section, in cm? per unit of fuel; and ¢ is the instantaneous neutron flux, in neutrons per cm?-sec. The constant in Zg. (19) is derived by assuming a value of 200 MeV per fission. An approximate expression for the value of the neutron flux as a function of time is obhtained by expansion in a Taylor series about the start of the interval: 6 . 2 o . 2 . 0_1 @) = 3.125 x 1017 p r|__z:(o)'l L 2O 5 (’*[2(0” - 2(0) MO)) bt ( $(0)7 5(0)° or s(t) = 9(0) {1 - t%%—%+§-—(—?ufil) ] (200) 2(0)2 - 14 The average neutron flux during the interval is obtained by integrating over the interval and dividing by t: 7 ] 2(0) . t2 /25(0)” - £(0)%(0) L..l - ‘ 1(O2 " ‘é_' ( 2(0)2 )> * ...] : (21) oo et ¢ = ¢(0) [\/‘ Here, the notation £(0) is used for the macroscopic fission cross section at the start of the time interwval, and i(O) and i(O) are the first and second time derivatives evaluated at the start of the interval. The values of é(O) and f(O) can be evaluated since %(O) = A X(0) and %(O) = éfi%(o) = é? X(0). FEquation (10) is used in the computer program in subroutine FLUXO to estimate the average flux during an interval, based on conditions at the start of the interval. The term involving the second derivative is only employed for the first time interval where, for some isotopes, X(O) is zero but %(O) is nonzero. The average power produced during a time interval for a fuel in a fixed neutron flux is estimated from the initial composition using a similarly derived equation: . .o z P = 3.20 x 1077 px(0) [1+ £(0) £+ Ho) -+ ...] (22) In order for the above procedures to estimate the average neutron flux or average specific power correctly, the changes in neutron flux during thie interval must be relatively small. If the average value of either of these guantities differs from the initial value by more than 20%, a message Will be printed out advising the user to employ smaller {ime increments. 2.5 Construction of the Transition Matrix An extensive library of nuclear properties of radiocactive isotopes has been compiled for use with the ORIGEN code. {See Sect. 3 for details.) The data are in the form of half-lives, fractions of transitions that produce a given nuclear particle, cross sections, and fractions of absorptions thatl yield certain particles. These data are read from 15 the library tape and processed into a form for use by the mathematics routines in subroutine NUDATA (see Sect. 4.1 for description of NUDATA), nuclides uvsing the present ccde., However, stralghtforward construction of a generalized transition matrix would require the storage of an 800 x 800 array, which would tax the storage capacity of the largest computers available today. On the other hand, the transition matrix is normally very sparse, and storage requlrements can be reduced gubstantially by storing only the nonzero elements of the matrix and two relatively small vectors thatl are used to locate the elements. Subroutine NUDATA is also used to generate the compacted transiftion matrix and the two storage vechbors. Subroutine NUDATA processes The library tape by reading a six-digit identifying nuwber, NUCL(I), for each nuclide, Tollowed by the half-life and the fraction of each decay that occurs by several competing processes. A zecond card, which contains neutron absorphtion cross sections for (n,y), o (n,@), n,p), (n,2n), (n,3n), and (n,fission) reactions for one of four reactor spectra, is then read. The six~diglt identifying number is equal to Z * 10,000 + W * 10 + I3, where 7 is the atomic number, W is the atomic welght (in integral atomic mass units), and I3 is either O or 1 to indi- cate a ground state or a metastable state, respectively. This information is processed into a compacted transition matrix, as described below. first, the half-life is used to calculate the radiocactive digintegra~- ct ion constant, A. IFirst-order rate constants for various competing decay processes are calculabted by multiplying A by the fraction of transitions to that final state. The product nueclide resulting from each nuclear transition is next identified by addition of a suitable constant to the six-digit identification number for the parent nuelide. {(For example, for a B decay, 10,000 is added to the parent identifier; for nsutron capture, 10 is added; or for isomeric transition, the quantity -1 is added.) Two arrays are constructed: the first, NPROD(J,M), contains all the products which can be directly formed from any nuclide J by the transitions considered in the library; and the second, COEFF(J,M), con- tains the Tirst-order rate constants for the corresponding transition 93] 16 When these arrays have been ccnstructed, a search of the NPROD array is conducted to identify all the parents of a given nuclide I. [Nuclide J is a parent of I if NPROD(J,M) equals NUCL(I) for any reaction of type M.] When a parent of nuclide 1 has been located, the value of the correspond- ing coefficient aij in the transition matrix is equal to COEFF(J,M). However, direct storage of aij in a square array would require an exces- sive amount of storage. Hence, this procedure 1s avoided by incrementing an index, N, cach time a ccefficient is identified. The coefficients are stored sequentially in a one-dimensional array, A(N); the value of J is stored in another one-dimensional array, LOC(N); and the total number of coefficients for production of nuclide I are stored in a third array, NANO(T). VWhen all of the coefficients for every nuclide have been stored, the NfiNO(I) array is converted to indicate the cumulative number of matrix coefficients for all the isotopes up to and including I [i.e., N¢NO(T + 1) = NYNO(I) + N@NO(Ll + 1) for all I greater than 1]. After this procedure has been executed, the NfiNO array is a monoctonically increasing list of integers whose final value is the number of nonzero, off-dlagonal matrix elements in the transgition matrix. This final value is preserved separ- ately as the variable NON, TFor computational convenience, the wvalues of the diagonal .matrix elements are stored in a separate vector, D(I). To perform the multiplication of the transition matrix by a vector (e.g., N ii = ¥ aijxj), as is required to execute the algorithm described in h J=1 Sect. 2.1, the operations described in the flow chart given in Fig. 2.1 are employed. Two types of data In the nuclear library require a departure from the procedure Jjust descrived, In the case of neutron-induced reactions, 1t i1s necessary to specify the neutron flux before first-order rate coefficients can be calcvlated as products of flux and cross sections. At the time the matrix is generated, the neutron flux is unknown., Also, to perform a fuel depletion calculation, the flux must be permitied to vary with time. Thus, when the nonzero, off-diagonal matrix elements for isotope 1 are stored, all those for formation by radicactive decay are grouped first and are Tollowed by those for formation of T by neutron 17 ORNL DWG 72 -7938 I =1 N= 4 4 X(I) = D(IIx X(I) |e « FALSE* J= LOC (N} X (1) =X {1} 4+A {N)n X {J) 3 NaN+1 1 MeV) for the fission reaction were obtained by integrating numerically the differential cross sections given in ref. 6. Cross sections for {(n,2n) and (n,3n) reactions were obtained from Pearlstein. Reactor-spectrum-averaged cross sectlons were obtained by assuming that the reactcr spectrum for neutron energies greater than 1 MeV had the same energy dependence as the fission spectrum, and by multiplying the fission- spectrum-averaged cross sections by the ratio of the fraction of the neutron flux zbove 1 MeV for the two spectra. (This ratio is contained in the parameter FAST that was defined in Sect. 3.1.) The variables RING, RIF, and SIGFF are not employed for the LMFER library. Reactor-spectrum-averaged capture, fission, and (n,2n) cross sections were generated by averaging the 18-energy-group AI/ENDF CTOSs 19 sections™” over the spectrum of ref, 10. Cross sections for (n,3n) reactions were estimated by ratiocing the values given in ref, 9. The procedure for reading this information frowm the tape for the actinides is identical to thatl described Tor The cladding and structural materials in Sect. 3.1. 3.3 Nuclear Properties of the Fission Prcducts The nuclesar properties of each fission product isotope are contained in five card-ilmage records. The first card contains data of a permanent nature in the formatl described previocusly, again with the exception that the field containing the isctopic abundances is ignored. The remaining four cards consist of neutron absorption and fission product yield data for the four reactor types described above. The form of the instruction used to read these data is: READ(7,9038)SIGNG, RING, FNGl, Y, IT 9038 FORMAT(7X, 2F9.2, F5.3, S5F9.2, T8C, I1) All of the wvariables in this instruction except Y have tThe definiticons given in Sect. 3.72. Radiative capture i1s the only neutron absorption event that is treated for the Tission products. The 2200-m/sec cross sections and infinite dilution resonance integrals for the thermal '’ €1 2 , . 6 , reactors were oblained from Stehn et al. and from Drake;' those for e 1l . o . _ the LMFBR were estimated by Arnocold, The variable RING is not employed in the fast reactor library, and the variable SIGNG isg a spechtrum-averaged 1t 5" and value‘in this instance. The variable Y is an array of dimension contains energy-dependent direct Tission preduct yields for a number of fissionable isotopes. Table 3.5 describes the information contained in the Y array for each of the resctor spectra. Thermal fission yields and fission yilelds for fast-neutron-induced fission of 232Th ware generated from the compilation of Katcoff“o‘by conservatively assuming that all of the direct yileld was to the first member of a chain when experimental data were not avallable. DUirect figsion yields for fast-neutron-induced 2.58UJ ang 257 235 . . . figsion of “)U, Pu were obtalned from Meek and Rider. The data of Meek and Rider for thermal-neutron fission yields of dJ’U . and 2390u were tested against the values in the ORIGEN library by com- paring the calculated postirradiation properties of the fiszsion products . computed using the two sets of yields with the afterheat values of Shure. For postirradiation times less than 300 sec, use of the yields in the ORIGEN library results in belter agreement with Shure's afterheat curves Table 3.56. Fissionable isotopes for Which Direct Fission Yield Dats Are 1ncludea in the ORIGEN Library for Various Reactor Spectra s : Reactor v(1)® v(z)*P 7(3)° ()P 1(5)%P & RE o HIGR 23354 235y 2380 p 2Py s 29pyt * - ?/ LWR 2334 23544 235 ¢ 2 39py - TMPRR 230 ¢ 238 ¢ -t - e : .- 3 | MSER 233y 23504 2320, _p 238 ¢ 239t : %4 indicates that the yvield 1s for thermal-neutron~induced fission. b, . .. . . . e T indicates that the yield is for fission-spectrum-ensrsy neutrons., 30 than does use of Meek and Rider's yield data. Hence, the present set of fission product yields has been retained since, for the fission product isctopes and properties in the ORIGEN library, they result in calculated postirradiation properties that agree more closely with accepted values, The disagreement is on the low sidej; and there is speculation that the data of Shure may underpredict actual afterheats, which would aggravate the disagreement. A later and more extensive compilation of fission 23 product yields by Meek and Rider -~ could not be considered at the present writing, but may result in better agreement of the afterheat values. In a light water reactor fueled with low-enrichment uranium, a few s : o o 241 . percent of the fissions will occur in the isotope Pu; in an LMFER, fission will take place in both ZHOPu and ZulPu, Hence, estimates of direct fission yields for fissicn of these isotopes are required to treat such fuels. Bxtensive measurements of direct fission yields for these isotopes have not bheen made, and calculations that have been made2 involve arbitrary corrvection factors which have not been verified experi- mentally and have been the subject of criticism by wah1.25 Therefore, in the present ORIGEN code, the direct fission yields Tor these isotopes 239 are taken to be equal to those for Pu. Although this approximation is believed to be sufficiently accurate for computing properties of mixed fission products, it may introduce substantial errors in estimates of concentrations of individual isolopes, particularly for chains whose yields fall on the edges of the low mass peak. 3.4 Photon Yield Library Data files 4, 5, and 6 contain multigroup photon production data, for the cladding and structural materials, heavy metal isolopes, and fission product isotopes, respectively. Both files Lt and & contain 12 energy groups, in the PHOEBE group structure,26 The lower energy bound and average energy in each of these groups are given in Table 3.7. For the isotopes of the actinide elements, the lowest ecnergy group has been divided into seven smaller groups with energies down to 20 keV, resulting in an 18~encrgy-group structure. This modification was made in order to 31 Table 2.7. Lower Fnergy Bounds and Average Group Energies for 12 Photon Energy Groups in the ORIGEN Library Lower Energy Mean Energy Group (MeV) (MeV) 1 0.2 0.3 2 0.4 0.63 3 0.9 - 1.10 L 1.35 1.55 5 1.6 1.99 6 2.2 2.38 7 2.6 2.75 8 3.0 3.2 9 3.9 3.7 10 4.0 L. 22 11 .5 L 70 12 5.0 5.25 32 enable the user to compute the x-ray source strength in refabricated fuels. The bounds and average energies for these low-energy groups are given in Table 3.8, For the isotopes of the actinide elements, groups 8 through 18 have the same energy bounds and average energies as groups 2 through 12 for the fission products. The photon abundances and energies accompanying a disintegration event are based entirely on the tables of Lederer g&mgl.l Arnold has used the SPECTRA code2 to calculale the contributicn tc the gamma-ray source from breunmsstrahlung radiation produced by beta decay in a uranium dioxide matrix. His results for several of the more important fission products are given in Table 3.9. These values have been zdded to the pnoton yields in the nuclear data library, which are recorded in the form of an equivalent number of photons per disintegration having the average energy of a given group. Table 3.8. Lower Energy Bounds and Average Group Fnergies for X~-Ray Groups in Actinide Photon Idibrary Lower Energy Average Energy Group (MeV) (MeV) 1 0,02 0.03 2 0.035 0.0k 3 0.050 0.06 b 0.075 0.1 5 0.125 .15 6 0.175 0.2 7 0.25 0.3 33 Table 3.9. Estimates of Bremsstrahlung FPhotons Resulting from Beta Decay of Several Fission Products in a Uranium Dioxide Matrix Photon Energy Photong per Beta Isctope Group Digintegration S or H3es 1 1,01 x 1072 2 h.2h x 1072 Pg 1 4,69 x 10"2 2 k.39 x 107 90y 1 k.ol x 1072 2 1.62 x 1072 3 2,48 x 10‘3 4 2.48 %= 1077 5 1.36 x 1077 _ 1%2m 1 1.529 x 107F 2 6.4h52 % 10772 3 1.617 x 1072 It 3.886 x 1073 5 1.231 x 10‘3 6 3.687 = 1077 T 3401 x 1072 8 h.2h8 x 107" kb, 1 7.528 x 1077 o 2.55 ¥ 1072 3 8.672 x 10723 L 1.236 x 107, 5 2.770 x 107! 6 3.962 x 1072 7 L.00 x 10™ £ - o, 1 7.583 x 1077 2 9.722 x 1077 o 1 6.733 x 1074 3h In computing the x-ray source strength in refabricated plutonium fuels, one source of photon radiation that is to be considered is (Q,y) 18 21 radiation originating from the reaction O(a,n) "N 1in oxide fuels. 238 Since Pu is the plutonium iscltope of highest specific alpha activity that is present In quantity in recycle plutcniuvm fuels, the photon pro- duction from this scurce has been included in the pholon production data 238 for Pu. The spectrum of photon radiation resulting from alpha decay of 238Pu in an oxide matrix was obtained from the compilation of Stoddard af and Albenesius. 3.5 Miscellaneous Nuclear Properties The CORIGEN code treats several olfher sources of radiation that are nct included in the nuclear data library but, instead, are programmed into the code. Bpecifically, these are photon and neutron production from spontaneous fission of the Transplutonium isotopss, and neutron production by (Q&,n) reactions of alpha particles with o and l80 in oxide Tuels. The spontanecus fission photon spectirum was Taken to be the gsum of the prompt gamma-ray photon spectrum of 235U given by Peele and MaienscheinES and the equilibrium fission product photon spectrum used by Stoddard.29 These data were converted Lo the 18-energy-group structure shown in Table 3.10, using flat weighting within energy groups. This information, which is stored in the array SFCAMA (defined in sub- routine GAMMA), is employed to compute the photon spectrum resulting from radiocactive decay of the isotopes of the actinide elements. Spontaneous Tission of lsotopes of the actinide elements is accom- panied by the release of neutrons, which present an additional socurce of penetrating radiation. The average number of neutrons released, v, in the spontaneous fission of a number of isotopes has been summarized by Arnold.3o The values of v for isotopes of mass 238 through 244 increase approximately linearly with 1ncreasing atomic weight, A, and, within the scatter of the data, are well represented by the eguation v = 2.8k + 0.1225 (A - 244) . (1) Table 3.10. Thoton Yields per 235y Fission Tor 18-Energy-Group otructure Imployed in ORIGEN Library Prompt plus equilibrium fission product x~ and y-rays Average Fnergy Group (MeV) Photons/Fission Mev/Fission 1 0.03 0.08h 0.00252 2 0.0k 0. 03k 0.00336 3 0.06 0.14 0.0084 L 0.1 0. h6 0.0U5 5 0.15 O, 64 0.096 & 0.2 0.99 0,108 7 0.3 2.01 0.603 8 0.63 9.15 5.76 9 1.10 1.87 2.06 10 1.55 1.27 1.97 11 1.99 0,67 1,3k 12 2,38 0. 3k 0.80 13 2.75 0.16 0.43 14 3.2 0.097 0. 31 15 3.7 0.062 0.23 16 L 22 0.039 0.16 17 L, 70 0.019 0.087 18 5.25 0, 017 0,061, Suun / 18.09 14,17 36 This function is used in subroutine GAMMA to compute the specific neutron generation rates in spent fuels. The ORIGEN code calculates only the total neutron production ratesg; however, the energy dependence of the spontaneous fission neutron spectrum for several isotopes has been found 5 20 to be similar to that of 2-°y, 27 n some applications, neutrons produced by (&,n) reactiocns of high- energy alopnha particles with light elements constitute an important source 27 ,29,50 of penetrating radiation. Theoretical estimales have been made of the quantity and spectra of neutrons produced by reactions of alpha 238 2kz particles from 38Pu, Cm, and 2l 238 PuO, , have been found to exceed experimental values Cm with oxygen atoms in oxide fuels and, in the case of by a factor of 2, TIn the ORIGEN code, the number of neutrons produced per alpha disintegration in UO, fuel is calculated from the relationship: 2 neutrons B ~10 _3.65 alpha disintegration 1.0 x 10 o ? (2) where Ea igs the alpha particle energy in MeV. This expression results in source strengths that are approximately 50% of theoretical, in agree- ment with the experimental results for 238?&. Equation (2) is employed to compute neutron production by all alpha emitters, including those Tor which data have not previously been available, 2.6 References for Section 3 1. C. M, Tederer, J. M, Hollander, and 5. Perlman, Table of Tsotopes, 6th ed., Wiley, New York, 1967. 2. E. D. Arnold, Handbook of Shielding Reguirements and Radiation Characteristicg of Isotopic Power Sources for Terrestrial, Marine and Space Applications, ORNL-3576, Appendix A (1964 ). o Code of Federal Regulations, Title 10, Part z0O. +] = vV Radiation Concentration Guideg for the Actinides from h,ooM, 2 ORNL~1M-I1 32 (in preparation). . il e a« DBEs Lo R erne , 207y 5. Report of Committee TL on Permissible Dose for Internal Radiation, Chapter TV, Pergamon Press, 1959, 6. J. R. Stehn, M. D. Coldberg, B. A. Magurna, and Renate Weiner-Chasman, Neutron Cross Sections, 24 ed., Suppl. 2, BNL-325 (1964). 10. 11. lz. 13. 1l 37 M, K. Drake, Nuclecnics 2L, 108-5h4 (1966). H. Alter and C. B, Weber, J. Nucl. Mater. 16, 68-73 (1965). S. Pearlstein, Analysis of (n,2n) Cross Sections for Nuclei of Mass A > 30, BNL-897 (1964). H. Kusters and M. Metzenroth, The Influence of Some [mportant Group Constants on Integral Fast Reactor Quantities, ANL-7120 (1965), . 431, W. E. Unger, BR. E. Blanco, C. D. Watson, D. J, Crouse, and A, R. Irvine (compilers), Aaueous Procesging of LMEBR Fuels, Progress Report, March 1969, Mo, 1, ORNL-TM-2552 (April 1969), pp - ,_%8 ”J+ ]._ - R. L. Macklin and J. H. Gibbons, Rev. Mod. Fhys. 37, 166-74 (1965). R. L. Macklin, J. H. Gibbons, and T. Inada, Phys. Rev. 129, 2695-97 (1963). 4 C. H. Wé@gott, Iffective Cross bection Values for Well-Moderated Thermal Reactor Spectra, 3id ed. (Corrected), CCRP-GO0 (1960). G. E. Hansen and W, H, Reach, 8ix and Sixteen Group Cross Sections for Fast and Intermediate Critical Assemblies, LAMS-2543 (1961), J. P, Nichols, Osk Ridge Natiocnal TLaboratory, personal commmnication (Aagust 1972). D. E. Deonigi, Battelle Pacific Northwest Laboratory, unpublished mass flow data for light water reactors (May 1972). MSR Program Semiannu. Progr. Rep. Feb, 28, 1970, ORNL-4548, p. 53. K. Buttrey, 0. R, Hillig, P. M. Magee, and B. H., Cttewitte, liquid Metal Fast Breeder Reactor (IMFBR) Task Force Fuel Cycle Study, NAA~SR-MEMO-1200L (1968, 8. Katcoff, Mucleonics 18, 201-8 (1960). M.FE. M% k angrB. . Rider, Sumpary of Fission Product Yields for 235y, 23077, 239py and Py at Thewmal, Fission Spectrum and 14 MeV Neutron BEnergies, APED-5398-4 (Rev.) (1968). K. Shure, Bebttis Technical Review, WAPD-RI-24 (December 1961), p. 1. M. HE. Meek and B. F. Rider, Compllaticn of Fisslion Product Yields, Vallecitos Nuclear Center, 19772, NEDO-12154 (January 19772). 38 24, E. A, C. Crouch, Calculated Independent Yields in Thermal Neutron 5. 239 . 2 ’ 233y, 235, 239, ahl 23?Th} 238, Fission of and Zuopu, ABRE-R-6056 (1969). e , and in Fission of 25, A. C. Wahl, A, E, Norris, R. A. Rouse, and J. C. Williams, 'Products from Thermal Neutron Tnduced Fission of 232U: A Correlation of Radiochemical Charge and Mass Data," pp. 813-43 in Physics and Chemistry of Fission (Proc. Symp. Vienna 1969), IABA, Vienna, 1969. 26. E. D. Arunold, PHOEBE - A Code for Calculating Beta and Cawmma Activity and Spectra for 239U Fission Products, ORNL-3931 (July 1966). 27. D. H. Stoddard and E, [. Albenesius, Radiation Froperties of 238 Produced for Isotopic Power Generators, pp-a8l (1965). Pu 28. R. W. Peelle and F. C. Maienschein, The Absolute Spectrum of Photons Fmitted in Coincidence with Thermal -Neufron Fission of Uranium-235, ORNL-4L57 {April 1970). 29. D. H. Stoddard, Radiation Properties of 2 Power Generators, DP-339 (1964). Cn Produced for Tsotopic 30. E. D. Arnold, "Neutron Sources,’ pp. 30-35 in Engineering Compendium on Radiation Shielding, Vol. I, ed. by R. G. Jaeger, Springer-Verlag, New York, 1968, It, USER'S MANUAL FCR THE ORIGEN CODE The ORIGEN computer code is a collection of programs that: (1) proc- esses a library of nuclear properties to construct a set of first-order, linear, ordinary differential equations describing the rates of formation and destruction of the nuclides contzined in the library; (2) solves the resulting set of equations, for a given set of initial conditions and irradiation history, to obtain the isotopic compositions of the discharged fuel components as a function of postirradiation time; and (3) uses the igsotopic compositions and nuclear properties of individual nuclides to construct tableg describing the radicactivities, thermal power, potential inhalation and ingestion hazards, and photon and rneutron production rates in the discharged fuel. At present, The nuclides in the library are divided into three classes: (1) cladding and structural materials; (2) isotopes of actinide elements and their radioactive decay products; and (3) fission products. In the output tables, the three classes of 39 materials are presented separately; as a result, certaln isctopes are repeated. Thus, tritium and helium that are formed from spallabion reactions of the light elements are distinguished from fission product tritium or from hellum produced in alpha decay. Also, ischbopes of several elements, notably zirconium, are consldered both with the cladding and structural materials and as fission products. This dis- tinction between the sources of the isotopes enables the user to treat problems such as the effects of exposure on cladding embrittlement and on changes in the isotoplc composition of structural materials. The first output that the program produces consists of a swmmary of the nuclear data library. A dictionary that explaing the abbreviations used in the column headings in the library is included at the beginning of the library. The code then prints a table containing the isotopic composltion of the fuel as a function of exposure time. The compositions will be given in units of g-atoms per unit of fuel charged to the reactor. The unit of fuel considered 1s an input variable and may be any consistent quantity (e.g., a metric ton of uranium, an entire fuel agsembly, or 235, 100 atoms of '35u). The code next prints tables showing the properties of the discharged fuel. The following properties are computed for the unit of fuel that was specified to be charged to the reactor: (1) g-atoms, (2) grams, (3) curies, (L) total B+y watts, (5) ¥ watts, (6) cubic meters of air required to dilute the radicactivity to RCG,, and (7) cubic meters of water required to dilute the radioactivity to RCGW. A1l seven types of information are first computed for the cladding and structural materials, then for the heavy metal isctopes, and finally for the flssion products. Four tables are printed for each property; the first gives the properties of every individual isotope considered in the 4o library, the second gives the prcoperties as a function of each chemical element, the third summarizes the properties for only the most important individual isotopes and is designed to Tit on an 8-1/2 x 11 in. page, and the fourth summarizes the properties of the chemical elements. Thus, 84 tables can be printed - four tables for seven properties of three clagsses of isotopes. By proper selection of input variables, it is possible to eliminate certalin of these tables as described in Sect. L.2. Following the tables of the properties of the isotopes and elements, tables of the penetrating radiations emanating from the spent fuel are printed out. The first table gives, as a function of postirradiation time, a lZ-energy-group spectrum of gamma radiation emitted from the fuel as the result of the activity induced in the cladding and structural materi als. The data are presented as the number of photons of a given average energy which are produced per second per unit of fuel as charged to the reactor. A second table is also printed that gives, as a function of postirradiation time, the number of megavolts per sccond per watt of average power produced in a unlit of fuel which are released as photons into the 12 energy groups. Subsequently, two tables that provide the same information for the fission products are printed out. Following the tables of vhoton release rates for the fission products is a table summarizing the most important contributors to the photon producticn rate in each of the 12 energy groups. The final tables contain information generated concerning the pene- trating radiations produced in the isotopes of the aclinide elements and their radicactive decay daughters. First, a table 1s printed that gives, for each alpha radicactive isotope as a Tuncilon of postirradiation time, estimates of the number of neutrons released per second from a unit of fuel as the result of (&,n) reactions. This is followed by a table which gives estimates of the number of neutrons released per second from a unit of fuel by isotopes that undergo spontaneous fission. TIn each of these tables, only the total number of neutrons of all energles released at a given time is calculated., However, the energy speclrum cof neutrons emitted in spontaneocus figssdion of several nuclides has been found to be b1 . 235 . similar to that for ij,l and estimates of the spectrum of neutron energies arising from (&,n) reactions have heen mede for several of the . 1,2 more important (o,n) sources.’ The final table that is printed containg estimates, using an 1L8~energy- group structure, of the spectrum.of photons produced by decay of isobopes of the actinide elements and their radicactive daughters, as a function of postirradiation time. The data in this table also include the contri- butions from the prompt gamma rays accompanying spontansous fission and from the gamma rays released by the equilibrium fisgion products that are formed in spontaneous fission. Every table in the output is concluded by a row of totals representing the sum of the properties for the isotopes in that table. To obtain the total contribution from all isotopes (clad- ding, fuel, and fission products), it is necessary to add the contributions from the separate tables. .1 Description of ORIGEN Code Programs The names of the various subroutines, their major functions, and the important variable names In each routine are described below in the order in which they are employed in the code. MAIN. ~ This is the program that supervises the execution of tasks by the other routines. With the exception of the nuclear data, all input is read by the MAIN program from the card reader (Unit 50). The code solves the set of first-order, linear, ordinary differential equations X =A X+ B, given X(0) , (1) oo where X(0) is a set of initial concentrations, X(t) is the time-dependent solution that is desired, A is a matrix of first-order rate coefficients, and B is a forcing vector. The solution X(t) is obtained at intervals tysboee by The constructlon of the matrix A is performed by other subroutines that and it 1s required that A and B be constant between intervals. are described below. The vectors A and B are assigned valueg in the pro- gram MATN either by reading data from cards or by manipulation of data generated in a previcus calculation that is stored in an array. In the W2 code, the variables A and B have the names A and B, the variable %(O) has the name XZER¢, and the solution has the name XNEW. These variables are stored in labeled common blocks /MATRIX/ and /EQ/. NUDATA. - Subroutine NUDATA processes the nuclear data from the library tape and constructs part of the transition matrix:é. 1t reads two cards from the card reader. The first one contains a title for the library that will be printed with the output, as well as an integer, NLIBE (in column 75), that designates the reactor spectrum over which the cross sections are to be averaged. The second cne contains welghting factors for the reactor spectrum, a Tleld for the date, and switches to suppress part of the output. The subroutine reads the data from the library tape and prints out the library of data to be used in the calcu- lations. The nonzero, off-diagonal terms of the matrixfié are stored in the variable A. Three integer vectors, L¢C, N@NO, and KD, are also constructed to be used to locate the matrix elements. These variables are stored in labeled common block /MATRIX/. Table k.1 lists other data (from the nuclear library) that are stored by subroutine NUDATA and will be required in subseguent calculations. HALF. - This subroutine computes the radiocactive decay constant in uwnits of sec"l, when the half-life of the radionuclide is given in units designated by the variable IU (see Sect. 3.1). E@&fi ~ This subroutine constructs a Chree-word alphameric symbol for an isotope from its six-diglt ldentifying number. The three words consist of the symbol for the chemical element, the atomic weight, and either a blank or an "M" to designate a ground or metastable state, respectively. These symbols are used only when printing output tables. BLQCK DATA. - A BL@CK DATA subroutine is used to initialize the variables in labeled cowmon block /LABEL/. These varisbles consist of an array of chemical symbols, ELE, and a variable to designate the isomeric state of a nuclide, STA. These arrays arc used in conjunction with sub- roubine N@AI. ~ 43 Table Y4.1. Definitions and Storage TLocations of Important Variables Assigned Values in Subroutine NUDATA Variable Common Block Definition ABUND /gur/ Isotopic abundances of the cladding and. structural materials, at. % ATPHAN /guT/ Number of neutrons produced per alpha disintegration by heavy metal 1sotopes AMPC /MPC/ Radicactivity concentration guide for continuous inhalsation in unrestricted areas, uCi/em DIS /FLUKN/ Radioactive decay constant, secql ¥G /¢UT/ Fraction of radioactive decay energy that resulis from photons of energles above 200 keV FI35 /FLUXN/ opectrum-averaged fission cross section, barns NUCL /¢UT/ Six~diglt integer constant used to identify isotopes Q Jgur / Radioactive decay energy released as recoverable heat, MeV/disintegration SP@NF /gut/ Spontaneous fission rate for heavy metal isotopes, fissions/sec-atom T¢CAP /FLUXN/ Total spectrum-averaged neutron absorption cross section, barns WMPC pirc / Radioactivity concentration guide for continuous ingestion in unresgstricted areas, uCi/cm L PHPLIB. - PHPLIB reads the multigroup photon production data from the nuclear library tape and stores the informaticn in the arrays GAMGRP and ACTGRP. The array GAMGR? contains 1Z2-energy~group photon production data for the isctopes of the cladding and structural materials and of the fission products, while the array ACTGRP contains 18-energy-group data for isotopes of the actinide elements and their radiocactive decay daughters. This subroutine also prints a table containing the data in the library. FLUX®. -~ This subroutine uses a Taylor series expansion about the start of a computational imterval to estimate: (1) the average flux during the interval, when the reactor power is given; or (2) the average power generated by the fuel during the interval, when the neutron flux is given. Once the flux has been obtained, it is multiplied by the cross sections to generate first-order rate constants for production and destruc- tion of nuclides by neutron-induced reactions. The subroutine also con- structs the diagonzl matrix element for each isotope from the negative of the sum of the disintegration constant, the product of the spectrum- averaged total absorption cross section times the flux, and the rate coefficient for other removal processes that are proportiocnal to the jinstantaneous concentration (e.g., leakage or first-order chemical reaction). The diagonal matrix elements are stored in the array D in labeled common block /EQ/. DECAY. - This subroutine solves the Bateman equations for nuclides that occur at the beginning of decay chains and have half-lives that are short with respect to the time interval for the calculation (time interval greater than 10 half-lives). The concentrations of the short-lived nuclides at the end of the interval arec contained in the array XNEW, and the concentrations of any long-lived or stable daughters at the start of the interval are augmented by the amount that the short-lived precursor has decayed, The variable XTEMP is used {to contain the adjusted initial concentrations of the long-Jlived and stable materials. The variables are stored in labeled common block /3Q/. TERM. - The subroutine TERM has two principal functions, Tt con- structs a reduced coefficient matrix that involves transitions between only long-lived or stable nuclides. By way of explanation, if a chain A= B - C exists, and if isotope B is short-lived while iscbopes A and C are long-lived, a matrix element is created for the event A - C directly and is entered inte the array AP. The array AP is a local variable that is uged in subroutine TERM. The second function of subroutine TERM is to solve the reduced system of equations that results when the short-lived nuclides are excluded. The equations are solved by the matrix exponential method, using an algorithm which involves use of a recursion relation to generate the matrix exponential function, ag described in Sect. 2,1. The sclution that is obtained for the concentrations of the long-lived and stable nuclides at the end of the time interval is contained in the array XNEW. FEQUIL. - Subroutine BEQUIL is used to place short~lived daughters in secular equilibrium with long-lived parents. The subroutine uses the Gauss~Beidel succegsive substitution algorithm to solve a set of linear algebraic eguations. The resulting concentrations are contained in the array XNEW. @UTPUT. ~ As 1ts name indicates, this subroutine produces tables of output containing the properties of irradiated maberials, fiUTPUT has available fto it the array XNUW, which containsg the concentrations of the fuel as a function of time, and other arrays containing the radiocactive decay constant, the heat per disintegration, etc, From these, it computes inventories, radiocactivities, thermal powers, and other properties of interest., It prints tables of properties of individual isotopes and of chemical elements, and prepares summary tables of the most important contributors., GAMMA. - This subroutine prepares tables of penetrating radiation sources in spent fuels., Using the isoteopic compositions in the XNEW array, the photon release dats in labeled common block /PHéTfiN/ > and the neutron production data in labeled common block /PUT/, GAMMA compiles tables of miltigroup vhoton release rates and neutreon production rates as a function of time. L6 4.2 Description of Card Input to the ORIGEN Program The first two input cards are read by the subroutine NUDATA, ‘These cards furnish a title for the library of nuclear data, identify the nuclear data library that is to be read from the tape, provide spectral indices for the reactor, and select certalin options. A. READ (50, 9011, END = 920) (TITLE(T), T =1, 18), NLIBE Q011 FERMAT (18ak, I3) TITLE is a TZ2-character alphameric title which will be printed as the heading on the printout of the nuclear library. NLIBE is an integer that identifies the library to be read from the tape. for HTGR for LWR for TMFBR for MSBR N = ow B. READ (50, 9001) THERM, RES, FAST, ERR, NMy, NDAY, NYR, MPCTAB, INPT, IR 0001 FERMAT (LF10.5, 612) % . \ . . 1 . THERM® = ratio of the neutron reaction rate for a Z absorber with a population of neutrons having a Maxwell-Boltzmann distribution of energies at absclute temperature, T, to the reaction rate with ZZOO—m/sec neutrons T[TO =] T L= 293.16°K RES = ratio of the resonance flux per unit lethargy to the thermal neutron flux. ¥ THERM, RES, and FAST have meaning only for thermal reactors. For the IMFBR, the cross sections on the tape are already spectrum averaged, and THERM, RES, and FAST are equal to 1.0. L7 FAST = ratio of flux above 1 MeV to the fraction of the fission spectrum above 1 MeV, divided by the thermal neutron flux. ERR = a truncation error limit which will be considered to be zero by the code (10-2) recommended ). WMB, NDAY, = month, day, and year when case is run, to help in NYR identifying output, MPCTAB = an output coption, If MPCTAB = O, the output tables will include the quantities of alr and water that could be contaminated Lo the radicactivity concentration guide (RCG) values for inhalation and ingestion by each of the radionuclides. Otherwise, the tables are omitted. TNPT = an input option, If TINPT = O, the entire nuclear data library will be read from tape on data set reference No. 7. It TNPT % O, the photon library iz read from cards on data set reference No. 50, Note that the three groups of iso- topes in the photon library must be separated by blank cards. (See the FORTRAN listing of subroutine PHOLIB for detalls.) IR = an output option. If IR # 0, the code will write out all the elements of the transitlon matrix that it constructs from the nuclear data library. This is a debugging tool, and IR is usually egual to zero. \ S C. 70 READ (50, 9008, END = 590), MMN, MZUT, NJBLND, INDEX, NTABLE, MSTAR, NG, MPRHS, MFIED 9008 FPRMAT (1615) MMN = number of time intervals during irradiation period <10. MAUT = total number of time intervals for irradiation and post- irradiation periods =10, i NZBLND = number of materials to be blended =10. HEnter O or 1 if ne blending is to be done. L3 TNDEX = an input indicator. Tf INDEX = O, PPWER(M) will be read on s subsequent card. If INDEX = 1, FLUX{M) will be read. IT MMN = O, INDEX is not used by the code in this step. NTABLE = an output indicator. If NTABLE = O, all isctopes and all times will be given in the output. If NTARLE = 1, only summaries of most important isotopes will be given. MSTAR = another output indicator. When summarizing the most important isotopes, the code eliminates the isotopes whose values are below some threshold (see card type I) in time periocd M = M3TAR. NG = an indicator which tells the code whether the calculation will be continued in a subsequent set of times, or whether a new calculation will be done. NG¢ < O indicates a new calculation with new initial conditions using the same nuclear data. A card of type C will be expected following card K or N. NCG@ = O indicates a new calculation with a new set of nuclear data. A card of type A will be expected following card K or IN. NGP > O indicates the present calculation will be continued. A card of type ¢, following card K or N, will be expected, MPRZS = an indicator for continuous chemical processing option. MPRZS = number of groups of chemical elements processed. MPRPS 11 0 for no chemical processing. MFEED = ccontinuous feed option for fluid fuel reactor. MFEFED = O for no contlnuous feed; >0 for continuous feed. D. READ (50, 900L) TITLE 900L FPRMAT {20AL) TITLE = a title for the calculation containing up tc 80 alphameric characters. 49 Cards of type E or F are included only if MMW is greater than zero, F( 1 a G. H. TP (INDEX.EQ.0) READ (50, 9005) (PPWER(M), M = 1, MMN) 9005 FERMAT {(10E8.2) POWER(M) = specific thermal power of fuel in irradiation period M (MW/unit of fuel). ‘here may be periods of zero power; however, there may not be two consecutive zero-power intervals, and the final Irradiation period may not have ZeT0 power. 17 (INDEX.EQ.1) READ (50, 9005) (FLUX(M), M = 1, MMY) FLUX(M) = thermal-neutron flux in irradiation period M (neutrcns/cm?-sec), or the total neutron flux for s fasgt reactor. There may be periods when the flux is zero during the irradiation periocd; however, there may not be two cconsecutive periods of zero flux, and the final irradiation periocd may not have zero flux. READ (50, 9005) (T(M), M = 1, MpUT) T(M) = elapsed time since the beginning of the calculation (measured in terms of TUNIT). READ (50, 9013) BASIS, TCONST, TUNIT Q013 FPRMAT (10AL, F7.0, A3, ¥10.3) BASIS TCONST TUNTT B i ! a U4O-character alphameric title that is the wnit of fuel on which the calculation is based and that will be printed out as the basis for the calculation (e.g., "Metric Ton of Fuel Charged to Reactor”). a factor to convert the input values of T(M) dnto seconds (e.g., TCONST = 3.155E7 if values of T(M) are input in terms of years). an alphameric designation for the input units of T(M) (e.g., "D for days). o0 I. READ (50, 900&) CUTPFE 9006 FPRMAT (8F1C. 3) CUTPFF(MS ) a threshold value for output summary tables. Any isotope whose value in the time period MSTAR is less than CUTPFEF(MS) will be omitted from the summary table of property MS. MS = g-atom table - gram table - curie table Bty power table -~ ¥ power table Ch 1 w o 1 - relative inhalation hazard ' - relative ingestion hazard A value of 0.00l is recommended for Tables 1 to 5, and a value of 1.0 is reccommended Tor Tables 46 and 7. J. TF (N@BLND.GT.1) READ (50, 9006) (FACT(N), N = 1, NPBLND) 9006 FFRMAT (8E10.3) FACT(N) atom [raction of each material in a calculation for a blended Tfuel. K. 110 READ (50, 9007, END = 200) (INUCL(I), XC@MP(I), T = 1, 5), NEXT 9007 FERMAT (5(716, E9.2), I5) INUCL XC@MP NEXT nuclide identifier for an iscotope in fresh fuel. = ATOMIC NO. * 10000 + ATOMIC WT ¥ 10 + 1S5, where IS =0 i for ground state, = 1 for excited state. concentration of nuclide INUCI, in fresh fuel (expressed as g-atoms per unit of BASIS). an indicator giving the type of the five isotopes on the card. Thus all five must be of one type. 1 for isotopes of c¢ladding and structural materials 7 Tor heavy metal isotopes 3 for fission product isotopes 4 for elements of cladding and structural materials L. 51 All cards of this type should be followed by a single blank card, When the program encounters the blank card, it continues to the next part of the input. If it encounters & blank INUCL field, it skips the rest of the information on that card and returns to statement 110. The following cards (L and M) are read only if MPRES V O READ (50, 9011) (PRATE(M), NSPRES(M), M = 1, MPRES) 9011 P@RMAT (8 (EB.2, I2)) PRATE(M) is a first-order removal constant for chemical processing . -1 by processing stream M, sec N¢PR¢S(M) is the number of elements removed by stream M, READ (50, 9012) ((NZPRPS(M,N), N = 1, N@PR4S (M)), M = 1, MPRAS) 9012 FPRMAT (201h) NZPRfiS(M,N) = atomic number of element N in processing stream M. The following card (N) is read only if MFEED > O. READ (50, 9007, END = 330) (INUCL(1), ¥CpMp(1), I =1, 5), NEXT XC@MP is the continuous feed rate of isotope INUCL (in g-atoms per second per unit of fuel). The unit of fuel is given by the wvariable BASIS. INUCL and NEXT folleow the same conventiocns as described for cards of type K, END OF INITIAL INPUT 5a The program will now calculate the isctopic compositions for all MOUT time periods and write output. After writing output, the program will either be ready to start a new problem (if NG¢ < 0) or continue the present one (NG¢ > O). 1In the latter case, the input for the continuation of the calculation has the form: Q0. READ (50, 9008) MMM, MPUT, N@BLND, INDEX, MSUB, MSTAR, NGO, MPRPS, MFEED MSUB = the time period in the last calculation considered as the start of the new calculation; also used to indicate that batch chemical processing occurs if the value is negative, MFEED = an input indicator for continuous feed. O, no Teed i = >0, continuocus feed at the same rate as for the previous calculation, A1l other variables have their former meanings. This card is followed by cards of type D, E, F, G, and H or H' (see below) to complete the input for the continued calculation. This procedure may be repeated as desired, The calculation will stop when a blank card is read in place of a card of type C. When continuing a calculation that was started in a previous set of time periods, a card of type H may be modified to include cne additional piece of information. H7. READ {50, 9012) BASIS, C@NST, TUNIT, TMp The firat three variables have their previcus meaning, while the variasble TMp is the time to which the times read on card type 3 are referenced. Thus it is possible to calculate the pestirra- diation properties of a fuel, say, for ten years after discharge in ten time periods, and then to calculate the properties for ten subsequent time periods by setting MSUB equal to 10 and TM¢ equal 53 to ten years. The array TIME will have the values 11 through 20, and the ccde will calculate the properties for the elapsed time since the tenth year. Postirradiation properties are calculated with respect to the time of discharge if TMP is not given a value. A negative value for the varizble M3UJB indicates that batch chemical processing is asgsumed to occur at time T(-MSUB), and that dats giving processing information are reguired to be read. When MSUE has a negative wvalue, cards of the type P are expected to follow card H'. P. 500 READ (50, 9003) LEMENT, FREPRP(LEMENT) 9003 FPRMAT (16, LX, F10.3) The variable LEMENT is the atomic number of a certain chemical element to be removed, and FREPRfi(LEMENT? is the fraction of the material that remains after processing. The array FREPRZ is ini- tially set equsl to 1.03 thus, if no data are read for an element, processing does not affect its concentration. Cards of type P are expected to be read until a blank card iz encountered. M™is is all of the card input that is required to perform a variety of calculations with the ORIGEN ccde. An example of the card input for a sample case that illustrates many of the features of the code 1s given below. 4,3 TInput for Sample Problem The use of the ORIGEN program is illustrated with the example of a 235 pressurized water reactor, in which fuel with an initial U enrichment of 3.3 wt % was assumed to be exposed for a period of 1100 days at a constant averasge specific power of 30 MW per metric ton of uranium charged to the core at the start of an equilibrium cycle. The isotopic compositions of the Zircaloy cladding and nconel spacer grids were computed, along with the composition of the heavy metal isotopes and the fission products. The postirradiation properties of the spent fuel 5L were calculated for decay times up to 10 years. These results were followed by a caleculation of the properties of the waste that was gen- erated when the fuel was reprocessed at a postirradiation time of 150 days and 100% of the Xe and Kr and 99,5% of the uranium and plutonium were removed. The input required Lo perform these calculations is given in Table 4.2, The letters typed in the leftmost column of Table L, 2 correspond to those given in the description of input in the previous section and do not actually appear on the cards, Card A containg a title for the library, and the numeral "2" in column 75 indicates that the LWR library is fo be used for the calcula- tion. Card B does the following things: (1) gives the values 0.632, 0.333, and 2.0 Tor THERM, RES, and FAST, respectively; (2) indicates that concentrations less than 10777 g-atom per unit of fuel will be neglected; (3) supplies the date; and (L) indicates that hazard tables will be calculated, that the photon library will be read from tape, and that the matrix that is constructed will not be written out. Card C indicates that: (1) ten irradiation periods will be calculated, (2) there will be no blending of fuels, (3) the specific power will be read on card E, (L) full output tables will be written, (5) the sequence of calculations will be coatinued (NGC = 1), and (6) there will be no feed or processing of fuel. Card D is a title card for this part of the calculation., Card E indicates that the specific power is constant at 30 MW per unit of fuel throughout the ten irradiation steps. Card G gives ten irradiation times in equal increments of 110 days. Card I designates the unit of fuel as a metric ton of heavy metal charged to the reactor and indicates that the unit of time for this part of the calculation is days. Card | gives lower limits for the summary tables that will be printed during the postirradia- tion calculations, Cards of type K give the isotopic concentrations of the cladding and fuel at the start of the irradiation period. These are all the cards required Lo perform the first step in the calculations. The code will compute the isotopic concentrations at the ten times given on card G and will print tables containing this informa- tion. When this task is completed, the code will read card fi, which indicates that: (1) the properties are desired at ten postirradiation = o =39 aow e N o S o 0 d W A R W XN R AR R R A AR R H = W dv < T 55 NUCLEAR DATA LIBRARY FOR REFERENCE PWR 2 0.632 0.333 2.000 1.0E=25 32073 0 0 O 10 1o o 0 0 0 1 o 0 o REFERENCE PWR EQUILIBRIUM FUEL CYCLE = 3.3 0/0 ENRICHED U 30,0 30,0 30,0 30,0 30,0 30.0 30.0 30,0 30.0 30.0 110, 220, 330. 440, 550, 660, 770. 880, 990, 1100, MT OF HEAVY METAL CHARGED TO REACTOR B6400, D 1.6~3 1.E~3 1.6-3 1.£-3 1.E~3 1.E 6 1.E 4 60120 1.5 130270 4.0 140280 607 140290 034 220460 ,304 1 220470 ,277 220480 2,771 220490 ,204 220500 .200 240500 5,040 1 240520 57.423 240530 6,415 240540 1,574 250550 327 260540 4,037 1 260560 61,018 260570 1.439 260580 .310 270590 ,915 280580 111,862 1 280600 41,783 280610 1.869 280620 5.645 280640 1,609 400900 1421.122 1 400910 306.725 400920 462.239 LOO9LO 460,074 400960 72.50 410930 10.253 1 420920 957 420940 532 420950 ,926 420960 ,953 420970 546 1 4209580 1,357 421000 540 501120 .321 501140 ,219 501150 113 1 501160 4.681 501170 2.470 50118 7.729 501190 2.739 501200 10,392 1 501220 1.467 50124 1.823 1 922350 1 ,L4OLE 2922380 4.062F 3922340 1,13 2 {Blank Card) o 10 o0 o 10 6 1 o 0 0 REFERENCE PWR EQUILIBRIUM FUEL CYCLE =~ FUEL DECAY TIMES 10.0 30,0 60,0 90,0 120.0 160,0 270.0 365.0 1096.0 3652.5 MT OF HEAVY METAL CHARGED TO REACTOR 86400. D 0 10 0 0 =6 4 - O ¢ 0 REFERENCE PWR EQUILIBRIUM FUEL CYCLE = WASTE DECAY TIMES 1.0 3.0 10.0 30,0 100.0 300.0 1000.0 3000.0 1.0E & 1.0E 5 MT OF HEAVY METAL CHARGED TO REACTOR 3.156£7 ¥ 36 54 92 0.005 94 0,005 (Biank Card) times, (2) the initial compositions for the decay calculation are the discharge compositions from the vrevious calculation (MSUB = 10), (3) the nuclides whose properties are below the cutoff values in the sixth decay period will be omitted from the summary tables (MSTAR = 6), and (&) a third sequence of calculations is reguired when The present set is com- pleted (NGO = 1). Card D is a title for the postirradiation tables. Card G contains the ten postirradiation times al which the properties are desired. Card H gives the unit of fuel, which must be the same as designated previously, and the unit of time, which is permitied to change. At this polnt, the postirradiation properties are computed and another set of output tables is printed. Another card of type ¢ is read, indicating fthat ten decay periods will be treated and that the initizal composition for the calculation will be fuel aged 150 days (after discharge) to which some batch chemical vrocessing has been done (MSUB = 6). ‘The value MSTAR = 4 indicates that the summary tables will exclude isotopes whose properties are below the CUTOFF's at time period 4, and that, at the end of the present calculation, a new calculation will be initiated using a different sel of initial composiltions and exposure history. Card D is a title for the step in the sequence of calculations, and card G gives postprocessing times at which the properties of the remaining isotopes are desired. Card H gives the unit of fuel and the unit of time. Cards of type P indicate that =ll of the xenon and krypton and 99.5% of the uranium and piutonium have been removed from the fuel at the time of processing. Part of the output that results from this set of input data is given in the Appendix. 4,4 Additional Programming Considerations The ORIGEN code was designed for use on the IBM 360 Operating System. It is written in IBM FORTRAN H and is usually compiled using full optimi- zation on the H-level compiler. Ior convenience, 1t employs several I1IBM feastures that are not standsrd. The normal word length on the IBM 360 Operating System is four hexa- decimal bytes. TIn order to decrease storage requirements, a number of integer variables are defined as INTEGER*Z and several logical variables o7 are defined as LfiGICAL*l. In addition, to preserve accuracy in the calculations, several variables in subroutines DECAY and TERM are defined as REAL*¥8. In other computing systems with longer word lengths, the lengths of these variables may be changed without affecting the operation of the code or significantly affecting the accuracy of the results, However, an incresse in the amount of storage that ig required willl result. The numerical technigues that are employed in the code are designed so that the maximum relative error in the concentration of any single nuclide that results in one time interval will be less than 0.1%. Tt is possible that the relative error in the concentration of a given nuclide could reach a Tew peréent at the end of a long sequence of calculations involving dozens of time intervals. However, in most applications, errors of this magnitude are acceptable and are within the limitations of the uncertainties in nuclear dats and in the neutron spectrum. In most cases, the accuracy of the aggregate properties of a spent fuel, such ag the totsal thermal vower or activity level, is limited only by the accuracy of the nuclear data itself. As more complete experimental information on the fission yields and decay schemes of the short-lived fission products becomes avallable, the code should be sble to represent quite accurately the postirradiation properties of a variety of Tuel types. The magnetic tape supplied to users usually contains two complete copies of the FORTRAN listing of the ORIGEN code and of the nuclear data libraries. The data are contained in 14 files; files 8-1U4 are duplicates of files 1-7. The tape is written in card~image form, in EBCDIC, DCB = (RECFM = FB,LRECL = 80, BLKSIZE = 3200). Files 1 and 8 contaln the FORTRAN listing of the code, and files 2-7 and 9-14 contain nuclear data in the proper format for use by the code. The code is programmed to read card input on data set reference No. 50, and tape input on No. 7. Output written on the printer refers to dats set reference No. 51; punched output refers to No. 52Z2. Instructions built into the code call for it to punch a number of cards on data set reference No., 52, and a data set definition card for this data zet must be included in the job control language. 1t should normally be dummied oub. 58 The code requires about 32C k bytes on the IBM/360 system without OVERLAY. By use of the overlay attribute of the IBM linkage editor, it is possible to reduce the REGION used to less than 270 k., The overlay structure is quite simple, using only one segment into wnhich the sub- routines NUDATA and HALF are placed first; next, PHOLIB, TERM, DECAY, and BEQULL: and finally, OUTPUT and GAMMA. TNormal running time on the 360/91 is about 1 min for the sample problem contained in the Appendix. For a number of applications, the program does not have to be executed with the entire library of light elements, aclinides, and fission products. If, for example, the isctopic composition of the fuel material after a given irradiation history is desired, the light elements and fisslon products need not be included in the calculatlon. Wnen the IBM/36O operating system is used, these may be omitted by referencing DUMMY data sets for the first and third files read by subroutine NUDATA. In this example, the fourth data set to be read wceculd then be the actinide photon library. 4.5 References for Section 4 2Ll 1. D, H. Stoddard, Radiation Properties of Cm Produced for Isotopic Power Cenerators, DP-939 (196h). 2. D. H, Steddard snd E. L. Albenesius, Radiation Properties of 238Pu Produced for Tsotopic Power Generators, Dr-98l (15657, 5. GLOSSARY OF WARNTUG AND FRROR MESSAGES Several potential problems have been anticipated, and the program contains built-in tests for common errors. Some of the messages issued by the code under conditions where an error may have occurred are dis- cussed below. The anticipated error 1s described and, where possible, remedies for the problem are suggested. The program MATIN contains the two warning messages: "MMN or MPUT EXCEFDS DIMENSICNS," and "MMN SHOUTD NOT HXCHED MPUT." The variables MMN and MAUT have a maximum value of 10, and MAUT must be greater than or equal to MMN, The subroutine NUDATA will issue one of several error messages hat are self-explanatory. For example, assume that the number of isotopes of light elements, actinide elements, fission products, or total number of isotopes exceeds a dimension. 1In the case of the light elements, the dimension of the variable ABUND has been exceeded. For the actinides, the dimensions of the variables FISS, SP¢NF, and ATPHAN , have bheen exceeded. In the case of the fission products, only the dimension of the wvariable YIELD has been exceeded, If the total number of muclides exceeds 800, the dimensions of a large number of arrays throughout the program would be exceeded and extensive medifications to the program would be required. One possibility in this case would be to run the problem in two parts, obtaining the concentrations of the actinides and fission products in the first calculation, and computing the properties of the light elements in a second calculation by making use of the fluxes obtained from the first calculation. It should be noted that, to obtain concentrations of fission products being produced from fissions, it is necessary to include both actinides and fission products in the calculation. Two additional messages are produced by subroutine NUDATA, These are: WARNING, M OUT OF RANGE IN NUDATA," and "NN HAS EXCEEDED 2500, EQUAL TC." Either of these messages indicates that, in making modifi- cations to the livrary, the user has increasged the number of reactions to cause a dimension to be exceeded. In the first message, the subscript M counts the number of transmutation products that can be produced through all the competing channels for removal of a nuclide. These were not ex- pected to exceed T, and did not do so in the original library. If this condition occurs, the dimensions of the variables C@EFF and NPRED will be exceeded, If these dimensions are to be increased, the EQUIVALENCE statement gt the start of NUDATA must be altered. The alternative would be to neglect some minor pathway. The second message indicates that the dimensions of the variables A and LOC in COMVPN /MATRIX/ have been exceeded. These may be increased, or the problem may be partitioned as described above, 60 Warning messages are also issued by subroutine PHfiLIB if an error is encountered in the order of the photon release data. These messages are most likely to be encountered when an addition or deletion is made to the isotope library (files 1 through 3) without a corresponding change in the photon library (files M through 6). Subroutine FLUX@ will issue = warning message if the estimated depletion of the fuel material during a time ianterval in an irradiation calculation exceeds 20%. Corrective action is suggested in the message. This message 1s frecuently generated as the result of an input error in the fuel compositions or in the time intervals. Subroutines DECAY and TERM both employ the Bateman equations to solve the chain equations for short-lived nuclides. The algorithm that is adopted anticipales both cyelic chains and the cccurrence of two chain members with nearly equal half-lives, Tf more than two chain members have nearly egqgual half-lives, il is posgsible that the algorithm might result in an erroncous negative concentration. A test is buillt into the program to identify this condition and to provide information helpful for correcting the problem, Subroutine TERM writes the message: "'BATE I5 NEGATIVE IN TERM. THERE ARE MORE THAN TWO SHORT-LIVED NUCLIDES IN A CHATN WITH NEARLY EQUAL DIAGONAT, ELEMENTS. L, IM, BATE, BATM =", where L is the sequence number of the nuclide in error, IM is the number of precursors in the chain in which the error occurred, BATE is the erron- eous negative contribution that was calculated in the summation for nuclide I, and BATM is the current value of the sum. The negative value is not added to the summation, however, If the problem occurs in subroutine DECAY, the message 'L, 1, BATHE, XTEM, XTEMP(J1), AKDJQ =" is written along with the values of these variables., TIn this instance, L i1s the sequence number of the nuclide whese concentration is in error, I is the number of nuclides in the chain in which the error occurred, the product XTEMP(J1 )*¥AKDJQ*¥BATE is the erroneous negative contribution that was calculated in the summation for nuclide L, and XTEM is the current value of the sum giving the con- centration of nuclide L, Again, the negative contribution to the chain is not added to the summation since 1t 1s known to be in error. If this condition occurs, it is thus possible to identify the nuclide in error and the chain in which the errvor occurred. A comparison of the magnitude of the term in error to the calculated concentration indicates the relative magnitude of the error involved in neglecting the contribu- tion from a particular chain. 1f the error appears appreciable, it may be possible to eliminate the error by changing the size of the time step for the calculation or by altering the removal constants, This type of error is most likely to cceur in a calculation where rapid removal of many materials at the same rate occurs as, for example, in the calcula- tion of the inveptory remaining in a tank that is being decontaminated by treatment in an external purification system. 1If the time interval tfor the calculation is large conpared with the time required to process one tank volume through the purification system, the problem may be encountered. Tor certain problems of this type, the program may not be suitable, Nevertheless, difficulties should not occur in normal m caleulations of the properties of dilscharsged scolid fuels. ™ The subroutine EQUIL employs the Gauss-Seidel successive iteration technique to calculate the concentrations of short-lived nmaclides with long~-lived precursors or with external sources. In calculations involving isotope buildup and decay in fixed fuelg, this algorithm has been found to converge very rapidly. However, in systems involving fluid fuels with recycele, the methed converges slowly, if at all. There is a variable in subroutine EQUIL that counts the number of iterations and, when 100 iterations are reached withoubt convergence, causes the calculation to be terminated and the Tollowing message to be printed: "GAUSS-SEIDEL TTERATION DID NOT CONVERGE 1IN ®QUIL,™ 63 &, APPENDTX The following tables show some of the information printed as output by the ORIGEN code. TYor brevity, many of the longer tables have been omitted, and only the summary tables have been included. TaBLE A-1, HucLEar DaTta LiBRARY FOR Rererenck PWR CaLcULATION WOCLEAR TRANSMUTRTION DATR PEVISED 3/20/773 MUCL = NUCLIDE = 10000 * ATONMIC NC + 70 * MASS MO 4 ISOMS®TC STATE (0 OR 1) DLAWM = DFCRY CONSTANT (1/SEC). ®B, TP, Fi, P" = PRACTTONAL TFCAY BY BEFE, POSITEON (OR FLFCTPOX CADTUPE), ALPHE, THTFPNAL TBANSITION, PR = } -~ PP = FR = PT FBt, PE1, PNG1, TE2N1 = FREACTION OF BPTR, POSTTRON, N-GAMME, N-2¥ TRANSTTTONS T0 FXCTTED STETF® OF DRODUCT NUCLTIDE STGTH, SIG¥G, SIGF, SIGNR, STGNP = THERMAL CROSS SECTTONS (BAPNS) FOR ABSOPPTTON, N-GAMMA, FTSSTON, %¥-ATPHE, N-PPOTON, STGNG = SIGTH * (1 - FNA -FNP), SIGNA = SIGTH * FNA, SIGND = STGTH * FNP, TFPNA, PNP = PRACTINY THFRMAT W-ALPHE, N-PROTON, RTTH, RYNG, ®I¥, PTNR, RPINP = RPSONIWCE TXTEGRRL POR ABSORPTION, W=-GRKMA, FTSSTON, N-ALPHA, N-DROTOR. BFTNG = FYITH * (1 -~ PINA - FTHP}, PINA = RI™F * PYN¥A, BTND = PITH % PTNP, PINA, FTNP = FRACTTON TFSONANCE E-ATTH1, N-DROTON, SIGHEY, SIGFP, SIGK2N, STGNAF, SIGNEF = ®PAST CPOSS SFCTTONS (BARNS) FOP ABSORP™TON,FISSTON, N-2F, N-21DPHE, N-DROTON, STGN2K = STGMEV * (1 - FFE} - FFNPj, SIGNARF = SIGMEV * FFNA, STGNOF = STGMRV % PFND, TPFNR, PPNDP = PPACTTON PAS™ N-RYDHA, W-D, Y23, ¥25, Y02, ¥28, Y89 = PISSTON YIFLD (DEPCENT) TROX 233-U, 235-0, 232-7TH, 238-y, 239- PO, Q = HEAT PER DISIRTRGVATION., FG = FRACTION OF HEAT™ TN GRMMAS OF ENERGY GREATE® THEN 0.2 MEY, EFFEFCTIVE CPROSS SECTIONS FOR R VOLUME RYERAGED THEPMAL (1™ 0,876 EV} FIUX AR* 2S FOLLOWS, ¥-GAMMR - SIGNG * THFRM + RING * RES. : FISSICK = STGF * THERM + RIP # BFS 4+ SIGFF * FisT, THERM = 1/V COPRECTION FO® THEFRNMAL SPECTRUM AND TEMPFPITUPE, N-2% ~ SIGNZF * FAST, RES = RRTYC OF FRSOWAWCE FITX PEP LETHRARGY ONIT 70 THRSMAL PLUX, W~-ALPHE - SIGHA * THERM + RINL ¥ PRS + STIGNARF * FRST, FIST = 1,45 % FATIO OF PAST {67 1.0 MEV} PO THERMAL PILOX N~-PROTON -~ SIGKP * TEERM + ETHP * BES + STGNPF % FAST, REPERENCES HML® TIVES, DECAY SCHEMES, AND THFRXAL DPONWER ¥ LEDERER, J K HOLLANDER, AKD T PERLMAZN *TABLY OF TSCTOPES - STXTH EDITTON! JOWN RILEY 2KD SONS, INC (196T) S DZEELFPOV AND L K PEKER *DECHY SCHFMES OF PADIGACTIVE WUCLREY' PETGANMON DPPFSS (1961} T GOLDMAX AND JAMES ® POSSEP *CHAPT OF THF NUCILIDESY NINTR ZOITION GEREWAL ELECTRIC €O (JULY 1966} D ERNOLD !'PTROGRAN SPECTEAt APPPNDTY A OF ORNL-3576 (RPEIL 1964) CPOSS SECTIONS AFD FLUX SPRECTPR ® PPTHCE 'NRUTRON PEACTTON PATES TH THF WSRE SPECTPUMt ORNL-U118, PP 79-83 (JULY 1967) ¥ PRINCE 'NEUTRON PNERGY SPECT®R TN MSPE END MSEP* OPNL-G191, PP 50-58 (DEC 1967) D GOLDBEPG BT AL 'NEOTEON CROSS SECTIONSY BWL-325, SPCORD %D, SUPD KO 2 (MEY 4964 - ADG 1966) 21LSO BAPLIEP PDITIONS T KFPR, UNPUBLISHED EPC COMPILATION (PEB 1968) ¥ K DRAKP 'A COMPILATTON OF RPSORANCE INTRGRALS! NWUCLEONICS, VOL 24, %0 8, PP 108-111 (RUG 1968) BNWL STAFF 'INVESTIGATION OF N-2N CEOSS SPCTICNS' BWHC-98, PT Bu-98 (JUNE 1965) # ALTER AND C F WPBFR 'PRODUCTTION OF H AND HE TH METALS DUPING PRACTOR TERADIATION! J NWUCL MATLS, VOL 16, PP 68-73 (1965) 1 1L BEYEETT ?'PECOKXENDED FISSION PRODUCT CHAINS FOR USE TN FRACTOR EVRALUZTTON STUDTES! OPNL-TH-1658 (SEDT 1966) FTSSIOF PRODUCT YTELDS M F MEFK END B P RTDER, fSUMKAERY OF PISSTON PRODUCT YIPLDS FOP U-235, U-233, PU-239, AND PU-281 BT THERMAL, PISSTION SPFCTRUX AND 14 ®EY FEUTRON ENERGTESY ADPED-5398<-A{REV.}, (OCT, 1968) ' S KATCOPF ' PTSSTION PRODUCTYIELDS FROM NPUTRON YSDUCED FISSION! HUCLPONICS, VOL 18, X0 11, (NOV 1960) ¥ D DUDEY ' PEVIEW CF LOW-MASS ATOK PEODUCTTON TN PAST REACTORS' ANL-7834,(ADPRIL 1968) g O} xR ww THEF M= D.63200 RES= 0.33300 FRST= 2.00000 NPUTRON SOURCE= 922330 9223%0 Q42810 922380 352390 ¥LIBP= 2 g9 TasLe A-1 {cONTINUED) AND ACTIVATTON PRODUCTS CONSTPUCTION, 7 RLEMENTS, MRTEPIALS O LIGHT 66 & v o o oo 0 oo oo oo ora © Mo < coo o coo O " © T o No oo o M 1Me O A o cHr © —oo © AooocoocooIno O.Unvnvv NOC o DOUMOrRONOODONTOOOCOE "rOOOONFOOD . s 9 s s w e o o o @ 8 e % B s e & » s ¢ a4 s s s s s s e 8 + o @ ¢ B 2 e & e & 2 2 e e s W e e s . PO OO OO NN TR0 CNOOOCOCOROCRLUDLTCOODNIMOO m o © o < o o o o o o o - O o o o - - - — - - o o o . @ o~ tr MNoO - o - © w0 o 0 = o o ro o ™M @ o rODOOOO® nVO 0 COOCNDODOOCCORVODVOLOMOMNOOCODRODWroOOOITONMINOCOOOO « » s e o s e o % & 3 8 ¢ ® % 5 8 % s e o s s e e s e * a2 v a4 e ¥ v e e & s e w v e e o e el 000 C 00000000 ODDCNCOO0CROOT0OCROC OO 6 O o 3 - oo «@ ~ W @ ~o ® ~No = o o o @ oo 0 o 2 g NOo O oNm o O00000:}00“0003003000.’4001‘000601\0000“079000000300050 e e 8w ® % e 8 s o 8 v e s ® wm s w e e m o w e s e s s s e e e s s e e r sy e e s s e e OO OO r OO NORDYWOOOroohRoCcoONODIOOONNOIrooOoNOMNOOCOCOD " m O W0 uwy m D) ™ m ~m N MO o a o o oo © o o oo o coo © = ) ) 1 1 ' 11 ) [ + w B [ PR W B &1 B ol [opE B i ~ r~ wo - o o oo o oo O NOCODOMOONCOOOCOCOCOUODOWOOoOVWOODTOOOOROHOOWIHIOCONDOCO N TON W e = s s 8 2 6 5 s e 8 3 b e e 8 s e m e e 8w % s w t e s e m U s s s s s 8 s T s et et u e O OO MOLN O DO OO0 OTrMOMODOOMOOOCOCOTrOCONMOOWVWOODINTH OV - NN ~ ™ & ™ N N m ~N ~N o ™M moym o™ TN ™ = oo O oo oo o0 coo © oo o coo o© coo © o t | it ) t 4 ' 1 1 Voo ' tod 1 B o3 E BB R R EE OREBE & BB B B BB RT | IRCE T n 0 o 0o QO N~ OO M O © coo © oo COCOVUOORTrOoOVDOOONO n.o.nvnv?,6 n.ahu.h.nuu nvnvnvo COTOOOIDOMOOITNOON « s o o s ® s o 8 8 s 9 s s e s s v s u b . P e » 5 * o w s m 8 8 e s 2 e e e v v . COCODOCOWHNEOONOOMTFDOINOOX dodlmcmMogrlocdorTdommUYSroorraNe N - = ™~ OO0 OO0 RODLOOROODOCOCOCCOODOOOO nvmunvhuAvfi‘hvnunununvnwnvnvnvnvnunvnvnun» By ® o o w % 8 s % o 8 s o v 8 35 8 % & & % s o s o 8 v .+t e w N e s e &t s e . w « s v e e o s OO0 O0OROCORROCRDDOROOODDOODCOCL OO docococooeco M - ™ w oo v o o o~ ) 1 ' z vd = B O @ o © o nuq,hvnvnvnvnvnvnufidhu«uAu OO0 CDCOCONODDOCOO0OOOOOOOOC w ® 8 5 ® % 3 % e w e e y " W S P g O e P P @ * B ¥ S e 9 * e 4 s s € g oV & 3 s g T s e 3 e e -I010000000“00OSOOOOOOOOOOOflVOOO0000000000000000000 GO000000OOOOOOOOOOOOODOOOOOOOOOO0000000000000000000 2. e % % e e & 2 ¥ ¢ & 9 % B e B ° s+ T S ® v P s S e ® & s F s e e e o s . OO OO0 OO OO0 OOOCOOCOLOOOLOOO - ¥ o o~ m m 3 o~ o~ = o~ o~ wn e o™= 0N — o™ N — oo © o o OO o o o o < oo o0 O < oo o vy t } t "o ¥ 1 ' ! ! ) t ! 119 1 = P = m K F R E B v: P E L] A = B 81 R B OO = o 0 oo o o~ n N [ = <0 w0 ot HO "TO00O0OQCOONOODDOOOY O 600700¢!0209000202QOOQfi/9000007,905 U) ®» » @ ®» ¢ = ® @ % ® & % ® © ® o % 5 &8 ° 9 s % 4 G ® s I & * ° 2 » W sy Pt 3 & g ¢ ¥ e v s NMOOCOCOOONODONOODMON COIVONOTOrrOLOONONNTOOT e mONODOWN™ OO ™ . . . . . . . . . . - . . . - . . . - . . - - . a . . - - . . . . . . . . . . . . . . . . - . . . . HAOOOOOOOOOOOOOO000000000000000000000000000000300000 b e 8 & ® ¢ 9 % 5 & ® = ® & u s & 8 e ° T ¥ e ¢ v s o w . e % % 8 3 ® e ¢ ® s ® & o ° s o = w 000003000000000OAUCOO000000000000000000000000000000 POOOOOOOOOOOOOOO00000000000000000000000000000000000 s ® 8 8 ® 6 8 8 & w & 8 % e ® F 4 e ® B 4 & ° o % S s ® s 2 € ° . 8 & e s s v ¢ ° % e e . s s e 3 oooocooooooooo00000000000000GOOOOOAVO.‘UOOOOOQOOOOOOO O < o D00000000000000000000OOOAUOOOO0000000000000000330000 B e o ¢ = o % v 5 % o e ®» ® o % s 5 82 e 8 s s e % 8 s e % s 4 % s s s 4 v e s 8 s e a0 e s s e n » 0000000000000000O0001‘.OOO00000000001000000000000000 80000000000000000000000000000000000000(000000000000 i o e @ e ® w * ¢ ® o ¢ g ¢ ® 3 * » * @ * ¢ & 8 & s o 5 ¢ 4 e = e o % ® e & 3 9 e a = SEeddBCadSSSc eSSl S dScddeaddoscoseddocondaaa o - - N w0 N i o™ o~ o~ o~ oo w o o3 m u o < o ™ - O < -~ O o < O oo (e < 00 0 = 1 \ | () I | ) Vol [ v o B = R BB B B [ & & R B L F o o o ne oo ~ ™ 0 w0 © @ ®wW N own DOO-IOO«U:JQOZ.‘JO-/100”008100700 ..503000830215000200-/00030 e e s 8 v e e s e s e s s s e e e e e s, e 8 1 s e s om e s e n s e e e e O r R S NO N OMBOMr OO BONCECOOrIOrrOCOrONroCon o 1123u3u66fl DO OEMNNMIMIN OO NG RNOO T N NM DN Oe 00O ™ ™ T e e e - T T T oA NN ANNNNNNNNNNNNNNNN™M MM 2 EEEEER MR HEPREDNO O ERERRO00O MRS S e @ QO OO R e RO EEmeled @ m rrREERREEKERENRaSannNG Taste A-1 {conTINUED) AND ACTIVRTION PPODUCTS MRATERIALS OF CONSTPUCTION, ITGHT ELEMERTS, 67 s L = oo g O o M O oNO o owve M N o COODO oo I Cw® -~ Mmoo m W o ovm oY o @ o mes e o a0 PO OOr NOD OOl OMOCOYDr OO OW"COOO»" OCRLOOONNRINMO O O 5o a w4 e w s 2 % 5 s 4 0 % ¢ w . wo e m A & 8 A % wo® e m s om NS a4 e ® e s et e omos e we e s PODOUN T OO OI OO C OO OMONOC OO NDOCOOODO OO MNINOOO O m o e~ o~ o o o o ~ o < - © o i oo ao u N AN e o w m @ o~ W O Wwwown o Ao @ POO.!OOOOO./000500000300017500000001 07082906000002000 s & o » * » o 0 . - ® & ® ° ® W ¥ W e 4w s @ s o & » v 2 & o . * 2 vy v w a . e - 000000000000000000001GOOOUOOQOCOOOOOOOOOOOOO000000 W00 @ @ & e T @ W o~ O P~ m W T @ W™ ~ o ot o TP e O v M W ro® ™~ o Wy Wor-Nm NI 601.0000050301.08020301062.40#40001030003@585000002600 « v s e s T e e e o " e s e 4 8 & % % & 2 8 4 s et w.w P s s s m e wm s> e s o aoam e o OO.u0000030603000003000113000000010“02030n-000001000 - N - o - -0 NN o NN T Mo a o occo S o © oo O 00O 0 COoOo O © &z 1 ) ' v ¥ ' ' O ot ) w PR R fei $a K Bom L & v‘ «Q R E R i 14 OO0 N e ™ a m o oo w roooo - MO CONMANOCOCNOOO T OO OO NOCOCTONDUOCCOROVODOOOINANCSOOSO * 5 2 s a2 e 4 & & 4 T 2 B % 4 4 8 t % om ¥ w oo 8 4 e e N B e s 8 e ko s N B s oo e aoweow e s OO Fr OO NI O OO RO "N OO O OO0 0CONINA OO N - ~Nom N MmN~ - N o NN Wy M NN M v E oo o © o o o o Ccoo o COOOoO © w 3 1 t 1 ’ 1 1 ' 113 ' 0 1 H B R R | Bi Bl n», B R i 18 M OE i 0 FNO N o ™ @ N ©w o o O ™o - 00023000020&01000903000003086900000u00000312600000 « 2 ¢ e e b 3o e o8 P s e . . s s e e * s v v aa s v e e o e 0003150001,020BCOO3030000010“16000007000001121BOOO.I - = o~ NOOOOOOOCOO0000000O.nv0000000000000000000000000000000 . e o @ e a » o % » a2 2 B « @ s e 5 4 4 = e - 00000000000000000000000000000000000000000000000000 ~ = © o™ | & & TOOOOOODOOOOOOAU000000000000000300000000000000000000 U) » ® € 4« @ » » & 3 35 0 0 & % o * & 9 » B g & 85 B e % % 4 6 ¢ 8 O & 4 P 4 ® & & 6 & g e e r P s a0y OO0 OOCORODOOCCCOOoROLOOONODOOOCOOOTODOOCCTROCOTOO UCO00OCOROCoOOOOROO00RO000looOeCLOOROOROCOORRDOROO P s & 4 o 8 8 4 " 4 8 4 ke % w ow v s s e e e e e oam 4 w e e s ® e B s s G P E e ¥ W s oeoe s = O OO OO OO LD OO0 OO OO RO OO OOl ORROOOCROROOLDOO - o~ - o -0 e e O e e - - - - -0 0 oM -0 < < 000 < QOO O o < L= o OO0 O OO o t 4 1 4 9 1 ) ¥ 1 1 ’ = “: F %.WLE F R R BB RS B E E E E BB oW B G 0 NI WO O™ O O O 0 v o i 600070807 3.!D7oo3u‘.3fi90002000009090900000700280001 n e o 2 s & ® & » 2w R ® e ¥ T e s s e m x5S 3 E PR E S e st ouowoe o oe 000001080262030561'31..‘“66001.00006!!060‘00000 Moy =000 M HO OO OO OO OO0 OO0 00O OO OO0 0 Bii & » 5 3 o % % & 3 8 w % P u % s 4 e 8 e v m B s B 4 s e M M wow 6 e s e wa w4 e e OO OO RO RO OO OO0 R LoD C W.OOOOOOOOOOOOOOOO0000000000000000000000000000000000 B+ e e . - 00000000000000000000000000000000000000000000000000 1. PGOOOOOOOOOOOOOOO0000000000000000000000000000000000 o » o o 8 2 8 v » e s a v 4w NN e " w s e . e » 00000000000000000000000000000000000000000000000000 o 0 0 < - < PDOOOOOQOAVOAUAuAU0000000000000000000000000000000000000 133 @ ¢ » 4 s a e * g 8 & s & ¥ « 2 e v vy a © ¢ 9 v e » o w » .~ a0 0O0000000000001000000000001000000Q0000000000000100 .| 500000000000000000000000000000000000000000000000000 By s » « s e s » e 5 4 4 @ s o s 0 8 8 o 4 " e v 00000000000000000000000000000000000000000000000000 oo ® M A F e o P Wwa M W N M O ™ cCOoo ©C O OO e O DD - O O OO oo =1 ok 8y 4 vVoor s ) g BORS RG i} & F | ~ B 2 | fif & [ |3 [ o BOR R Bl K = N O D O oW O e o3 O N o AL AN OO rO N OO ONG OO PO NN OO OMONMMOr OO0 @ 2 8 o = s " 2 s s a2 m 8 & 2 3w w4 % 4 s w s e v mom o as A% e Eor s st e et w0 ow.om e e MO COSONLEOMONO RO OO rONONCCOIO O rOlNINYOALOODwND O HAMINMAIVOWENWE DWW DO N ANMI O NMINOE OO DOV QOO Ow ONMMMEMEMOEOM@OEMAMMNOMNMITMNIIISISTIINIFII I IIT I FINT T IO SN 5 RUGANNTMNNNHdedelldGGarpondlicMaada aaa Gl sl QOOOUD O P R F R DD b DOV U« el ool atoot VULV LLDUOLOU NV NEHE R Taste A-1 (cONTINUED) A¥D RACTIVATION PPODUCTS TIGHT ELFMENTS, MATEPTALS OF CONSTRUCTION, 68 ml 1o = < Cc oo < o o Cco < 0 oo < o o < oo o - v oW o o Ww o < & T O o o - o oo AD o~ D000307Saofljnoohugo614300000000802?«—00000009008081‘50060 . e e % e 8 e w s s v s 8 u ® e s e ® e w e » “ 5 ¢ ® 4 B % s e s 8 s P v e 4 = e e e s v e e e s . DooceoaomMoNoocooOoic —N OOOOA)OAJOC-/0613019090000807U80000 «© o o o ~N w0 ™ = N e L - - NOO o o WO o 3 ~ O a2 o W B o~ < < < LN ™ - Wwe < N r mM o wo N o «© ENNPF 0000 0OV Owrroou oo a0 lorCOOOoOO IO OO0 TOO0OOOCOOW R e s ® e % e ® s ® e W s s 8 % s e % w w8 % s % e M e v v e " v e e e n " e e « o o COCC QOO RO DO LOOCODOOLLLOCCOLERECOOOLOOCOOCOQOTOO0 ZNC 0 © 0 o 5 o i - WO ~ - wn " O o oo < N OO = o) A0 ) N I ™~ - N oM v o~ o [ad o < s < CO OO0 ONMOWE roONCOOMOMOOUN OO0 COODTONMOCOr NOMOOCOoOIT MOO « s 8 e e ® 8 % e s 8 8 w e w 8 s s v e ¥ s ow o e o w e 3 8 s 4 a2 s e e 8B B e s s ¥ s S s oe s e e NN 00O~ TrONCOCNOOCODOCTONOONOMNMOODOLOOO T NOYy O rNOT OO0 O™ o Mo 3 o0 = Mo [ . o o oo < o oo OC o o © O o o =z ' ot t 1 v 1 + ! "oy 1 + w B R B B ERG B R Eom - r WO c o o MO o = DOooO f el o~ OO0 OWo oo OULODOMNGRODOOOTDOCONOOIDCODORONDOCDOCOCOCOOOOCO * e @ ¥ s ¢ o * 4 ¢ v e " e e " @ % 4 e e w § @ ® * W * ¥ ® & @ B 3 * &+ e e 3 W S w ¥ e e CO OO r OO FrOrCNODOLOOOONOITMNOCOOTOr OO0 OOR [l Eatd S MW =F @ oS My o = on ™o m = = o OO0 o o - - » - - - o« * - e L] - * - - - . . - - o - - - - - - - - - " . » - - - 1‘00000001Q.OGOGGQGQ0020010219@20003000200590&.“00110@ o =ty W ) o~ "oy W [ 00 o o o < oo OO < - o ' { 1 ! P F ot 1 o o & =l #a " B R B R B E Mt oo o o o or woDoo SOOOOOO000Onunu.nu352090900600002006635630000&000060000 - - - * . . - ’ . - - - - - - - a - - - * - » . - * ¢ - - - » > » - » - - - - - o . - - - L] - - - - OO OO o OO MO NG OO MO OO NN NeErON OO OO OO0 OOO - oo oy - i [Ta] Mmoo My w = LOoOOR o o <> OO Qo (=] o o0k 1 1 1] VBt i H &R R m = 53] BRI n QWO o -~ < o MNO o OM™ = n,OnvnuOnunuonunu0nunv2nUnnAUSAUGVO.UiaOAUnVO.Anun‘3nqngsqsnu6nUnvOAunuqunvnanunvfl - - - e ” * . - - - " - - * . - - - - - - - . - - - - - O.DnUnunVOAUnuG.Unun“Oq 14¢,1,znufivn.nufl.Ununvnvfi“OnUt|7 5.41.0aenVDfiUAUOaUnunun.G.Uan o = ™ WfiununuonvnunqonunuonunuflflUnuonUnvonunu0nunu0nunuonun,OAUnunuO,UnvOnunvflnunuO.UmunuG,U . * o a2 2 @ o 2 8 ® g = fiUGOOOfl,nUnUOOflOAUGOQOOOOOGOCOOOOQCODOOOOGOQ0900@003000 SIGN 2N O ODOOOOCOCOCCOO OO OGO OO OO0 DO OO CoOOO0OS # ®» % ® g 4 & 8 # = 8 g & & & # w B 2 @ g P w T §F ® 3 8= 8 % & T O B % B 8 % 5 YV 8 g b w w @ a 3 s g CODOCOLROOCOULEeOUCoOOOOUoOOOECooOoCo oo oOoOOGCo 0 O O < m Go000000000:}00:;000600000GDOODDDOOOGBOOOGGGQQOGOfluflvflvul o Eomeo D T MO 0 -0 o - o0 o = - o™ o C Ccooto © ecoocoo © Ccoo o O0DOo0 O o o e o 14 8 ' 1 1 ¢ 0 ) =B BB E R BOBUR B R R RD BRI ) B BB E R B oW [ D L] F NV M [20] WU Mo O oy o N0 W [+ 0 O D e o o o~ o [ i OB N NOON OOl o CrO RO DT r OO NMOMOE OO CNOMNOO GO OWN - > a & ® w 4 @ B & 4 & = ® ¢ T @ e @ T W W 8 % ¥ T W =B ¥ ¥ 5 4 * 5 uu ® » B O NMME"S O OoONOOR MM T O OOWYWEEMAO o000 OWENOErQOAAONO™DDOoOOOMmM MOOLOODOCOCOODOC OO DOOOOLROOCC OO0 000U RO OO0 O0 By 2 » # s 4 ¢ ® 3 # & # ® & & B 5 4 ¥V ¥+ & & & w B & M & ¥ ° * ® v 2 & 4+ P W R WM PN B g T A % VP w W oD OO O OO OO OO OO OO OO OO0l OD o © G 0 0 - o o TwOOQDOOOOOOOOOOOOGGO0090000000000000000000&00000000 Bt OO O e O r OO e OO0 e B OO r oo oOoO OO oGOt G - PODQODOOOUOOOOOOQOOOOOC0000008000000000000000000000 o » * & ¥ 3 ® s # & & *» & 3 @ & ® p * s B & 8 B8 = * ® 8 3 ®' 4 3 B + » A A & & & 6 . OOOOOOOOOGOOOOOOOOOOODOODGOOOOOO000000000000000000 &N M oo an ~wmmm f= < COOOOo0 - <~ o OO0 -0 L) QOO o DOCD O 9 i 4 1 ¢ 1 ¢ ooy oyt gt iy vy oy oy | BB R R RO R R BKEE MR ORI R R B B AR R [ ~ OOy e O he o L] OO s | - W0 I T OMWOoO O CTOQONLWANOEMOOODOIFONOODWOTNMYOITHFROOCODOOOGOGMONOMNQUCERW NS MmO « & & 9 & & ® * 4 @ F g T ® G B @4 ¢ & 4 B PF A P & F I 4P e« B a8 ¥ P g g e 4 W S W ow e M g 0w OO OO OO OO OO - O NOTY O NN O OO NO MO OO NS~ X x5 B2 = = ¥ %2 X He OO MhOo s OO e O3 Mg N3O r- @ o e emmMmna o~ m Uh O O OO0 RO CORIO O™ v e e N 2 - e o e A e g e g FR el ot f @ QMR RN OO0 OO0 0O CODUDLDBPAAAMAORNRAR BNUL LW n;menw HMNNNANNZ S R RN NN NN EE R AU LM ! -, J Tasle A-1 {CONTINUED PRODUCTS ¥ATERTALS OF CONSTRUCTIOXN, AND ACTIVATION 1LIGHT ELEMFNTE, 70 R O = oo o O < < o o < OO o o oo < =) o [ @ — o> o L o T e D 2 = o= L AOCOCoORMNMMNOUOONOOCONE CTODOD N COOOOWohmrooQOoOYyYroIodwo oo o N » v - . - . . - . - L - - . - . . - - v - . - - - . - - - - - - - o - v - . - * - - - . . POCoOOOI O To0NODLId DO NCOQOQLOIIONOOoO0C o0 OCoOwod OO oRe o - o™ ™ uy £y s LAl ™ = M o™ . 00000001,00?.'00900GOOGOOOGOOOOO?OOO.UQFOOOOH‘OO100AU POOOGOOOOGOOOOOGOOOOOOOODGOOOOOOGOOOAIJOOOOCO-UOOC * 8 ¢ 8 a * 8 * E ® e 8 B e * 4 ® ow & w e = W 9 e e ® e e & % 4 s & PN B e R P oE N s = OfiuoooocOOAUOAUOOAU\UGQOGOGDGOOOOOOOOOOODOOOOOOOOOQ < L] Paunuhufl.OnUnununvoflunuonUfiun.OnunvOaununuofiunufiuDaunuOflunUOAUfivO.UAUHVHNOaununVO [ 71 ® ¢ ® 9 N 8 B % ¥ A ® 0 @ T & & € % @ F & g B ¥ & ¥ W e 3 % ¥ B VT =T s = g @ owow . = 9 OOOOOOOOGOOOOGOOOOOOOOOOOOOOOOOOOOOOO100000000 L= [ o un o MOODOODODOOOOOOOO000000000300000000300 OOOOOO.UC - - . . & - - - - . . . = 0000000000000000OOOOOOOOOOODOOOOOOGOOOOOOGOOCO oM MmN ~ o w0 &t 2D ™ oo -~ o - L ° [ * - - * = > -« - 2 - - . - - . . ” » ® v . ” » - - - . - 003200000%000062125788._..,765766550%5@&050Q55.5uOfiHOS.!OQ = or = ™ © o = 1 1 o . E i < Q.,QflUO«.)OnU0000030000039008&000” OfidOOOGOOGOGOOODOOOE 000050 00000”OOOnUfluOCOOflun.UAUAUnUfl.uAUOOOOGAUOQGGGOOOGOQQOGOO.&HOOOOU&Q o~ o~ = o o o~ i 1 = 13 B & < ™4 HOOODOCOODOOOOCOOCOOOOODOO OO OO OOt oo COMmOD U} » ¢ w % & & # & 3 # o 4 ®* ® % 3 3 & @ v % w % 5 8 & w @« ® s ¢ & B S g oz oL 8 G L ® @4 e v 3 s & w % e ow n.OOOODO0OCOOO0fiv.nUooflu-flufivn.u.fiUOnUhUOfiUnuc00000000000000030000.....Uo - o™ > < o = fr, 3 o &) fl- wf - o~ SGOOODODOflu00000nUOOOOOOGGO0000000006000000009007007000 - = - ® " " = . " e # v @ " v ®* % @» - - OOGOOODOfluocoflufluogonfiuooogoooon000090000000002003002000 2 20000000000000006000060QOOOOG0000000000900000000000%AU Eh &« a2 =« * = & B 3 * w ¥ e e+ a & 2 v + e ¥ @ \OOOOOOOOOQOOOOOOOOOOOOGQQOO«UDO00%09@0@00000000000000 o Lt o~ - m ™~ o o < o oo < o o = i = &R i i = o @w (2] o W0 A [ w o - oo CCOQLDOOOC OO oo o < o oCooOo o < o M COQOLOOOQOOLOOO oo = <« - DO OO o o COQOOOOOOCOCODOoOCOOMOOOCOOHOoOOC OO OO OOoOOOOLO . I, ® ¥ ® & 20 £ = 8 & ¢ & e * B e @® . - FHFOOOOCOOOOOO OO OOOOC O & e e " r O OO O OO 00O W*OQOOOOOOOOODOOOOOOODC-U.UOOOnU0000000000000009000000000 ey .« = a 00000000flu000000DfiuooOOnU000000000000000000000000000000 o POOOOGOOOGOQOOODOOOnu00000000000000000000GDOOOOOOOOOOO Pt o 8 = v # & o ® ¢ o ¢ ©v 8 e 8 ® a * W v ¢ ¥ & ¥ e e 8T BB RO & w . s * o L] nuoo.nuOOOOOOODOOO0000000000000000000000000000000000000 ?.00000000000000000000OOOOOOGOOOOOOGOOOOOD«UOOOOGGOOOOO P . * e = 4 » 9 w =« ® @ % ® o e 9% " v v 9 000000000000000000000000000nunUfiUOnUflvO000000000000600000 < o BOGOOOOOOOOUOOOGOH\OQOGOU0OOQOQO0000000000000000000000 Ty ¢ v o * o % © » F ¥ g * a @ B " 2 T ° B s ® € % & 8 % 4 wW O g T 4 9 T & @ 0000nu.nvnuDO00060000009.UC000000000000000000&000000TO.UOQ ™M MHm N O o 03 WMAST OO0 MMNOMNer NI M 3O~ 0O ONMWOOd M Sm O o OOOI0 OO QUOOOOOCOCOOOOCOOCO OO rOoCO O OO rOwDO0™000 = } 13 ey b b S b e e * EoR R [ R B R RESRIE R EE R R R RO R R BB R R R R R R R B R R R R = 0 N D DN e CHrOPReMmMme O MO N3 OND ONNSI CrO= N ONWMMWOMS RAOITNOODO DO NOMOWMPOITOOMMPYITOYE "N NONSFOONCO ™y O NMmEsS OO ® ® » & T S & * B & © B P T & s H & # P B g * ¥y g ®© B P & g & B & T s ° s ® & 5 W 9 4 € 8 8 & 4 a P 9 » ONMINQOOW M~ O NN N MdMN T NN NN EMD e M e N MW OO x; WS OONC OO NFOOrNMIDerNMINWCOr DN mMMIIUNLYOVE O OO NMI e NM L OOOC OO DT & & e O o -t e e e O NN NN NN N NN m I mm ] NN NN NN IO O OO O OO O O D09 N OO O O N O N O O N NN N O N N N N N OO NN BN O OO e HEEAS S A0 OOEO AR HBER OO0 OO 00D E SR o o e e alal 00D ID T B e e e e MR BB BB gy P 4 O Q0 Ay 0 M0 R0 AR G Oy R R fa el LSS R e R R R RN R ¥ucL PR23L U232 J233 723s §235 U236 0237 1238 ¥239 B2ug NB23€ np237 K22 38 Ne239 KP24OM ¥P240 PU236 ?J238 PU239 pU24c U204 PU242 PU243 puU24L PU24S EM2LY L¥2L2Y4 AN242 AR243 AM20i AM245 cHM2u2 CHM243 CcH2L44 Ccrzus CH236 cr2u7 CH2438 CM249 Cc#25D BK249 BK250 CF2u9 CF250 Cr2%51 CF252 CF253 CF2545 E5253 DLAM 2.B5F-05 3!05E'10 T.36F-1%3 8,898~-14 3.097-17 9. 19E-156 ?119E‘05 RQS7F-18 4,928-02 1.37E-05 8.75%-06 1. 03F-14 3.82F-05% 3.41R-06 1.58E'03 1.83R-08% 7.71E-09 2.87F=-10 9,00E-13 3.2BEF-12 1.507-09 5.B80E-14 3t87E‘05 2.657-16 1,B82%=05 5,07F-1% 145810 1.20?‘05 2,87F~12 b,4ur-04 9,307-05 5.927-08 6.86E-10 10 21?'09 2.66E-12 £,66T-12 T IUR-15 5.2“E*Tu 1. 80F-0u 1.26R=-12 2,55F-08 5, 98F-05 5,24P- %1 1.687-09 2.407=-11 8.30E-09 £, 508-07 1.338-07 3.87%-07 [ b-fl - g s i DOoO0ODO0DOOIDDODODOD D0 TODOO VOOV OODCUIOTTLOOOTOY - . A QOO LOOOoO0CTOCODADOODDOTOODRDOTDDTENITOODOOD DD O3 . . . - < < . * % 8 8 & & =5 & e &5 & & a @ . & o o - s = ‘@ s s & 3 = o » - 4 & o 3 a = s & a2 & & ¢+ = = & - s s » . - . s a e s @ « o & & 4 . s+ @ . . o = . - . a a e = L - - - - ® a2 s & DDA OODDO0ODO0OO0OOODOOAODIDQOODAOOO00000DIO0OCODTOOOODODG OO0 e & & - OO0 OO DD ODOD DO DD TG00 TG00 F OO N - - a - SOQOO OO0 TIDOOTODDODIIOTTODO DO TIODODOOOD a0 MO OQ DO OO0 OO NO D200 000000 OTOGOOODOOODIDOOO OXDODIOOOODTI DO DGOODEOOCOOO0OCOO00CDOO0 O 00000 OR DDA OO ON OO DT OOOo OO DO DOCROO ACTINIDES AND THEIP DAUGHTERS 0.969 0,003 0.003 1,000 v w ref | on QDO ODOWOADOODITIOON DTG TOAOODIIONOOCC OO0 DO OO OO L un . b WO bl e % & o & ¢ a = OO NSO DD [ Hd F WO OO .. Quo o0 m . = O {ad On g i W% h 8 8 4§ &4 ® & B ® s ® & 8 & 8 & & 8 B a8 8 &8 B B B & ® s B & = & ™ & & a ™ h OO0 OO0 DD WID A IPAO T2 O0DWA DO IOIIIOOIDO ~3 O a & & & 3 3 & 83 5 & & b c2 D1 02 02 01 0¢ 7 02 02 02 02 02 02 02 00 02 03 B O3 02 01 02 T 02 02 F 01 02 PO 00 00 ® 03 02 02 03 03 01 00 ' 02 02 FRG21 0.0 e & & 8 4 3 & & 8 ® e 4 & 8 @ 4 & » s s a QOO0 OO0 O0OODOL DO TIOIODTITAO2IIICTDDD200TOTOCITO DA OO0V U OO OO0V 20D DODTODIIADIIIIATITOD N TaBLE A-1 (CONTINUED) SIGF 0.0 1. 558 D2 5,80F 02 3.86F 00 L, 09F 02 3.24E 00 3. 76F 00 5, 98E~01 0.0 0.0 3.540F {0 2.45F 00 1.01F 03 .0 0 .3 07T 02 1. 9087 09 1. 06E 03 2.46F 00 1. 11F 03 2.227-01 2. 58F (0 0.0 0.0 i, 182 00 3.80F 03 1.83F 03 7-8”F-01 Y.85F7 03 0.0 3.16F 00 9.95F 02 L.928 00 1.47% 03 A DO . L 9F ¢2 6F 01 0F 03 W 03 « & &8 & » TE 03 9F 01 2T 02 . » DD NE OO OO WD O CONN O DR DT O o = SIGH2H 0.0 5.208-03 6.60F=~03 T4U04E-02 3.008-02 1.303-02 -583-02 48E-02 3.70¥9-02 0.0 < *« & & 4 < = = 1 [ &) . QDO OO OO DO DODOD .- DBO COQ OO0 PO DOIOC QOO s & &8 & & & s @& 3 =3 & 4 = = 4 ¥ COD VDI TOODACOD . OO LW - DT L] - - STIGH 3N 0.0 6.00%-05 1.26R-0°% £.837-05 9. U0F-0% t.608-00 0.0 Or-04 0w=-05 * a o - m<3(3i3(353u£C}C)C)u P DO DD DT «J07F=-08 1. 16F=-006 7.00F7-05 = q e 2 & o o o d ' DO s 0E-0S 0E-0U DR-0L De-0n s a 3 & 8 s & & 8 @ . DOoOO0 OO0 CCO D DIOOCT OO0 DPDWIDIT * 1.533 5.414 5,910 L.856 L.689 4.573 9. 112 4,268 0.1400 D271 0.4786 4.956 0. 839 0.228 1. 065 0.280 5.870 5.587 5,243 5.25¢ 0. 007 t, 880 0,239 b,689% G. 300 5.6390 n.0us 0,225 6. 158 1.25¢ 0.313 6.217 6.201 5.¢902 5. 295 5.536 5. 3090 21.510 0,300 195. €00 0.0L2 1.507 6. 637 6.290 6.039 12.260 0,109 194, 48090 £,1Tu7 S eeRs - 3@y ~4 F [Ye, 4+ & 5 @ 8 4 & 8 a2 #® 8 § & s e * 8 L3 o iy DD OO OONO IR DODIIDDN a0 2O ODIWLNNINOAON DI O O A . . - - - - - » - - - - - . - . - - . - - - - - - - MDD O o [an 2 Y IS CDOOOO DO OO OOV DOOOOOO2OCEIITI OO s . ¥ucL H xr Gh GF SR G¥ GR GE GR £33 =D GF SE DLAY 1,797~0¢ 4, 1ur-0¢ 1.31E‘05 g.¢ 3.938-05 0.0 1, 45%-03 0.0 5.78F7-03 1, 4U8=02 1. 617=04 0.0 2, 177E-02 0.¢ T.27E-08 0.0 1.287=-02 1:70F-95 L,98F-058 3.967-02 0.6 1,.31%-08 1.93‘3“'03 1,27F-0% 0.0 1.28%8-013 2.96F-013 . BZP‘OH T+e39E-05 1.047=-048 0.0 3.508=-G3 FISSTONR PRODOCTS o ik 4 @ = @ = ondt -t QODASOANO OO EODDQORCROD0 o HY DA A TII O ADOIOD DO -uj ONOODOOQOO DA ADID O D « & 5 o« - DO OD OO DOODS IO o . o [ ] <> DO 2D ODIDOOOTDOO D . @ ¢ & = @ SO SRIDODWOJOSNDRODOORVLIUIODUN - - o r o [= ] . . - - & - - P~ If 1 [= b = < o, & - < < & o <2 o (o ] NOODWOOOOMON DO DP ORI D = < L ] OO"’O‘OOOCX)JOOOU‘-‘OOWO-—IOO\O |95 T &6 B » ¥ & o B B e # s B & » e ® * @ 2 & A3 @ =« & DI DD DD * ® ® B < j @ ® & B & e & 8 & w 4 * 4 @ @ T B S E . ¥ « » M =t > -l QO OO AGOIODTTODODD DD ° @ & 4 & & e ¢ & & £ 8 & B 8 e s @ 4 & & & B o8& tg) @ o A& 4 & v F w 4 8 & & B s ® « a < po & & . OO0 SOOI AOTT OO0 S . @ & » e ¥ 0 B 4 A & B ® T W e @ w0 N s} + < - DO O ud DO O OO DOTODOO [ [ ] OO PO TCTASTTTIOOTIGTIOODRDOADGO - < < & e s s a o oo DD DD OO I 3 D00 2D = o - WD WD d NN DI D DU DR DS 4 ¥ & & & w4 & & &8 5 4 3 B2 S B 5B & & 4 » o o Oy 133 rf <% > - 2 DDA DTS ODASR DD 2 4 @ & © a8 - - n = i > —b « ¥ ¥ e ® 4 8 & e @ W <> - » DGO T OO ADTOG DRI EETOIOIODATOITIDO D *» & 8 & & § & @ - ° < < = O 3OS - 0 o . DD QT DD . b tf <> 3 o 3 < o < < a 4 & 4 2 @ QOB DPIDIALDD DD DU D C) - Y N o . » & Lo <> . e a & » L [=] < o< & ¥ & A& B & & @& & o - a - - e s DIOODDOOTDOOD as ~J OO OV ARITIODTOADEO - 2 & . - - VOO ODOUADOOCT TGOS ITSS S < CwOQSAPOWRRLIAQONNTTDWDIN DU WD ® 4 5 » + & 8 e B s B ¥ & B B & & B ¥ ® A2 & x @ DYWAIAIWROMNOON DD W DN - e 2 M P 3 2- ] SOOI TIADOTT AT QDD DT DD DD DO DO DD O DO AT e OO COOCTOODIDIOOOIDDDIDODD ¢ ® % 2 2 & $ & ® & B @ CADDTOIOTC Taste A-1 {conTINUED) ¥23 1. 16E-02 2.00E-04 0.0 o0 oF-no 0 0 0GP-03 0 00F=-03 G o SCE-05 00F-03 ¢ 0 Y 30r-02 CCE-03 o 0 0 0 W < = 1 o o < k=] ¢ (=] o P N e & & - SO ROND OO WD OODOOD D3 | <> & o ) 8 oo L+ 4 s LT QU‘!OLAJWCJO-JOO‘C)—&OOC)O\-&OOD.@ - [ ) e & A4 & @ * 9 - DD 3 3 tof i g o ' | i L v } o 3 £ O - =2 « & 4 2 B @ . & @ WOODR IO W O w fai ¥

N ™m ¥ ST 02 2E-01 it 3p-0 -01 B-03 LFWO STV DWW JODTOMI OSSOSO DU t O M 32-01 9 00 98] = < [ o = > o ¥-01 ® 00 w 1r=-01 o k4 <> wh a ® & B a2 @& & & »8 8 & e # M 2 a4 & & B & % & 4 & a 4 B ¥ 3 A g @ s s & P s g s & 2 =+ B3 3 "8 K 2 a & OO ROOOO QW 3OQORNONICINO IO PRODUCTS =] OO DCOIIOROODVINIOOODSOO000C GO0 OO0 O0CO OO0 J3OO@ — o t < < < = L t OO OO 5¥=02 " 8 B & & ® 8 B ® & § 4 8 B3 3 A& B ¥ B B s B e ¥ @ & » F 4 & s L A& g & e & B 3 S & B 2 48 3 8 s s 0 OO OO OO OO0 C o000 OOO DT O Trete A-1 {coNTINUED) Y23 3.708-02 0.0 1. 19E-01 2.15E 00 0.0 2.80=2-01 1.%0F-01 0.0 3.278 00 O L 307-04 9 0 56% 00 D 7 o 0 3 7F 00 2R 00 0F~-01 5F 0G OE-01 @ 4 o & & & 8 & s+ B B s ™ 8 @8 ® 3 & & & = 0 ¢ g 6 0 0 4 0 6 0 8 a 0 0 31fE 00 90F 00 60F~-01 0 0 6CE-01 0 7 0 0 0 2 0 0 0 8 D &R 00 87 00 0r-01 7-01 F OO CDO 0F-01 DN OONNODAORMNDPOOW LD O JOU‘OMOOWC)OOMOOOOEOQNO 4 2 @€ 8 8 ® 3 & 8 3 B & ® & & s = @ Y25 1.907-02 0.0 6,10%-02 1. 10™ 09 0.0 1. 43701 5.708-02 0.0 2.027 00 - OU\OOO\CUOWGE‘GJO(DC"(I)\OL:’OCJO\IOOOOOOUI . OMC}OLHEOJC?LUHWOOLUAMOQO dONONOTE OO WO IO . 702 5,908-02 0.0 2,20E-01 3.70F 00 0.0 7.50F~-02 3.00®-02 0F 00 QO AR ODMMOSIEIDLO JODOO N = < < . B ) g L] > - a - < L 1 < —a SE 09 "« m ® & u a & D t= t » 3 CJJL‘N&TOOO\QOWONOOO’\OOOO\OOOOO\O C) - OO Y28 1.0t8-02 0.0 0.0 6. 9-71:'-01 4, 0uE-nN2 GO o g r 00 N o 00 ™ o s A & a B ¥ e ® 8 § & A& & 3 s & 4 @ oo =01 - . L) = OOO#JNOOA«EUJODOAG\LUOOOOMLUGOAWOOC’NC!OOOJOOOO-&DOOO . OOOD-J-JOO’J‘-OMGOO:DOLDC)DOOOOOOOMOOOJOOOO\.IOOOC)UJOOOO r L mf b [ ] < 701 LE 00 6¥=- 31 1%-01 37 00 1% 00 VtF- 01 3¥ 00 27 00 4w-01 a 8 B & & 8 " a & s yueo 8.907~03 2.C 2.007-02 b,.56F~01 0,0 5.90F7-02 2,L0F-02 (=] e i (=] s -JUDOOU'UJPQOOL&)O\OO-‘&DOU\OOO:OQOOPJOCJLHOO\D M) ¢F-05 0F-01 2F 00 I=1 | < D 0P~ > N 8F 00 [e ] \ O DO WO W T a Dt T3 0w DR O e JOOAOODJOOOOLDOC'JI\)Q-JO 2 e 8 88 4 & B & 8 s & a @ & & & 8B 4 8 B 4 A @ s & & 2 8 e * 4 2 ¥ e s & 3 & & 3 2 3,125 2.662 0.0 3.200 1.050 0,377 £.274 0.0 3.23% .0 0.560 ¢.787 2.0 56756 2.738 0. 110 0.388 0.0 4,050 2.007 2.664 0.0 3,270 3. 213 3.059 0.607 0.0 3,091 4,635 b 0,221 0.604 0.593 0.0 1.570 2.451 1.046 0.551 0.642 0.0 2.250 4.558 0.2606 1.635 0.0 3.680 2.750 2.587 1,269 C.020 0.030 o O n urogr « & ¢ o & » D O DA NM DD MNOODODNDODIIINAC DI TIOTODC Ja . - - - - - - 3 g A B RO 0D [ B ) » ] < .on o 9 =R N o> s @ ® 2 o o @ Ay ” h h « 5 n e o< N D OO OOO@OOOOOOOOOOOOO_&QOOC’QdaDDOQO@OOOO - OO 0 163 0. 368 1. 600 0,008 0.0 0.0 D.23% 0,100 D, 14D 0.0 0.0 0.0 0.527 0. 116 0.0 0.0 vz TapLe A-1 (conTINUED) PISSTON PRODUCTS ¥ucClL DLEM FR1 FP FP1 FT SIGNG TUGH ¥23 125 102 Y28 Ya9 Q FG ¥B 93 0.0 0,0 0.0 0.0 0.0 6.9%3R=-01 1,000 0,0 ¢,0 0.2 0.0 9.0 0.0 0.0 KB 9 4,95E8~-01 0,0 0.0 0.0 0.0 .0 0.0 1.00E-01 1.00%=-01 1,10E=-01 1,92% 00 7,00F=-02 2,910 0.0 RB 9L 2,39F-01 0.0 0.0 0.0 0.0 0.0 0.0 2.851E CO 2.40F 00 2,62F 00 2,32F 00 1,.68F 00 4,170 0.0 ST 94 B,897-03 0.0 0.0 0.0 0.9 0.0 0.0 3.037 00 2,90F 6D 3,17t 00 1.01% 00 2,03F €0 2.253 0.630 Y 9L S,6%P-0R O.C 0.0 0.0 0.9 0.0 0.0 ¢.0 0.0 0.0 .0 0.0 2.434 0,262 Z® 94 0.0 0.0 0.0 0.0 0.0 1,18E-01 0.0 1.048 00 1,00%® 00 1.097 QO £.0 7.00F-01 0.0 0.0 ®¥E 95 2.77E-01 0.0 0.0 6.0 0.0 t.0 0.0 1.50% 00 1.55F 00 1,71F 00 84.38F 00 1.24F 00 3,420 0.0 SF 95 1.Uu8E-02 0.0 0.0 0.0 0.0 0.0 0.0 2.95F 00 3.0CE 00 3,30F 00 1,481F 00 2,41F 00 2,500 0.0 ¥ 9% 1,06¥-03 0.0 0.0 0.0 0.0 0.0 0.0 1.60F 00 1.65F Q0 1.81F 00 1.01E-01 1,327 00 2,782 0,826 ZP 95 1.,23F-07 0.020 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 ¢.0 0.9 0.883 0.821 NB 95% 2. 147-06 0.0 0.0 0.0 1.000 0.0 0.0 0.0 0.0 0.9 0,0 0.0 8.235 1,000 ¥B 95 2.2%E-07 0.0 c.0C 0.0 0.0 3,168 00 0.0 0.0 2.0 0.9 ¢.0 7.0 $.812 0.9u5 MO 9% 0.0 ¢.0 0.0 0.0 0.0 4,287 0% 6.0 6§.00E-02 7.00F~-02 7,70F~-02 0,0 5.6C7=02 0,0 f.0C ¥ %6 5,027-03 0.0 0.0 G.0C 0.0 0.0 0.500 S.%8% 00 6,33E 00 6.50% 00 B.86F 00 5,17F 00 3.207 0.530 ¥ 86 0.0 6.0 9.0 G.0 0.0 5.688-02 0.0 5.0 0.0 0.0 .0 0.0 g.0 0.C NB 96 8.37“"’@6 CIO OOO 0.0 050 000 0.0 6-503-03 6. 10F‘Du 70003"03 0-0 3-6013‘03 2. 569 Oo 898 Mg 98 0.0 G.0 0.0 0.0 0.0 G.u2% 00 0.0 0.0 ¢.0 0.0 0.0 0.0 0.0 0.0 ¥ $7 1.16F-01 0.0 0.0 0.0 0.0 D.0 0.0 B.237 00 5.90F 00 S5,10F 00 4,88% 00 5.50F 00 2.25G 0.0 ZF 87 1.13%~-0F 0.960 0.0 0.0 0.0 0.0 G. 0 0.0 0.0 8.0 1. 01E-01 0.0 1,575 0.501 BB 97m 1.16%=02 0.0 0.0 G.0 1.000 0.0 0.0 0.0 0.0 .0 8.0 &.¢ 5,753 1,000 uB 87 1.£60%-04 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .0 1. 159 0.580 M0 ¢7 3.0 0.0 0.0 0.0 ¢.0 6,728 00 0.0 1.402-01 1,90R-01 1.008-01 0.0 1. 50E~-01 0.0 0.0 Z¥ 98 1.16E~C2 1.000 0.0 0.0 8.0 0.0 0.0 8,958 00 B,72F 00 3,50E 00 6.06F 00 §,69F 00 £.550 0.0 NE 98M 5.78E=-03 0.0 0.0 0.0 .0 ¢,0 .0 0.0 0.0 2.C .0 0.C 3. 213 0,365 NE 98 2.27E-08 0.0 0.0 G.0 0.0 G.0 $.500 2,00F-01 6,80F=-02 1,00R-01 G, 0 2.00P-01 32,634 G.634 "o 88 0.0 0.0 0.0 0.0 0.0 2,33E 00 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 ¥B %9 4,81%7-03 0.0 0,0 0.0 0.0 0.0 G.0 4.80F 00 6.06F 00 2.70% 00 6.62% 00 6. 10F €0 1.4611 0,184 n 9% 2.87F-06 0.870 0.0 G0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 9.0 0.687 ¢.217 TC 99H 3-21}3“0: 010 0.0 0.0 1!006 0.0 0.0 Q.Q 000 O-O O;O 0‘0 O; 1“3 0.0 TC 99 1-0”?‘13 G-O 0-0 0.0 0-0 u-uSE 0? 0.0 0.0 0.0 0.0 Gn{) OuO 0:11”’ OIO kg 29 0.0 G.0 6.0 0.0 0.0 §.958 00 0.9 0.0 9.0 0.0 6,0 D.T C.0 0.0 ¥BI0CG 3.652-03 0.0 0.0 0.0 c.0 0.0 0.0 4,418 00 £.30F 00 1.00F 00 6.38% DO 7,10F 00 3,643 0,328 #0100 0.0 ¢.0C 0.0 0.0 0.0 1.70% 00 0.0 0,0 6.0 0.0 0.0 0.0 0,0 0,06 TC100 8.08F-02 0,0 0.0 6.0 0.0 0.0 0.0 .0 0.0 0.0 G.0 0.0 1.260 0,0 REI00 0.0 0.0 0.0 0.0 0.0 9.,70% 00 C.0 c.0 0.0 0.0 0.8 0.0 0.0 0.0 ¥B10Y 1.16%-02 0,0 0.0 0.0 0.0 0.0 0.0 2.91F 00 S.00B DG 5.5DF=-01 6.06E 00 5,9%F 00 1.150 0,C ¥C101 7.91E-0U 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.03F-01 0,0 2.080 0,801 101 BL.25E-04 0.0 0.0 0.0 0.0 0.0 0.500 0.0 0.0 0.0 0.0 0.0 0.824 0,425 RUICY 0.0 0.0 0.0 .0 0.0 2.82% 01 0.0 0.0 0.0 0.0 .0 9.0 0.0 0.0 G102 1.059-03 0,500 0.0 0.0 0.0 0.0 0.0 2.22% 00 4.10F 00 2.20FE-01 6.46F 00 5,99F 00 1,793 0.725 TC102M 2.57E~03 0.0 0.0 0.0 0.0 0.0 0.0 6,0 0.0 0.0 0,9 0.0 1., 305 0,360 TC162 1, 39E-01%1 Q.0 0,0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.920 0.0 RU102 0.0 0.0 0,0 0.0 0.0 4,578 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 ®0103 1,12R-02 0.0 0.0 0.0 0.0 ¢.0 0.0 1.80F 00 3.00F 00 1.60P-01 %,86% 0D 5,67F 00 1,200 0.0 TC103 14398-02 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 8.0 0.0 1,128 0.0861 TU103 2,03E-07 1,000 0.0 0.0 0.0 .0 0.0 0.0 0.0 0.0 .0 0.0 0.556 0,881 PH1O3M 2,03F-CL 0,0 0.0 0.0 1.000 0.0 0.0 0.0 0.0 0.0 0.0 D.0 0.080 0,500 RH103 0.0 0.0 0.0 8.0 0.0 4,48® 02 0,073 0,0 G.0 0.0 0.0 0.0 0.0 0.0 ®0104 §8,89r-03 0.0 0.0 6.0 0.5 0.0 0.0 9.450F=-01 1.80F 00 9.00P-02 5,66F 00 5.93F 00 0,143 0,090 TC104 6,02B-0L 0,0 0.0 0.6 0.0 0.0 2,90 t.0 0.0 0.0 3,037=-01 0.0 4,139 0,749 S/ Tasie A-1 (CONTINUED) FISSTON PRODUCTS .0 76 L") 0050620500?00092009030000300310000000800300002 e & 5 8 » & 5 @ ® & 3 8 F & ¥ ® B B Y 8 e . B s s e & L T T S I I L T I R n.UfiU1.0630q!O02000112005060000500350100000100“00001' o 0 <« g w & a2 s B p T W T 3 CENOOO O N N OO oM OO N O OO MmO " OO r NSO NOOOMO O o™ 1] ™ o™ ™~ o™ o ™~ ™ o < o o - - MO W C OO OO YOO OO O Y DO OO YD OMONMNMOO S SO O e w « o o < o o w u [ o W o © MOOOOQOOGOOODQOOOOOOOOOOhwOOOOQOG0000000000050000300 a . - 60300000000000000000000001000000000100000000000001 3_00000000000000000000000000000000000060000000000000 # w 3 ®» ®» 8 8 B & w 8 e w ® @ # % 9 % @& @ ¢ B B P % B & 3 w8 e s & s * 8 & u w 2 B x & % u 0000000OOOOOOOOOOOOOOOGGGOOO0600000000000060000000 o ] e D.AU000000000000000000000OOOflvODOOOOOGOOOOOQOOOOGOOOOO B ® s 3 p» 2 e & ® 8 ¥ ¥ a2 2 P A w & ® " " s 2 8 3 a s = 0 OOOOGOOODODGOOOOOOOOOGOauu000000009000QGOGOOOOGOOOOO o < < OO oo o Q fiv o o < o< wn [ Bcoooogozoofiuoooooaflvflvfiuflfl 0000000600000005000000000000 i = o 8 2 o - s > @ o 5 8 8 e @ = " " a2 " & 8 8 s 00000000000100000600001000000001100000000100000000 o —m O AN oF §~ WO ™ o ™ AN W e C- s B MM aen o O = Mo N OO (] m o OO Qe OMNMODO D - . * - L] - . . - - - - - M DO NS OGN O - - ~ o™ o o o O ! t t ' R &l " Rt =t ™~ - o OQ_OOQOOO:JDOSO L] . . - - » . - - L » 030fl~2flu0hu.~!00nl0 ™ o~ 5! ™ [ o _Dghufiunrihunu_fl.uflfifiuoaflu - - - - 11OO7AU002.00410 = ™ ™ o~ ™ oo D o o & t 1 } ' ' & O < > GOOOOOOUDflu30000000@30@0030flu00000DGGOCOOOOOOSQOOQDOO 5 2 & e FOOOO ma o ™ MM MmN v oo © co o oo = TR R BOE B R OO W N @ wa moorno - - - ocrNwo o o> £ [=2] - m O R w W &N < 2 < = 2 1R 0O 0F O - o B o o < flL -— o> -« & fifOCOOOOOOOQODZ-] OOOGGOQnOOOOOQGOOOOQGOOO0000000000000 - - @ . * - - . 0000000000000900001..000000099000000000000000OOOOGOO Fa . BnunuohvnuOAUfiVO,UAVOAUO e - 000000000000000000 = AD u 3D ™M WO MW OO < OO e o Qo oo =1 A i 1 1 1 ¥ ! 1t « 0 RiR R OB B f & i M "3 M o ~m = m o O RPOLCOOTOoODWLWDIONOODO ™ s o * % ¥ S ® F S e e s e T 9§ 8 T a2 o CFMOOO0OTONDeEOMN - ON Do x PN D COOOT ™ oI MNON M mm L O DWW W AN W0 0 N AN W WD N [OF o o & 5= ¢ ¢ ™ Fr T AT e e e e FARELQEEOEDLODELNDDORE X D EfRwnm s A e R0 R RN . * @ ® » flvc0AU0600000000000000000006160000 8 3 3. 32?“'(} 4,62F-0 8.0 GD133 oHis5u 9 1.372-0 SH154 FU154 & o uy B~ oo ~ Er ® < i) [y 5 MOOOOOo QOO COOUOTOoODODODOCOOOCUOCOOOCLCOLUOOOOOOUO™OO0ODO0 M o a § Y W & ® 3 p & @ " s S g B * F T & O B ¥ @ 3 4 & o % & O p & W e ® ¢ = H F & 9 O g B 5 =2 @ e ¥ LT @ M | & NOOOUOOOOOQUCOODOOO0OCOCOODOO 0O ODOQOOOAICODOOLOoOCOODOYDORDOD ol . -~ - ™ o o o< Z o ! | O £ E i B = - L o % nfifl.\fiw CODOOOCOoOORDLOoOORLAITCORODOLDOQOLDODOLLDOOOOOrOoOT oo O & ® 8 # ¢ ¥ W B € ®W & ® B R W ST s * 3 T & 2 O g4 T § & € B 0 @& % & P O A s T S * B F 2 T T A B & B e w n..__vv,.ar.flyCCfluOOOflufiufiufivfikoaflufivtoOOOOCCGOOQODO00106000030.00000000 = fi/.b. = - Lt [} v NN <3 1 o Co 3 o < O o =T gl 1 ! 1t . B B B B 1l 28] i uy ™ gl o o m u 1 £ 5000flVGOCOGQDOOOfiUOUOOCOGOnflunUnU.nv.u000005008200000‘060000 mw 9 « 3 ® ¥ s 3 & B 8 3 % B B ® B 9 B 3 0 O € & & F B 6 8 B e P O 4 & b 0w b §xl alOfivflvOnu0000000nUnUOGSCOGGMU.CCOUOS0130090086000001000000 £ = o - -~ Lol =% [ < o o o o U ) i ' H B3 L&l = [ i 0 L= . v = wn o < S 1...OGOOOOGOOQ«U.AUAUOQOQOOQQOOODOGOOOOOOOTOOQJOOOW;0.0005!000 tr @ » * o 2 ® e © & ® O o W % B X % 0 e % w A F A 8 W M P P X ® @ & 9 T B = & a4 & B W » » a2 & ®» » a & .IODGAHVAUOCAUGGGOCOO«UOO«U&UDOgfluo.nunuofiuhufivonuflu1901000200100080 o £+ o ~ b - o o o5 0 o w 1 1 1 o B Ay Fi oo ™~ A0 o m 60000 n\OOOOOflVOOOOQO006@000000QOOOOEH&OOQOOO?JCGOOOOOO - L - - - » " » a - - * 8 - » » » OOPHOOOOOOOQOQGOOGQOOOav O.LQ-UOR.UG00000216010009&600000G - - o < o < 1 | 1 B el E P o 3000uCGCOOGOOOOGOfiunuoOOOGQOCOOSQOOCOOGOOBOQO..JLOCGDODOO a * & ©o * 85 0 e 8 % * @ B O 4 4 & o ® & 4 % ® % s w B g ¥ 4 o8 % © A € & O T 8 8 & & 8 @ % 0 B A A 0w QOnuoAUOOfiunun\000OGOOGOnUnUfluOGCGQQG0008000001000.\“00000000 1 .nw MM GO RECOGE O N OMI WO OO T OO MAM IGO0 OT O - » F T AN T e T T A T o e e T e P e NN NN NI NI N NN DI M L £ mmmEBEER RO OURZEE RO R R B B R B e e s 00 ] el kT b b b R = T Ted #d o1 0 ) @ A FRmEZEE SRR E D a0 nn Tapie A-2 (CONTINUED) EMPRN (MEV) PHOTONS/DISINTEGRATION FOR THE LIGHT FLEXFNTS NOCLIDE e 2000(00000nLOflUnUOOnU00ODOO-UOOOOOQOOAUnWOOOQOOOOOGOOHUAU,O“nU « ® e s . L 500000000000OOGOOOUOOOOOO(LO.J30000000000000000000000 7 L 1 s p] < F OO oDODLOCOO0DLOO0D OO U0 ULOLOCOOO OO COoOOC - e ¥ e @ " 9 e 8 e o « s s - . . = » s & ¢ & ® » v p @ .« ® s 5 * & ® B T & B 4 » = » » OO OO OCOLOOCOORDODOCC OO XL OOCoLOoOTLoOoUDLOC OO oy o~ o < 1 | K ] o o - * ® ¢ 9 o % B % ®m S y T 8§ 8 ® g & T e ¥ @ @ P s & B 4 € @ 4 B W € B B " g € F § G e & & 4 2 8 0w o @ @ T OQTTOoOLOOCTAOLoOODOOOoOOORDOOCDOLODODOOODOOCOOODOOCOOL O DR = ™~ o O 1 1 P R o < = OO0 OO DOOOCORODOOCOLOEe OO0 OoOoODOOOOoC OO = ® 4 % 8 F 8 F s & p AN B & % a2 & P g ¥ B g & e I w W € ¥ ¥ 5 3 s s @ ® § * e 8 3 N B g & & e = = * MOCOCOoO OO CoOoOLQONCOCLDOOOQOoOOoCO0O COO OO C OO LLOoOOCOoOODOO0DOODDOO000OC OO0 -~ - < o i ' B Ll o Ll 20000OGDOSOOOOOUC900090000000000000.B000000000000000 . + e s » s . . s 3000000008OOQOO&UDDOOOOOOOOO000000008000000000060000 o~ «Q 1 o w ™ FOCCOoOOOO0O0O0000C OO0 OOoODOCCOWDOLECOOOOOOoOOOCOCOoDOoOOORO OO P+ % 8 8 * s & T 8 4 5 % w8 v F 8 e e B E Y S g st 8 e s %Y 3 s ow o % 8T =R oz e e W g e NOOOOoODOODOOOOOOoOOCOCORDOOLDOOUOoYoOoOOoOOOQLOOOOCOCOOLODCOoOOOO0 = < w MOCOOOOOOLOQLOOOCLOoL OO OO0 OO oOOLLOLRLOOOOOOo e % & F ¥ ¥ e % ® & 9 ®p w F 4 € & 2 B 2 W € ® B B 8 ¢ % W B ¥ e ® ® e T g € & & ® S ¢ B § s G g @ NOQOOOODOOCOoCOQO OO MO0 DOCOCOLoOOOOQOQOOOCOOOROO0D - - = T o < o o t ' t 1 = =y = Tl o @D N o < 9OOGOGOGOOQOGQSQOOOOOOOODAU9000000000%003000000000000 ® o 85 4 ® ° e " & B " F 2 b " s & r 9 e s & 2 9 & * ¥ o * *T 8 5 8 9 & P F F & B B F & B & B & ¢ n 1|002000000000500”;00000050.*_O0000OOUDOAUOOOOONUOOOOHLOOO - ¥ ~ - o~ = o < < o < L] OO i ' ! t ' ! 5= OB BT B LT3 o™ o = o X OO —._J0000000000009OOOOOOOOO7O900000000000000000OOOODOGD * & ¢ § ° § ® P B B B B §F 8 B P S + & 8 9 ® 8 = e s % P ¥ & * W 8 B P ¥ e W * & » ¥ 5 4 & 10000000000003000005010‘080000000000000031000900000 o My - < © (=] ™ o OO0 Lo < o o o ittt ' 1 1 Ry A . 5] Ty ~ fei o r o= o o o~ 0 ™ L=p] 1|00009900@000000000100008uDOGOOOGSOOOOQOOODOOO08000 % 8 4 8 & & e P 8 ¢ e ® W & 8 T ¥ T e w & e bt w s o e % & ® & e ® WY P+ 5 4 82 " @ &8 ® ¢ e @ * 3 3 1000000600000000000100034.:500000008000103010@0003000 o L - o o~ c o o o < o i 1 I ! B3y [ B #! _E Lt} o u -« i 600000000000009000000000100000000000010002000003000 * = 9 - s % ® & & = . e @ OOOOOOOOOOOOQOGQQOQGOOO19OOO000001\60010058000001000 ™ O ot o oo o o o 1 t o R p B E < o = w 30000000000000000000000130fiuflu000000OODOQ,EJODAUOOOAUGOOO ® * & § ® 8 9 3 9 &5 ¥ ¢ g g * 5 * S g I @y T B g P ¥ 8 & 8 P s 4 + % 2 ¥ W ¥ * » " PR =P e " @ oe ODOOOOOOOo oS OOOMNMOoSOOOOoOQTOOO 2 1 COCODDOoOCUO0OOLODOODOOOOOO NG NMIUVO WO WO rOOrrMNMaCrMManYrErOoOmnNermoOowi- o OO O MOMOMMMHOMEOMOOMMEOM MMM M I I FT I T IN A AT DN DI DN ORI NW A e -1 03 6 B Qo B S B B A M N R o el s DD DU R R UDDUU Mot o ceupRLLDDLLLDLDNDnNLNONVBB B P &E TapLe A2 (ConTINUED) FLEMERTS PHOTONS/DISINTEGRATION FOR THE L1IGHT EMTLAN (KEV) NUCLTIDE 85 ) [l =R R el ofoleNolalalcioeleoolelosRoloealoNoRelol el sRollol ol el ool =R R ol v Rl > N oWl o R oo R el ek ok o) # % & 8 ¢ ¢ 4 2 ¥ ®m & ® 0 S m s w5 O 8 B 4 F % 4 3 O T ¥ B B 8 » FT & * ¥ & P 4 & = e s W A W owmoe B NMoOC OO OooLOO0oOCCC OO0 OO0 0000 C OOt OO0 O o F OO 0O C OO0 COCOOoOLOCO OO DOOCOUOOCLOCOORCADLCO OO OO CooOOOO0 ® 8 P @ B * & & 8 FE ® 8 F 4 ¥ 9 4 ¥ ® P ® st ® S I T T W S B B e BB S OT S LT B B S E S e s oA OO0 C OO0 DD OO0 C 0O C o0 ODoOOO OO oD OO0 OO0 &~ 200.”.000OOOOOOOOOOOOOOOOODCOAJDOOfiJflJnJ.nuooo_nUO OOGOOOOOQO hu.000000OGDOOOOOOOOOOUOOOflooonooooogcn\000000OOOODOOO o FTOCOOCOOOOO0OCOOOCOQLOOCOOLOOLOCLURlLOLCOOOOOOLOCOODDOOOOD ® 2 % 8 * P & 8 ® e F B ¥ F e ® e & P 8 yg ¥ W 9 € s 8 T g 8 B 4 & F w T B P 4 ¥ * w e t ®or P o wu e MOOOOO0OO0C QOO LOQOOLOCOLOOOOOOOOCOLODoCCCOQLOOLLoCoOOCOoODOoOOOO ™M o 1 Bi w o 2000000000001000000000000000500OOOOOOO OOOOOOOUOOOOQ + * e e @ 30000000006020000000OOOOGOGGOOGO?OOOOOOG&UOO00000000 o™ o 1 £ 0 T~ FOCOoOoO OO OO OO0 oO OO0 OO0 0O OoOCOLDOOoODOOOO OO0 O0 s 8 ® 8 e & B s s 4 " B B T @ s T P s " s s B o4 %P F O K Y E ST IS e s Y e % e s R et T ou e g & NO OO OO COOOO OO OO OoOOCOLOOOOOLOOLLOLOLDLOOOOOOOOOD - o~ o™ o < < 1 ' i B i 2= o o w n MOONOCOODODOQCLODO " COODOO0OCOOOOOoOrOOoO0OOLDo OO OOCOO * 8 ® 8 ® B e ®T 3 3 & 3 8 B S G W O B B BT g A A S AT e E R e Y NS ¥ e e R E oy o n NOOoO OO OOOO"TCCOOGCOUOOOOOOUOOOrOO0COO OO ODLooOO0O0C0 - o~ - . - - - - - nUnUnU-anOOCnUO1\0100000000010000000000007103031020906001 o™ = ™ m o™ o = nU o o < o 1 1 1 E E nl 2 i nu.. o < Lol 30000700000002006000300010000000000“000000000000002 L R O e I T R R I I I A R T R T " = 2 3 e oo oo Coo 000000030000002000.fl00000000005000000000000001 = L ] = MM O NMANINOE O YOO O N0 NI NMSENW IO NGO ™ VNN OO NN NN W WAL WU W WO WO WO AW W W WOWWO WP OO PR REEEROBFHABRAERROOQOC DO OO HKMMBHKHEHEHDDDEDEREBEDE D ZRBRE DLUDOLOLESEREERMERERRULUDDOLLVLUDLDERRB EZRZREZODOQUDULUNNMEIMNMNEIMNMaM NUED) i TaBLE A-Z (conT: FOF THE LIGHT ELENRNTS PHOTONS/DZSINTEGPETIDR — T i = e N E E NOCLIDE 86 e 2000QOCfiuo.flunrOOHUanUOOOOOOOOOOOOOOOOOOOOOOOOOfiOOOOC«)OO:\ e s s o ¢ s = s ® « s e w « s s e ® 3 = . s . . * 500\; fl.unuoooFUOrJAUOOO.UfiUO.UQOO_OOH\00000000000300 03030000000 < OO OO0 OO OODOODDCOoODOOOCOCDOOOO0OCOLQCODOOOUCOODOOOOOT O 0.-n¢-o.--lc-o....cc.c-oco--lol-OQ--o--oo' OO OO0 0RO O OO0 DO OCOOOCORCOOCOOOOoUORLOOOOCOoOO ZDAUOOPJCOD 0000000000000000.‘“‘#)AJDOOOOOOOOOCfl0000.} 03000 - - hfi00000000000005»00000000OOOOGQOOOOOOOOOOGOOOOO\UOA\;OOO o FOC OO e 0o OO COLOLLOoDODOoOLoOoLOLOOOLRDoOCQCQoO @ v ® ® @ ¥ * e @ Y w * 4 8 ® 3 * 8 § * e e * 2 W ¥ e & w w B ¥ ¥ S 9 8 s g ® 3 B I 3 & B 5 " s & » oa M OO0OoO0O 0 COCOOOOOOoOOLODOQOoOOOOO0LCOCOODDLOODOoOOCOoOLDOOCOOO0OOC0 2OOQA.UAUAU000«Ufi 00000000OOOCGOONU00000000000@00000»000000 . s * o w - -« = 8 . - * ® = @ - «. . . & & . 9 - . BDOOOOOOOQnVO000000000000000000000000000000000000000 i OO 00O O DO D DO DD OOCO O OO OO0 C OO OO0 OO0 . . - » . - . - ® . - - - . - - - - » - - - . - - * - - . [] . . - - . . - - - - - - L] - - » - - - - - NOOOOOoOOOOO OO OO oCOoODORDIOCoOCO0 o COOOoCoODoC OO COoOoOoOnD o MOoOCOOCOoOOoOoOOCOLOOAOROECLCOOLOLDoLCORLLODRDOOOCDULODOOOO0O0COOO - T - - . - - - . " - » . . . . > - . . - . - - . - - - - L] - . * - » . . . » » - . - L - - . - - " NOOoCOoO OO OOODCOOOCOCODO Do CCOOERDLDOOQLOLDOOQCOoODODOCO u L2al o (=] o o 1 1 i fy B B o Lt o - OO DO O O MO OO O OO O OO0 D UWOoOOCODODO Moo OO - . . - L - - - - . - . - » . - - - - - . - - L - - - - - . - - - - - * . . - » » . . . - - L) - - . - OO0 DO T OO OO OO LOOCL OO OO OCQOoOTTrL O OO0 OC o < ™ ™ [an] <« o o o o 1 ) 1 1 1 = i = [ Ty W 0 = - | 5000000005030030OOOOQDOODOS.UOOSOUOOOOOOJOODOO0700000 - - - - - - - - - - . - - v . . - - - - - - . - - - * - - . - . * 1|OAUAUOOOOOH.O...HOOOAUAUOOOOOOAJOOAUOOOQ;O«UOOO»U.U.QHOOOOOOZOOOOO ™ ™ =t - ™ Lyt ~ = N T ™~ o o < o o < o oo L] < 1 t t ' t 1 1 A | ¥ B &y fy L2 n B E BB B3 B oo [ =] o wn 0 o W o @ 1‘8070000000&03COGQOOOQOOOO&SOOO00000005000@00800000 - . » - . * . - - - - . . * - - - . - - - . . - . - - . - - . - - - - - - . . - - - 9 . - - - - - - - MO S OO TOMONOMNMOOO0OOO0ONO OO0 "D O CDOOOOOMUOUDoDOoODONODOCQO ™ W T (N o oy COC OO o - L ™ ko o COoOC OO o o OO O o < o o | | L L ] 1 1 I 4 1 o & PR Py B B pEEEOE & [ fx] B Py m K D NN WD u o S N o o ™ ™~ Wy 600000003736700000”1060052“.OAUGOOAUOOOQ;OSOGQU00000000 . * @ - * - . » - - - - . - . - . * - . - - - » - - - - - - - - - - . - - - - * 01000000"9«471800060010200212%\00100000106006000030000 o ™ ™~ o~ o~ L o~ = o =¥ o™ o » * B - - . 2 - - & . - > - * - - - - - . . L] 1q¢nv0flnnuOnUnvOAUnuOAUGAUnuC.UnuonunuOnuH;Uhu0aunu0nunu0.UoJflnunvonunvOnunub O o N — OO0 =~ oo oo nwDAWHuO o ! Pt ! 1 B B a8 R i oM ™ 21 WO N D - 6»41d0.UnuOAUnufiZUnuflnuonuanflUnufihunu0,5nu6-rnuO.UnuOAunuOAUnvOnufinunuOnUnu2 - - - . - » - - . - - . . - - . . . - - * . Ll o . - - -» - - - . nu3.!nVUAUnuQAUnuhZUnUOnUfiVOAUnuO4IB,Uhus.l:u1aznuhufinUnuo.UnuonunuOnunuonunv6 o™~ L] o~ oeN < & < oo 1 ¥ o & E = R OO ~— ~ 0N 3000000000000000000000@090.IGOAUOOQGOGQ«UOOOOUOQAUO - . - - - - . . - - . . . - . » . - . Ll - . ¥ - 9 * « - - -* L] = L . . - ” *> ° - » . = . - 05000000060000000009100000u0000000055000000000fiu = = x x ¥ 1 = x ¥ k] L * = e O N WSO NN SN MO AN WINWODe NN Mo D DY N O o e e e e OO NI TN NI NI NI NN N NN NNDOOCo@DOo@m O oo oo g O e e g g Y g g e e e e e P T R T T e T T T e T e e e T T T e e e e pREBEZER RRBRE R E R BB R R P RE A MM 0] R m R e e IR DR R FEHF RNt niiopurinhun a0 E e e BB e 6 TasLE A-7 (CONTIMLED) PHOTONS/DISTNTEGRATICON FOR ACTINIDES AND THEIR DAUGHTEPS 4 i MELN (®EY " I NUCLIDE 88 3 VODOOOOOOOOOOODOOOOODAH.OOO0,00H\OOmUDCOOQOOOOOH,0000000000 o--.-:.-c-'unnlocncc--o.o-n-o ----------- s e e ®* + s s & T BO0000OOOOODOOOGOAUOOOOOOOOOOOOOOO-UODOOOOOOOOOOOOGGUOO "L - < 1 Iei u « FOoOONOoOOoOCoOOOOOOO00 0O OOfi.OOOfl\OflUOOOOOOOOOODOO,”.GOCOOOOOOQO e % ® ® ®w * ® 4 &8 ® ® e € Fr ¥ & O ¥ e @ = % ¥ 8 8 e 35 ® ® w ¥ s 8 8 ® e 4 4 = y e w e o S s 9 2 & o= 00 NOCOOCOQoOOoCOOOoCOOL Do CO .ODOOO‘HM‘GOOOOOOOCOOfla_OOfiUSOOOO_flunUOOOOOVO o« MOCCOOOOOCODOODCCOOO AUOHUAUOOOOOOOOOOOOOOOCOOOOGOQOOOG@OO e ¥ » ® % w ® s W s s ® ¥ ¥ ® € ®w §w * e & ° ¥ O a2 * & 8 wN * ® @ . OOOOOOOOOOOOGGOOOOOOGOOOOQOGDOOOOO > o @ . = @ *e = » o . * * ® NOOCQQQOQOOoOOoODoODDOoOOOOoOCo o OO0 O0OQOOoOUOOo 0 000000OOOOOO0000000000000000000000 *« ® 2 ® @& ® @ B s B ¢ 2 & T 0 9 o OO0 OC OO L OOr [ L= B u — nWoocooODOCOoOE 3,90P-0% 2.57E-02 1,32%-02 6,37F-03 n .13E-01 3.73®-01 b&,34F-02 7.860F-02 1,657-03 CcCoCcOLCQOODOoOOT O T ® e % % & s ¢ 3 § ® e ¥ & 3 @ e v + o @ OO C QoL OoO0CQOEOOCCOOoCOOD D000 OO < 00000000000000@5,000000000000000000 . . . - - - - - . - ’ - . . . . - * . - - - - - * = - - . . . - - - - . - - . . - - . . - - - - - - - rFOOoODTOOCOODo000 00 < n.un.uo000000OfiufluQOOfiJOOOO.UPJGOGGAURUOOGOOO N Fo - & L= > o < 1 | 1 I 5! =l el |9 o ™ kaad ") - —foo0OODOOoCORoOO0D0oOD o 00000000000000000000080»\00000000503 - - * - - - . - » - * » a * . . - - . - - - - - - - - - . . - - - - - - - . - - - - - * - . [ ] - . . . OO OOoODOoDOOOMOOO00O0O 030005000000000000000003000000000305 "o ™ -~ o ~ T o~ Ei ™ oo o w m 2 o~ ™ mm OO oo o & < o < O o o < < (= OO ! 1 P L ' } i o1 1 i + ' | Tt i B P R R, = g Rl Bl B R | = fes B i BBl B ™ W © W N @ o w ™ T = OO w < o o o 1 Ly t 1 ! 1 PoE ol d i i { ' 1 t ' F3 "o = K " 53l &1 g1 PRy P P P R R = el oo o ML < m o™ < O~ MNWw o o ~ = o - [ =] CFLOVNNEFEOODO WO ONONOO M~ Moo oo O oo oOOODOOODODO T CO0O0C - v @ » - . - . - - - . 9 e - v . - - . - » » - * » * . » - - - - . * - - - » *® » - » » - L J » - OO NOF OO OO NOCO™ OO OOOoOSCIONODODOLOLDOCMTOTOOO Moy - - -~ - w - - ™ - OO o O o o < o < < o Pt i1 ! 1 1 ! 1 1 1 OEE) R P! M &l |2l R |24 B o ™My i~ wr o - Wy i~ o tn w0 E=1 000-.[3027000030..300000500000500200000300000005000000 # ®» ® 9 & 5 * 8 2 ® 3 & ® * 8 8 € 9 p € F & * 2 g © & s & P p a2 w0 & 9 ® 0 % 5 B P B & 4 s ks 00232023GQ00§0300006060000300500070000000001«900000 N NO O - - s — O N e o O =t - - - X e =t OSOQOO ool OO0 oo OO0 SOOo o o oo 0 < i 1t 1 o et 10 |2 | L | 1 1 " 4§ i B BSOR Ry P BBl P B R Kl R OB B R P P R R Py o O W Ouy QO ) O™ O OO OO - < M~ - o o™~ COLOCOOrTr O rNOTYOrOOMOFROWYOOOCONMINOITITIHIOO"DROQOPRrOOoONOoOOoQ - . - - - - - . - . @ - - » » . - o - - " ¥ - - - - - - - - - - . - - * = - - . - - » - - L] - - - a COOQOOOOOMNANVEENOCeTNSOUIIErNONCTOO AN O MNOTO OO OO0 - ™~ - ™~ o o o < 1 i 1 | = o F, i m - - n o CCOCOCOCLOLNOOMNMOCOOOCOoOOODODICORDODOCOOCRDCOOOLORDOOOOO s ® # ¢ B * g w ¥ g 4 9 ® T & w * p G # ;g & © w T WM T B 3 5 e e & B ¢ + w ¢ g 9 = & P & @& 5 B S m COOOODLOOMONQOOT OO OoCOCOORLOOOONOCDODRDOLDOCOODOOOOOODDRDOCODLO = & SNSRI NOOCOYC DO NI NN MIN NI OO ORO =M M MMM MmamMmfMmDaoaogmomMma g Saaarag e oy slagdtnadnadun N n NI NN N NI NI I I IO N NI I NN NN N DI IO N N OO OO OO OO OO 0NN N N WP AAMALALAMLMLDDEDDDDDDYNES SR E X EE E XY E KM B ki 12N PREZmnzZAMADMDOAMAMAMADaa s UDLDLLLDLUOLLAOAMNDDLLLDUDLDM INUED) - b TasLe A-2 (coN FOP FISSTON PRODUCTS PHOTONS/DISINTEGRATTON FAFAN (¥FV) NUCLTDE 20 W 200000000flL0000@00n000flu.uooOOO(0000000000000000000000 e * o » « 2 e ® 5 3 8 % & s B = % % % ® wW e ® e ® = = . ..DCOO 000000000000000000000pkoooooo.\u.flgfluflu000?000000000 < ' R o o F o OO OO COoOoOOCDOC OO OO OQIOCoOOO OO0 ooOOoOOCODOOOoOOCOOODO L - e » & » » 5 *» e+ . 8 - . * & ¥ 0 . 9 . w 0 . . « ® =" ¥ - - ¢« = * w . ® ¢ * 9 + 9 = 3 - OO OO T OO0 OCCOoO T OO0 OC o000 OO DOCCOoOLQOOOOOOoO0 OO C OO Do OO0 ™~ 2000000000”.000_n.u.OAU000fiJO000OOO0000000000000”,000000000 5 8 9 * s w 8 8 * & a P & % 0 3 2 % 4 & = F P § e T ¥ = B & e ® BB KW s T v e g @ o FrOCOoOCOoOOOoOCoOOC oo Co OO OOQOOOCOToOoOOOULDoDOOOOO D0 " * % ¢ * B ¥ & & ¥ 8 " 3 e % 3 € T o B 3 $ % ® N 4+ ¥ % uw 8 * 3 ¥ O ®w 5 8w ¥ W ¥ ' S B S+ g ou F v & & @ MOLOLOCLOOOCOCLOOOOOLCCOOLoLDOCORUODCOOOOTOOOOQQOOOOOCCT OO 2003fl»OOOOOO,JaUOnUOOOCOOOOOOOfiUOOOOOO 00000000000000000 v . . . s s e . 3OOSOGOOOOOOOOOOOUOOOOOOO0000000000000000”000000000 i = o F OO0 OO C OO D COOoO O C OO OO O O OCOoOOCO0OC OO0 DO D00 CCOoO0DCD000 ®» & 5 & & a ¢ * a & » F 4 ¥ & B " & 3 ¢ @ F S & P ¥ T & P T ¥ W 5 B S ¥ ¥ % 8 " T 3 g £ B *T » T s . NOOOQOD D000 QOoOUOU OO OO0 DO UOOOOLoOoOOOOIODTO0R ~ - &N o~ ™~ o o o < < 1 1 t 1 1 | L3 k. 5 el w =1 =F ) o~ w MO O DOOI3I OO0 OO0 DO ONOD O COCONOOQCOCOOMODOoOCOoOOoOOoOOOOOOCOOWDoO oD . - - » - » . . * - . - L - * - » - [ . - - - - " - - - - . . . * - - - - - . - - - . Ll - . . - - - " o, ™~ o o © oo ! i t ! ! B o o < r o) e 9OODOOOOOOQOGGOSOOOOQOOQW:0000061,.0000000 OOHUOO@.}OSUOOO - - . . - . . » - - . - - * - . » - * ¥ - * * L . - * - L d . - . - . - . . * - * » - - . . . - - - 10000000000000090000O.00930OOOOOoooooooooocconuzfloooo — = ™ (o] N e o < < < © OO0 1 1 4 | 1 I i R il oy = o L o ™ w o < O N 500000070000006“908000000fluOnunUnU—f.00000000000500000000 . - - - . - L] - . - L . . - . * - - - - - - L ] . * - - * . . - - - " - - - - - - - . . ® ._I,0014hu0020000000a\.O0UOS‘J.UOOOODGUQDO0009000008MQQODOOOO [ = o™ o ~— o~ - = < = = o = < o oo 1 1 t 1 1 t 1 1t . l 1= K =~ iy i /] Al < « =) zr o~ Lt =3 ] o N 1.0000930200OOOOCRJOOA.(OUflvODfluOOOAUOHUOOO{OOOQOOOBAJBSOOOO - . - - - - . . - . - L4 - » - - - . . [ ] . - - . - - . - - » - - » - - - - - - - - » - 9 1100060...020000000500200000200@00300900000000&20&.HwAUOOO o o~y o ™ ™ ™ — — ('] — ™ ™M mo — O™ o < L= < [=] o OO D < [ o o oo O oD 1 i 5 ' ' 1 1 t i i | 1 } M Ry (i b B _w_ Fe 65 iy P & F 4 Ll By B m h =1 o \o oo o oo < t !t 1 11 1 63 B R nt E & 5l 0 o = * - - . - * - - L4 - * - Ld - . - - - - - - . . - - NOQOUOCOOOCOSI OO0 C OO0 OO0 oo O C OO OOOD ™~ (o] o~ < < (=] ' ! | = P ft €« o~ =3 o MODODOoOWVWOoOOONOOQOOOLLODOOOOOCOOQOQUMOOo OO0 OoOOoOOLOOoOOO OO0 O0O0nD - - - * * . . - - - - v . - . . - L - - - L4 - » - - - - - - » » - . - » . . - . . - - - - - - - - L] . NOODOrODOMNMO OO CODDDQOOCCOMOUQQOOoOOUoOCODOOCooORdOCOoOD OO0 DODOo0O0n o o~y o~ e o < < ! ' ! ' P ' i K & B " o BB oy ! . R o = m m ™ - < h i oo oy ™M = 3 0 = ’_0000030001162000&001«1000%.1000000nflfiv,nuoo.!..gcn4000070@00 e ® ® ® 5 w 8B ° g @ - » w ® @ g ® » ®w ®= 3§ u a2 e ® = . . * 8 e ® a ® e ¢ a 000005000“10100020011100“2002000100057,600w DOOOMHOOOO Lol Ead - o™ ~ ™ " - < [ QO <2 o O OO o ' } L L | i t ) 1 n.,_ o B i Bi I By B Gope B < " oo T ™ N OO 300000000608000000000006090670000000070000000223030 [] . . » - [ ] - - . . . . - - . - - - . - . . . - - . - » L] . - - . - . . - . - . . - - - * - - - . . . OO OC OO COMOR OO QOOQODOLOORINIITOOCCODOOEC TS CQOOOoOONW~ONG = = = *® * = M TS ITA NNV ONONOLLYE PO 0N OO T e NNNNM MO o OO DN OO N OO DO D DROOOOOO0O0O TN T S AT R T e e e T e MEQEAFAPAOGMLANOQOMPEOCHMAEOCCOEOMONUULPOCLDDLOLBEOLLDOLDDRECO ¥ Moaown ™oy NE X ™ AT MRRENIROESE S DERHAOAEAES e BR0 @060 p EH TasLE A-2 (CONTINUED) PHOTORS/DISINTEGRATION POP TFISSIONWN PRODUCTS EMFAN (HEV) FUOCLIDE 23 ' NOOCOQOOOOOCOoOQLOOODOoOCOoOLOODODDOoOOCOO0DOoCOoOOODLoO 0O OOOTCOO . - - - - * . . - - . » . - - ° - - - * = - - - - - - - - - - * - o @ a - - » » * * - . - . - ® v » NOCCOOOoOOoOoDoOOoCOOoORDOOLCOOoLOoUDOoCDORLODRRLOODOOCQOOOoOROCOoOCGOoO o n.rflu0000000000000000000000000000000000000000009000000 L I R R O I T R R N N L s s ® 8 e« 4 % % e 8 & ®w 3 9 8 A = P e w * g ..n._000000000000&09000000000nuOOOOOOOGQGOOQQGOOOODOW oo (] NOOCODOODOOCOLOOQODOOOODOOCOOOoLCOORDOOLOOOLDOoOCDOOOCQOCODOODDOO ® B 3 % A e 8 8 % @ B & & B g & & F P T A N4 B A 4 W S B ¥ $ 8 4 0 8 VA B 8 s 8 8 » P T B & K e a O OoOOCCOoOOOoOLOOoOUROOOLOOoO0COOCoCOoOCOoOO0 OO CLOCOOCCOOoCOR 000 QOO CODOODCOUODOoOODDOCOOECOOOLOOELLOOQECLCOLOCCOOooOLOOOLCOO0 ® 4 4 s & & W 4 s 2 B s 4 ¥+ e P E T E WP A % ¥ A o W W w o w s o sow s e m S kBN e s r e+ oaw MO COoODDOOOO0OoOOOCCOOOOLOLOOCOCOoOOQLOOOOOOLOOoOO0OCO VOO CooCEO I9] 20000000000000 ¢ o * 30000000000000 fiUh.UfiUOOGODOOOOOODOOOQOQOOODOOOGOOOOOOO * » v o» DOnU0000AU000000&00000@0000000000000000 w2 < 1 = u N . =} = o™ < oo 1 1 B BB "y =+ o FroOoOO0 OO0 o0 O OMNMOODOC OO0 OO0 OO CDOQCOOODOOO0 ® © ¥ s @ 8 B8 8 I ¥ S B s B g 8 ¢ & € F B 8 g A ¢ T & B B E & m % g S B 4 w ¥ AN " &S A e * a0 NOODCOCOoOQoOLODOCOOrOLDOCOCLOLOOLOCOOCLOOOOLOOoLOOAO0OQOOCNMNOD ™ o~ o N < < QO ' 1 1 i B B @K j=d = oo Moo OoOORNDOoOQLOOoODOOCOCOOLOOOoOOCOLOQOLOODLD™OO0OYVO0O @« B M B B s N SR s S s R s P et s P P P P w4 ¥R R AR RS+ A s DR e NOOODOOCQQLO OO0 OoOCOOLOOOOOLOOLOOQOOLOOROOOQLOOOOONOOo™ 00 ™ ™ o N < < o0 1 ! o8 B & i o o o L e OOV COCOOQLOCOCOOMO OO COCLLOODOOOOLOOOOOCCOLOOLOOCOLCOLOoOOCMMOO % & s 8 e B RS S S e S YRR S S R w o m T oa s kow e T ® Y e &P B g S 3 BB BE A P ¥ R R AR TOQTrOOOOOQOLLONOOCCOOLOODOCLOCOQOOOOOOOOOOOOODLOoOoOOCOOoOMMOO " - m ~ o™ NN < < O < < OO 1 T \ 1 Pl L& M " i 3 R N o Ll 4 o QO DO 500000090000085000000000000000000090000000001‘002200 . P v 4 = * = ¥ " e & 2 » v 9 100000030000017000000@00000000000050000000003007.700 ™~ - ™ - Ll o™ -~ - < oo < o [ o0 ) 1t 1 ' 1 t ) = M m =2 Bl [ < ™ oo & o - =t zr -‘00000090000052010005000000000000070000000006002200 *» s & o . e o - % ® & & » # P * s & 8 u % " o e e ® * » s 8 3 = 1000000fl.o.nvfiu00=u501{0000000000000000020000000007001‘00 o N - o - o™ -~ - = o ™ - ~ o~ oo - » * - . - » - » o Ld ® . - » - » I rOoQOOQOOOOCODOoOOr 00500000000 40000000000000000009110000 - oY ™~ - o N — o o Q o o QO OO i " 1 ' ! L & = 2] = s =& wy o m e < o o - oo 500000000000000580000030020000000000016000000&.”0000 - - » - - - - - - - - e - a » * - L » - - v » - » - . . - 1000000000000601300000nD_nunvq..OOO.UO00000015000000220000 o™ oo o~ o 3] o - ~ o o < ~ ™ - L o Qo 0 o < < < OO o «© o * & Y ¥ e * P 5 & w ® ® 8 ® 5 & & ¥ % v & B ¥ W g ®* p & » § & w + ® n > 0.bnuUaUAUOaUnvonUfl:51|0.lfiafinUnv0.19~Ofl,Qdenu950.b1.2nv1;Unu0qf6.lnuonunusfbhvfiaao - - -~ £ N - - - - £ o™ -~ - o v - ~— — o < < CcCOoOooO < oo < < o <3 OO O O < 1 ' I "5 ' 11 ) t i ' 1+t "9 1 B i i fu B BB 23] E P A R K PR R 3 B £y o o} - o Ww NN ™ I~ ) e |} in uwy m o e oo Ll 30000300200010000186000000200050800000“052800110300 - - - . . - a - - » - * = . . - » * - - - - » » - - * . = e » . » - . - - . - - » - - » » . - - " » - 00000..DO080001{0013flwnflflu.do00032080508000002011700560300 = x x x ®3 x % = = = x0 ¥ = * x NN MO O@ M TS TN NWOCYr NN ORI NSO OOOO O 2222.2222222222222222222222222222222222222223333333 O T g T g e T e BT T g e T R B T R T R T e T T B e BT T Y e e T T b P e Y e e g g e e e g g e g g OB Rn ERE O f R R0 R RS o R R R,w_vuf_wununuwfiT,waflpflwn_flkv,T_fiyfluwaflR.WUT.T_F WEHHODONEEBRNLLEP NP NUVEBEONIREE IWE HOROOE B B 50N 0N E B A-2 {coNTINLED) TABLE ) e FOP FISSTNNW PRODUCTS HWRN{M ¥ PHOTONS/DISTNTEGRATTON ?6 u 2000000000000000000000000“OnUODOOOOOOOOOOO_LUQDOOOOOO e ® » 3 . - " & * @ - . e ¢ . "« & ® 0w . e ¥ - . 50000OGAUOO00000000QOOOOOOOOOOCOOOOODG ODOOODOGQ/GOOO o -ry00OHUOO000AU000000OOOODOOOOOOOOOOOOOGO”foflODGOODOOOOO to-oo--0-.----..--..--:oc-nnc-n.-co--. H OO U C OO C O OGO O C O o oCOOC oo C O OO OO OO oo 200000@0000000(00”0000”OOOOOOOOOOOOOOQ0009000007000 . . . .uquhUoon).U000000000300000000 3000000000000000 OOO.J o000 < _i.Oooo.fil\.flu0000000000000000000000OOOOOOOOQOGOOOOOO.UOOOO @ 8 8 % e 8 * W s ® ® % e ® S W e g B " = @® R y T e * 3 ot ¥ 4+ F g & e s & p " 2w 2 g g " s 4 e 0 OO OO OD DO OOOOOCOOLDOoOOOOODLDOODCOCOLLOCRoOLOOOO00 } B w o 200030000000000000000000 00000000000900000000004!000 s ® 8 3 o® 4 . s e 3 e « v = * & o fl)mfl.r.\oogrflu.nwoflu000ODDOOOOOOODDOODOOOOUOOOQOGGOOOOOOOSOOD o OO o0 | b | ' L) i1 & R £l B = ™ o B n B R RS o™ W e MO o w o & o o o I3 osF w0 om 607222006000700223OGGOOQGDHOOC39500300300820C093000 L] - - - - - * - - . * - - - » L d - . » - . - L » - - » - . * - - - - - - . - » * * » - . » . . 003121.00000020022900000200200082200000100@“110032000 e ¥ {7} - ™ v - - = o — - - o™~ -~ < o NNl o] oo oo OO [=] < 1 | 1 &1 =R £~ W [ o oo o FOOQOoONOCOOQOOoOOOO OO AMNMNMOD OO0 O o OO OO0 OOO0O0 A 2 8 & 5 ® ¥ W * 4 g 9 p w F 3 & F WM % e ® * ¢ # B w W e s # * P 3 W F 3 P 4 € ¥ 3 §g " e " P g 8 ¢ e NOOOOVOOLOOLDLOLOOoOOOOOODOoOOCOCOC O YYOO OO0 OO0 OO OO CC o™ ™~ - o~ iy o™ < o o o o o ' 4 ! 1 ) r i = |2 By F. =l o * T » - » - - > - - . . " - - - . . . o> 9 - - - . * = a . NOOOOIIOMOOOLOOCLQDOOMOCOOO™O0OoOCOOLMOCOODOoOROOCTOODOOOOOO o™ - o NN o o < 00O < t ! )+l i fe P BB 1 o < 0 oo o OO0 OO OO0 oo OMOCOoORLNDRNODOCOOODMO OO OO DOOOOCOOOOOO000 * ® % & g ® 2 W * ° & & 8 F P x 8 ®w A & ¥ w e 0 o & * @ & B 4 & W S * & & & A ¥ 8 W T ® e VP 3 € " OOOOLOOCOLEoCOoCLOOY DO OOONLOOOOCOOROOOQOOOLoOOOLEOOOoOOOoO ™m - - o™ - o~ e N o - oF - [ < o < [t < oo < o oo ) 1 ) ) i 1 Yoo ' 1 194 Al =5 & &1 R~ vu B R " | B n o o €L wn Wy DO O = = @0~ 507008080000700000000008220000060000050000000008100 2 ® # B ®» & & ® 9 3 9 © g » * B ® " ¥ ® » * 3 s« ® T * W ® 9 ¢ T ®w & & § 8 ° g s @ & 3 T 9 10300109000010000020“004770000030000030000000001290 ™~ - ™ -~ o ™ o™~ - = - [} o < o O QOO [ = o a L] . . » - - - - - - - - 150003080000000003200008221O.U0080059020010000003100 - - v - - Lol o ol | o - < - o < OO O o oo OO o0 o o o o O oo 1 P13 ! P! Pt | 1 ] ! B &1 R ORD B fa &R E R [ E Pl = Bl B no oW WY 73] ™ A0 o M) W o - oo oW 60000369&008000003800003“u7000030?0001‘0993000902390 " ®» = ® & % * & 5 ¥ = v 3 - " ® 8 B N B F W S & & & 8 9 = = . 9 . . 9 w ® 050005380005000001&90003225000350300010061000002200 - - < - - ~— — < < — o o = OO < o o [=] o2 < o oo < < [ 1 1 1 ! y ot 1 B BB Fei B B i B =l B R R Lal B o o™ & o (Y] ™ " &L < M o I~ ~ O~ < | Ial MNMOoOOCOOCOrFOrOOelOOCOOHrOODDOONOONOCOOCMIDO OO0 CO "o OO - » » . - 2 L » - - - . - - s & - - " . - - - v - . - . - o » » - L] - . » - ” - * - - . . - - B - » »* OO0 Q- NC OO OO OOMODOO OO OoNOOC OO "o OO OO MeEOOsOO"000 = COODOQQOQY™rreorem NN NNNNMMMMMa I NNt OO0 oo MmO oo IS II g TSI A SIS g S oy 2 g e g e B ETT B e g T R P T O e 4 T W P T e T T R T W T W P T R T e e T T e T g BT W P g g e e P NeagapneadbblagB B ARl QREAHGLORMEG AR E D O E X P VUAMKDOALAURKLDOPALDMKLOFAUVMEMUPDRPDOUARBHUOHMRPUARLRRAMEDRTANDLULEBE LWL £D) -/ {(CONTING " JABLE ¢ TMEAN (MFV) PHOTONS/DISTHTEGRATION FOR FTSSION PRODUCTS NUCLTIDE 98 200000n000OOOOODDOOOOOOOOOOOOOOfl OODOOOOGOOOOOOOPIOOO * * & w » s e e 0+ " e e e e - v = 50.”UOOOOOOOOOOOOCODOOOOOOD-UOOOOOOOOOOOOOOOOOOOGOUGG < & OODOOOOOflOOOOOODOOOO000000300000000000000000000000 * ® 8 3 * w ¢ B * . o @ *® w® *® B & & T e = @ - . - = " @ 9 = 5 % ® - . s o @ " s & & » = ® = - - T OO0 COOOOOCOLOCOCOOCLLOOOQOTOoC OOOOALOOOOOOOAJHUOOOOAUO ™~ N OO OO OO DO OO0 oL OO ORI o OO OO0 e + o # % ® % 8 % & & 2 g @8 % w e s 8 B e v * ¥ ¥ 5 & 4 &8 8 g € T o V. .y P e wT & 4 4 & ¢ ¥ @ v » e & T OO OO PO OO O OO OO0 OO0 COOTOODCOO0O -l000000000000000000000000000000DGOOOOOOQCOOOOCQGOOD ® o 8 ® @ ® % ® % ¥ wW ¥ ® ®w e ® € 5§ F * 8 @ ¥ ¥ T W e & P " 4 4 T B s T g s p R E et g & g s 2. OO Do OO OO0 OO0 ORI OCOCOOOOR OO0 un 2000OOOG000000Dfivhu0000000000000000000006000000000000 - . @ * - . - 9 - - - ® - " w . - . 3000OAUDOOODOOOOOAU000000000000000003000000“Oooon 0000 o [ N OO MO OO OO OO D00 DO OO COCCOOLCoDLCOCDOCOOOO 5 5 ¢ ® % m e wW ® ® @ P w ®wW T P $ B ¢ T s S e 4 & & W e @ & F g T e & ¢ @ F @ ¢ & sy r 2 5 3 v b & s = N OO RO OO om0 DO OOOoORLDOOODOCOOODODOOoOOOCOOCOC Mo O DD OO OO DO OO OO OROCOURRDLCCCLLRLOOOOQO s % @ B ¥ B B E & e 8 % B B 4 % 8 8 ¥ R = P e % &£ ¥V & s % & % 8 S s s+ T I p et e o o & e g bV v o NOOO DD OO CDOHO0OQOOOOOLOCEOOOLULOLODOOOLCODOOOOO00O0 o~ ™ o~ (98] < O 1 ) b &y By e L= o uH W 90000-./000000.UOO.U,UO000060000000000100000000000000000 - . . . . . . . . - . - . . - - - - . - - . - - - - - o - L] - » - * - » L] - - - - . . - - - . - 1000030000O00000000000009000200005000CUOQOOOOOOQGDD - ™ o ™ <> o O o i i1 1 o3 o R R w L] OO m 50000nlooooooogoor‘..fiufivfloooooocfluoo.fiufiuflfiuozoo00@0900000000 - L N ) * . - . - - » v L - - » - . - - . [ ] » . - - . . - - » - . - - - - . . . . - . . - - - - - 1!0000?.000000HUQQOGOOUOOGDOQDOO0000004}000000000000000 ™ Lol — ~ e - L < * - © < o o0 o < O o o t ' } 1 1 1 ' 1 el i P B F [ Er = B < > - o o N o Y « - o 1000010100000190000000100000600002010000“0000000000 - . - - L - - - . - - - . - - * * » - . » - . . . - - . - - - - - - - - - . - - - . - v - - 10000501000901300000007nunuOOOSOOAUO%!O1@@0060000000000 o o e o oo it 1 1 1 "ot ¥ t L 1 ) 1 i " 11 R Fei B Iy B e Ll O P B B oy [ B Py Biopd oK O DWW Q oM QO o r = < <> - - W =~ o 0 = ©Q QT OO T MMNOCD OO OO OOOOCDWOLTFOOMNOWOOMOOCOWONCOO®WOOW » » » - . - - . - » . . - - - - - - - - - - > - - . . * . . - - * - L] . * . L . - . . v . - . - - - - O MNODF OOMrOrONMOOCCOCOOONOMOODgMOONONOONOQEIOTroQ OO0 . 3 = O UOOT e rNNNNNMMMMITF IO NPYOUOST OO COOT ™ ANNNNMM ..u.bfl55555555555555555555555555555..355556666666556656 T T O g e (" P T P T P e T e T DT T P T T T 0T ¥ T e T P e AT p @ 9T I T T OpT AT P O T e gt e g DNHDHHDMHUHHUnuDHHUDHHGDHWMD»HUDMUDUDU.DBUDB!DBYDBBYBB AN ERNEAMNEMNNREDAMNEOANNPNOONAMONMONAMBDOEOEDE RO OUEHEQODEE QPR TreiE A2 (CONTINUED) FMELR (MEV) PHOTONS/DISTINTEGRATION FOR FISSION DRODUCTS NOCLTDE uw NOOCOOoOoCOoOODOoOOO (L R R N R R Y NoOCoOLOoOOLOOOOO < FOoOOocCCOOOoOCOOo " s a4 ¢ ® s 0 . LI " T OCCOC OO0 o™ NOOQCOOOQOoLOOO ¢ A & & B & & @ " 3 3 » HOOOoOCOOCOOOOOD O FOoOQOOOCoOOQoOOoOOoO * v s 4ok e s s e s oo MNMOOOCCOOoOOoOoOO " NODOODODODOoOOOOO + o 4 8 w 8 » g B ®w B Moo C OO0 wn FToCOoOCOoODOoOOCOCD 2 ¢ w o r & b 4 e e g e . NOCOOCOoOODQOLOOOoO o MOGCOOQOCOLOOOO @ * = a2 8 & & 8 ® ® 3 = NOCOoOOCOoCCOoOOQO0 COCOoOCOODOoCOOoOoO * 2 & ® % g ® % 9 e » OCCOCCODOOCOO o~ o ' B w - NOoOQCOOLOoOCOO™OoOQ 1.9% LA A L I L L TOOOOOoOODOD™OO <« ' s o o TFTOOOOCOOVNOOO * s 8 B e ¢ * e » O OO COOoOWVOOCo NN Mmoo o0 OO by 1 Bl B i o™ ™o o - VOOOITNOIIFTOOQO . - o - - - - . » - - L COQOLrrerOoMmMNOOo moN "o o O .0CF-35 3.35F-3% 1.76%-33 6.07F-3% 1,63¥-32 3,7UE-32 7.76E-32 1,89F~37 2,697-31 16 0.0 0.0 5 0OF-35 3.56E-34 2. 14P-33 B8.21F-33 2,55P-32 6.39E-32 1.39%-371 1, 487-25 17 0.0 0.0 4. 0GF-25 1.25B-24 4,557-24 1,21R-23 2,70F-23 5.39F-23 9,95%¥-23 1,73P-22 18 0.0 2.,97®-1%86 2.39%7=-15 B.,2L4E~15 2.027=18 4, 9%F-1L T, L46F-90 1, 25F= 13 1,97F-13 2,98F-13 19 0,0 G.06F-29 3.26%-28 1,158-27 2.90E-27 6,12¥-27 1,162-26 2.02F-26 3.32F-28 5,22%-26 19 0,0 5. 34F-24 1.70%-23 1.938-22 6,37%-22 1.€5%-21 3,688-21 7,25F-21 1,33F-20 2,31%-20 20 0.0 3.848-26 1.42F-25 3,30E-25 &.18F-25 1.03%-28 1.59F-28 2,3LF-24 3,31F-2¢ L, K42-24 20 0.0 3 fEF-21 6.65F-20 1,95E-19 L,77F-10 0,72%-19 1,76¥-1§ 2.96F-18 U, 67F-1R 7.06%-18 21 0.0 B.oELF-13 1.86F-12 L, 26B~12 T.74F-12 1.2LE-13 1,85F=11 2.632-11 3,53F-17 4, 65F-1] 22 0.0 9.18%-13 13.68P-12 8.39%-72 71.52F-11 2,85F-11 3, 68F-11 5,10P-11 6.98F-%1 9, 18F-1] 23 0.0 8.068-19 1,79F=18 2,77%-16 3,84F-18 5,05F-18 6,LiE-18 7.93F-18 9.63F-i8 1, 15F~17 22 0.0 0.0 9.0 0.6 6.0 8,0 8.0 0.0 5.0 9.0 23 0.0 7. 85F=14 3.%4P-13 7.178-13 31.308-12 2.09%-12 3, 12F-312 L. 50F-12 5,967-12 7,852 2L 0.0 1. QUE-08 1.08F-08 1.07E-08 %, 10T=-08 .13F-0R 1, 18¥-06 3.23F-08 1. 29%-08 1, 34F-08 2 0,0 2 ggw-18 3.93F-18 6.06E-18 B8.41F-18 1, 11F=17 1,80%-%7 1,78F=-17 2,11%-17 2,52F-17 20 0,0 1.267-06 2.5LF-06 3.BUE-06 5,17E-06 6.56B-06 B8,00T-05 9.53F-06 1,117-0F 1,27P-05 25 0.0 3. 20F=07 L.B1E-07 6.66E-07 8,97P-07 1,16F-06 1,39F-06 1.65F-06 1.927-06 2,20E-06 26 0.0 1. 07F-07 2.13F-07 3.228-07 4.35FP=07 5.51%-07 §.73E-07 7,99F-07 9.31F-07 1,07E-06 27 0.0 5 9§F-10 5.27F-10 5.379-10 5.5L®-10 5,7uF-10 5,978-310 6,22F-10 6.L8F-30 6,76F-10 57 L.00F 90 4.00F 00 4.00F 00 GL,00F 00 4.00% 00 4,007 DO 4.00F OC 4,007 00 L.00F 00 4,00F 00 28 0.0 n.377-00 4.329-09 L,L1E-00 L, S4E-09 G4,71E-09 u,90F-09 5,11F-09 5,32B-09 5.54F-09 20 0,0 2.798=12 2.74F-32 2.77P-%2 2,85%-12 2.96B-12 3,08F-12 3.21E-12 3,34F-12 I, UB®-12 28 $.,07 €.07P-01 5.07F-01 6.087-0% &,08E-01 &,08P-0%1 €,0RE-01 6.08F-0% 6.09%-0% 6,29E~01 29 3,40 3. 00P-02 3, L50F-02 3.20T-02 3, 40E-02 3,407-02 3.80B-02 3.40F-0Z 3.L1E-02 3.41=-02 30 0.0 1. uEP-NE 2.95F-06 L,26E-06 6.01E-06 7.62F~06 9.30F-06 1,10¥~-05 1.298-0% 1.UL8E-0S 31 0.0 3. 60®=14 7.21E-1& $.11B-13 1.50F-13 2.03%-13 2,587-13 3,19P-13 3.87F-13 0U.63F-13 31 0.0 1.26E-11 5.037-11 1.158-16 2.,09E-10 3.35%-10 4,99F-10 7,084%F-10 6,55F-10 1,26E-09 32 0,0 6. 05P=17 2.9GE-16 7.16E-16 1,38F-15 2,3tE-15 3,67F-15 5,80F=-15 7,74E-15 1,07F=14 33 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0,9 0.0 n.0 1100, D 8.07E~02 2.98¥7-05 5.51E=-10 1.12F=29 6,5LF-12 5.987-02 3.77%-17 7.51F-10 4,307 4.62F7-29 2.41¥9-32 3.75F-06 2.30F-10 0.0 7. 5UE-17 6. 22F-20 1.96F-3L 1.50% 00 1. 16705 9, 797-12 0,0 1.02F-15 3.587=-20 U.fi}v_—S'} £,037-25 2.85E-22 b,3ar-143 7.91F=-2¢€ 30815"’20 6. 07F=-24 1. 037=-17 5.97F~-11 7., 18710 J.36%-17 0.C 1.03P-11 1.397-58 2.97E-17 1. 04%-05 2.50F-06 1.217-06 7,03F-10 L,00% 00 %.,77F-09 3.63F-12 6. 09F-01 3.217-C2 1.67%7-05 5.467-13 1.62%-009 1, 43F-14 0.0 00t It N nd )Y N g Fal o TapLe A-3 (CONTINUED) REFTFRENCE PWR EQUTLTBRIUM FUEL CYCLE -~ 3.3 0/0 FHRICH®D POWER= 30.00MVW, BURNOP= 33000.HWD, FLUX= 2.92F 13XR/CH*x*2-SEC WUCLTIEE CONCERTRRTTONS, GREM ATOMS BASTS = MT OF HEAVY MRTAL CHARGED CHAPRGE 110, D 220. D 330. 1 480, D 550. » 660, D 3a 2.9 7.328-30 5,87F=-29 2,06E=28 5,21%=28 1.10E=-27 2,0BE=-27 32 0.0 9.828~-17 9.,518-16 3.56E-t5 9,10%-15 1.90%-14 3,51E-14 33 0.0 0.0 .0 0.0 0,0 0.0 0.0 34 0.0 8,732~-25 1.56FE-23 B8,11¥-23 2.68F-22 6.92E-22 1,537-2% 35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36 0.0 0.0 0.0 0.0 0.0 0,0 0.0 17 0.0 9,14E=-22 3,66F-21 8,538E-2% 1,60E-20 2,66¥=20 &4, 11R=-20 35 0.0 0,0 0.0 0.0 0.0 0.0 0.0 36 g¢.0 0,0 .0 0.0 0.0 0.0 0.0 37 0.0 6£.618-18 5,30F-17 1.82E-16 U4, 4TFR=-16 9,11E-16 1,65E-15 38 0.0 $.518+-25 1.2%F-20 4,25B-2L 1,07%-23 2,26F-23 4,27F-23 386 0.0 ¢.0 0.0 0,0 0.0 0.0 0.0 37 0.0 G.,C 0.0 0.0 0.0 0.0 0.0 38 6.0 1«118-22 1t,78¥-21 9.25E=-21 3,06F-20 7,89E-20 1,75R-19 3% ¢.0 5.568-23 7.,98F¥-22 3,70r-21 1,09r-20 2,.51%-20 4,85g-20 40 .0 2.038-13 8.13E~-1%3 1.86E-12 3,37E~-12 5,82%-12 B,06E~-12 51 6.0 1.28F=17 2.57F=17 3.,96%=17 5,50F=17 7,.23%=17 9,18E-17 39 0.0 0.0 8.0 1.498-24 6,75%-28 2,.01E-23 #,83E-23 40 0.0 8.0 0.0 ¢.0 0.0 0.0 G.0C 4t C.0 €E.01E=-15 2.57E-18 5.86B-1¢ 1.07F-13 1.71%-13 2,5%5E-13 42 g.0 3.778-19 1,32¥-18 2.67E~-18 4,38F-1R 6,U840P-18 B,RLE-1R L3 0,0 2,018«-15 4,03%=-15 €,218~-15 8,62F=15 1, 13E=-14 1, 404F=-18 hu 0.0 5,87TE=18 1.1BF¥=17 1,8%1E=-17 2,52F=-17 3,30%=-17 4, 197=17 40 0.0 0.0 ¢.0 0.0 £, 0 0.0 0.8 a1 ¢.0 0.0 G.0 0.0 0.0 0.0 0.0 a2 0.0 1.812-17 1.,38%-16 4,30F~-16 9.53E=-1€ 1.76B=15 2,90F=-15 u3 0.0 9.,B6E-0B 1.9%97E-07 2,98F-07 4,02B-07 S5.09F¥-07 6.21E=-07 40 0.0 T.47E=-07 1,89F-06 2,28%-06 3,042-06 3,86%-06 4,70E-0% 4e 0.0 1.20E-068 1.96F-08 2,46F7-08 2,81%-08 3,07%-08 3,29F-08 46 .0 8.16E-0B 1.€5F=07 2,31E-07 3,L1E~07 L,36F=-07 35,36%=-07 L G.0 2.588~-12 2,81E~-12 3,118-12 3,07E~-12 3,88F-12 4,35F=-12 48 0,0 0.0 6.0 0.0 0.0 .0 0.0 49 .0 0.0 G.0 0.0 C.0 a0 0.0 Y 0.C 2,99F=09 1,08E=0f 2,06F=-08 3,27E-08 U,61B-08 6,06FE-02 t§ 2.0 1.26E-06 1,77E=C€ 2.00F-06 2.138-06 2,23B-06 2,32E-06 L7 .0 1.348-07 - 1,35%-07 1,378=-07 1. 41E-07 1,U8TF-07 4,52P-07 48 0.0 €.8u48=-09 &,BUF-09 £.97E~09 7.17E=-09 7,U43%7=-09 7,TV1E=-09 ag 6.0 1.238-1C 1.25E-10 1,29%-10 1,35E-10 1,43E=-10 1,51E-10 5¢ 6.0 7.69E-14 T7.69F-1L T7.B5E-14 §,09F-18 #,39%-14 8,TEE-14 Lg 3,08F-01 3,0uF=-0% 3.02F-G1 3.04¥-01 3.04P-01 3.08%=-01 3. 04E-01 47 2!’772-’)1 2.773-01 2077E_01 24773"01 2.‘?7P”01 2 7-?3_01 2.773'01 48 2,772 00 2,77k 00 2,76E 00 2.76% 00 2,7€® OO0 + 75% 00 2,75% 00 L5 2,042-01 2,078-01 2,11E~-01 2,14E=-01 2,18FE=01 2,21E=01 2,25R~01 50 2,80F-0% 2.00F-0% 2.00E-01 2.00E~0% 2.00E-01 2,00F=0%1 2,00E-01 51 0. 2,31E-10 2.32¥-10 2,36F-10 2,84E~-10 2,.353E-10 2.63F-10 49 0.0 g.¢C 0.0 0.0 .0 0.0 0.0 50 0.0 €.22E-05 1,28E=-04 1,85%-00 2,48F-04 3,11FE-08 3,77F-008 51 0.0 B.75F-03 2.17¥~02 3,51E-02 4,87%~02 6,29E=-02 7,758-02 52 0.0 B.96E-10 1,20%-09 1{.54%-09 1,92E-09 2,35%-0% 2,83F-09 £3 €.0 $.688~12 5,67%-12 5,78®-12 5,94FE~-12 §,15E-12 &, 38E-12 54 0.0 2.E1E=-14 2,54F=-11 «72E=14 2,88F-14 2,98%-14 3, 13B-14 50 £.08% ¢0 S5,CL3% 00 5,01F 00 5,008 00 &,99F G0 4,379 00 #,.86F 0D TO PPALTOR 770, D 3,62F=-27 5.95F-14 - 5 = e o t 1 b —h Ut 531 1 [ > -3 o 4 — m 67-23 - DDA OO NDDO WD - DO E QOO OOOA0 3.47E-19 8,78%=-20 1. 14E=-11 1. 14E~ 186 1.01¥-22 0.0 3.60%-13 1, 16R-17 1| 782-13 5. 19E~- 17 0.0 0,0 !1. LLBF- 15 7.38E-G7 5. 59E-0% 3.bBE- 0B 60 Q3F"0-7 4,88F=-12 0.0 Oso 7.59E-08 2,42E-06 1. 59E=-07 BOOBE‘*OQ 1, 607=-10 9, 11E=-14 3.0uF-01 2. 77E~-01 2.75F 00 20 29E“01 2, 018-01 2, F4E- 10 0.0 4- QBE-OH 9, 26F-02 3- 37?‘09 6. GuE‘ 12 3.31E~-18 4,94E 00 880. D Bs 37E=27 G,48E=-14 9.0 5.618-21 1.57E~25 0.9 8,55R-20 0.0 0.0 k,37w-15 1. 23F-22 0.0 0.0 6: 39E' 19 1. U E-1g 1.56F-11 1. 38E~- 16 1, 898-22 0.0 0, 83E-13 1.877-17 Z, 16F=1L 6,30%=-147 C.0 0. G 6,41E-15 . BOE=07 6. S1E-D06 3.66E-08 7. 558-07 S LAB-12 0.C 0.3 9,20%-08 2.53E-06 1. SSE-G.T B.36¥%-098 1. HE=-10 9- go&“‘fl 3.0uE-01 2. 7”3‘01 2.74E 00 20 33}3‘01 2,018-01 2.86E-10 0.0 . 12FE-00 1. 088=-01 3' QSF-GQ 6.217-12 3. 49B=-104 4,938 00 990, D 9,398-27 1. 440F-13 0.0 9, 7T1E-21 3. 22B-25 0.0 1. 178-19 1.36E=-25 0.0 6.60%-15 1. 938-22 0-0 0.0 1- 11E‘1B 2.23F=18 2.03r-11 1. 65E=~= 1€ 3. 30m-22 c. ¢ €. 42E-13 1. 828-17 . SSE‘?B 7.538-17 5.0 0.0 B,BBE-15 9, BEE=07 T UEE- D6 3.83E-08 . 758-07 6, 13¥8-12 0.0 ¢. 0 1. 098-07 2.63R-06 ‘o"ZE-O-’ Ba SQE‘GQ 1. 801"‘10 g. 903‘1& 3.047=-01 2, 7TE-01 2,78% 00 2. 3BE-01 2. 018B=-01 2.988-10 0.0 5. 818-04 1.28%8=-01 4, 628=-09 7. 18%=-12 3.68E-14 4,912 00 1100, D 1,827=26 2. 118-13 0.0 1.60F-20 5.86%-25 0.0 1.578-19 S, 27E-25 ¢.0 9.62F~15 2.93E-22 0'0 0.0 1.83F-18 3,298-19 2.61E=-11 1.95F=16 5. U2E-22 1. 50E-25 B.258E-13 2.21?‘.‘" 3. Qfl?-‘fi 8.88R%-17 8.0 0.0 . 197~ 14 1.12F=06 B.LE¥=-08 4,007-08 1. 00906 5.B8%E8=-12 8.0 .0 1.262-07 2.7LE-06 1- 79?‘0-’ 9003?-09 1. 91E=10 1,03%-13 3.04%-01 2,76%-01 2.73% 00 2.027=-01% 2.0?53-01 3. 117=10 4.0 . 522"0“ 1.“2?'—01 5.338-0% TLU5F=12 3.888-14 k,.89% 00 1oL TaBLE A-3 (CoNTINGED) DPFFRFPENCR PYR FOUILIERTGHM PUTL €CYCLE -- 3.3 §/0 ENPICHED U POWFE= 30.00m%, BUP¥ODP= 33000, MWD, FLOUOXs 2,927 13N/C8N*%*2-5EC NUCIIDF CONCENTPRTIONS, GPRM ATOMS BASTS = MT OF AFAVY METRL CHARGED TO PEACTOR CHARGE 110. D 220. D 330. O Lup, D 550, D 650, D 770. D geg. o 980. D 1900. D CF 51 2.0 4,.52E-03 L.E1F-03 4,90%-03 S.0U8F-03 65.20%-03 5.40E-03 5.80r-03 5,82F-03 6,052-03 6£.,277-03 cr 52 5,74 01 S,74® 0% 5,747 0% 5,747 01 5.7ULE D1 5.74® Ot 5,78F 01 5,74F 09 5,74® 0% 8, ME 1 S.73E 0% Cr 53 E.,0%F 00 5,408 00 6.39% 00 6.38F 00 &.,37F 00 5,.3I6F 00 6,357 00 &§.34F 00 6.32F 00 6.3%E D0 5.29F OO TR S5t 1.,57% 00 1.89% 00 1.681FE OC 1.63F 00 1,65% 00 ¥,67% 00 1,897 00 1.71F 00 1.73%7 00 758 20 %,77F 0O c® 55 0,0 2.998=-09 3.43F-09 3,%2B-09 3,257-09 3,41E-09 3,59%F-09% 3.79r-09 u.00F-09 2,228-09% L,6457-0%9 ME 504 0.0 1.168-06 2,06F-Dk 2.7BF-04 3,38%E-08 3.8%E-04 4,33E-080 4,73R-04 5,%02-04 S5,44%m-0% 5,77F-01 KN 55 3,27P-0% 3,26F-01 3.285F-01 3.25BE-0% 3.20P-0% 3.23F-0% 3,23F-0% 3.23E-07 3,23%-01 3.23%w-01 3.227-01 BN 56 .0 1.82F-06 1,82F-06 1.B85E-06 1.90%-06 1,96E-08 2,04F-06 2,12F-06 2,20F7-08 2,292-05 2,377-06 MN 57 0.0 4,46F=12 4,53F-12 U4,70%-12 H4,92F-192 S5,18%-12 S,U8F-12 5,81F-12 6.16F-12 6.54F-12 6.93%-12 MN 58 0.0 1.5%8-1%4 1,.56%-10 1,62F-14 1,69E-14 1, 78E-4 «BRE=-4 1.99E-14 2, 11F-14 2. 247°- 2.37m-11 F2 504 8,0LF D0 4.03% 00 4,03F% 00 4,037 00 4,.03F 00 4.03F 00 4,02F 60 L,0Z2 00 4,028 00 4,029 GO 4,917 0D FE 5% 0.0 .75%-93 3,37E-03 U,90F-03 £,37E~03 7.79%-023 9,17F-03 3,05F-02 1,19%-02 1.32E-C2 %,45F7-02 Ty 56 6,108 01 6.10% D1 6.310E 0% 5.%0F 0% 6,09%F 0% 6,097 91 6,097 01 6.097 01 6,087 01 6A,08% 03 £.08F 01 ¥F 57 1.4U7 00 1.LSE 00 1.49F 00 $.S4F OC 1,537 GO 1.56F OC 1.58E 00 1.61E €GO f.548% 00 1.67E 00 4,70F 00 ?F 58 3,107-01 3,73P-01 3,17F-0% 3.22BE-0% 3,272-0% 3.327-0% 3,387-9% 3,0U3P-07 3.49F-0% 3.55F-01 3.61E-01 ¥E 59 0.0 4,217-05% G6.05E-05 5,3%e-0% 5,6%1B-0% §,C0318-05 6,28F-05 6,60%7-0% 7,00F-05 7T,81E-0S5 T.HLER-05 co 58% 0.0 0.0 0.0 0.0 0.0 0.¢ D.0 9.0 0.0 0.¢ 0.0 CO 58 0.0 3.237-03 3.98¥-03 4,208-03 &,32E-03 U4,83F-03 4,56F~03 4.69%E-03 L,82F-02 4.95E-G3 5,0%F-013 co 59 9,15F-01 9.0%®-(01 B.96F-01 §,87F-0? B8.77F-01 8.68%9-071 8.597~01 B.L9F-0%1 B.39F-0% §&,29FE-0%1 B,187-01 co 60M 0.0 g.,u4P-07 5,39F7-07 S5,458~07 5.55g-07 .692-07 5.86E-07 £,03F-07 €,22F-07 £.U40F-07 E,57F7-07 co 60 0.0 04P-02 2,03F-02 2.99%-02 3.937-02 UL,B8RE~02 5,79P7-(G2 6,71E-02 7T,63%-02 8.55E-02 G,47F-02 TO 81 0.C 1.028-08 1.85F-08 2.74B-0& 3,627-08 Uu,64F7-0f 5,583-08 6.83F-08 BH.087-02 G,UIF-08 1.08F-07 TO 62 0.0 3.50r=11 3.49E-11 3,56E-%1 3,€6€7-1% 3.78F-1 3,927-%% L.08F-1Y L.2LE-71% LoLR-9Y 0 L.RT7E-9% NT 5§ 1,328 02 1.92®m 02 1.92%F €2 1.%12F 02 1.%27 02 1,¥1E 02 1,11% 02 1.%31FE 92 .17 02 . 1I1E 92 1.%1%m 02 ¥T 5% G.0 T.63P-02 1.537=07 2.30%E-01% L10E=01 3.63%-0%1 L,79F-01 5.%59F-071 6.637-01 T.60R-0% R, E1F-{1 NT &0 L,18F 09 4,.%8F 0% L,%8F 01 0,972 63 L.37F U1 G.1TR 0% 4.97F 0% L PF G Lo%6F 01 UL 16T 04 167 01 nT 51 1,877 Q0 .&9“ 00 1.G0F 00 1.92F 00 1.94F 00 1,9%F €0 1,97F 00 %,99% 00 2,01F 00 2,037 00 2.05F 00 NT 82 S5.B8LF G0 L6537 50 5,€2F 00 S5.61F 00 S5,59% (0 3,.%BE Q0 3,57F Q0 5.5%® 00 5,5iF 00 5.52% 00 5.514% (0 ¥T 63 0.0 $.348-02 2.51F-02 3,98B-02 5,30%-02 6.,70%-02 B8,15F-02 9.5€6F~-02 1.12E-01 1.29BE-01 1.bL57-01 ¥T 64 1.6%E 00 1 $18 00 1.5%F 00 1,B1F 00 1,617 DD 1.81F A0 1.RI1F 00 1.61F 00 1.61F Q0 1.64% 00 1,60% 00 NI 6% .0 £,238-97 5,23F=07 S,34E-07 £,50%-07 5.70E-07 5.93%-07 6,18E-07 S,4LE-07 6.707-07 6,97F-07 cu 62 C.0C 0.0 .0 0.0 0.7 0.0 0.0 0.0 2.7 0.0 0.0 T 63 c.C 1.LE9F=-08 E,93F-05 1.34E-00 2,38E-C4 3,75®-04 35,82P-04 7,43%-04 9,79T-04 3, 25%-03 1.56F-03 CU 64 9.0 .16F=-10 L.6%F-10 1,38¥-09 4,9LF-09 3,16F-09 4,76F-09 6,80E-09 9.34E-09 1.2LE-08 1.6%F-0R8 cr &5 0.0 3.73F—0u 7.47F~08 1,13%7-03 3,52F-03 1.93¥-03 2.35F7-03 2.79E-03 3.25P-03 3,72P-03 U4,22F-01 Co 66 0.0 9,86F=-12 1,98¥%-%1 3.04%-17 4.23%-91 5.55F-17 T7,04F-11 8,71F-11 1,06E~1C 1.26m-1C 1.49E-1D Zw £3 0.0 0,0 0.0 0.0 0.0 Q.0 n.0 9.0 0.0 0.0 n.9o ¥ b4 0.0 2.00P-09 1,47FP-08 %,70B-08 4, 38F-07 2.77F-07 4.9LE-07 A.12E-07 1.26F-0f 1.RB6E-0F 2.6LF-0F ¥ 65 0.0 7.19%-14 1,08F=12 5,34F-12 1.65E-11 U4,03F-1%1 B,L2f-1% 9.58P-10 2,76¥~10 4,537-10 7,09F-1] Z¥ 66 .0 1,06F=-07 4,25%=07 9Q.70F-07 1.76F~CG6 2.83F~06 UL, 217-0¢& 5,908E-06 R,06%-06 1,06%E~05 1,386%=-058 N 87 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 G.0 0.0 0.C ZN &8 0.0 0.0 0.0 0.0 0.0 0.0 C.0 n.0o 0.0 0.0 D.0 Z¥ §9m 0.0 0.0 0.0 0.0 0.0 0.0 G.N 0.9 0.0 J.C 0.0 ¥ 69 0.0 J.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.9 n.2 ¥ 50 0.0 2.0 0.0 0.0 0.0 3.0 0.0 0,0 0.0 0,0 0.0 Zx 71 0.0 0.9 0.6 6.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 ZN 71 0.9 0,0 6.0 0.0 0.0 B.0 0.0 0.0 0.0 0.0 o.n G: 69 0.0 0.0 0.0 0.0 C.C 0.0 0.0 0.0 0.0 0,0 0.0 G:r 7C 0.0 0.0 .0 0.0 0.0 0.0 0.0 c.0 0.0 0.0 .0 cr 73 0.0 0,0 0,0 0.0 0.0 0.0 0.0 0,90 0.0 0.0 0.¢ G¥ 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,20 0.0 0.0 0.0 ST 88 0.0 2.26F=08 L.51F-08 65,81F-04 9,38%-08 {,16F-03 1,02"=-03 1,68¥-03 1.957-03 2.25F-03 2.55F-03 ¢0t POWER= B A9 ? 90 R 91 Y 90 ¥ S¢ Y 9 ¥ 21 ZF 90 P 91 P 82 P 93 ZF% Su ZR 95 Z% 9% WB 92 HB 93m B 93 HE b ¥B G2 HB 96 ¥B 97 HC 92 MO 93 MO 931 MO Ob NG 925 MO 96 RO 97 MmO S8 0o 99 MQ100 MC13 TC 99M TC 9¢ TC101 UG CD113M CD113 CD115H cBits Ch119H cb11% CD1Z1 IN113 TR TR119 TR12 1M IN121 SH114 SK115 SN116 SN117X REFERENCE PWE FQOILIBRIUM FUPL CYCLIE -- 3.3 /0 ENFICHED U 27 03 Tr 02 28 02 - - - . . 0r 02 58 01 3® 01 LU OD OO aDO TP WAaODOODODO - 0F=-01 4 % & 8 @& § B 3 2 & & 8 © s & A DNk QOO QDVDDOIIOOT & 9E-01 3E-01 8F 00 D E a0 OITIDDIHDODDIIISWN 30.00KMW, BURNUP= 110, b 8.80r~-06 9.8‘E‘10 1167?-08 0,0 2.20E~-05 2.558-10 2,53r-05 1.42E 03 3.06E (2 §,62% 02 3.868-02 L.60% 02 7.57E~03 7,258 01 3. SBE"O" 3.11%=06 1.032 01 1.75}3-fi3 2.€E7E-03 2.,722-08 2-29‘8-11 9,57%=-01 4,u5m=-05 3,36%-09 5l327¢"01 9. 19E-01 B, 46R-01 1,368 00 2,83E=-05 S.L0E=01 2.99E-08 2.21F-06 7.398-08 2,878-08 2.25P=-04 0.0 1.45E=-09 0.¢ 2,268-11 O.Q 2, 62E-10 2.85E=15 c.0 fl|723-1& S.1up=-13 2.528-15 0.0 2.19E=-01 1. 13E-01% 4,68F 00 9078}3‘03 TABLE A-3 (CONTINUED) 33000, MWD, FLUX= 2,92F 13R/CM**2-5EC 220. D 1. 08E-05 3.331-09 1.67E=-08 8.0 2. 20E-05 2.56F=-10 3.22E-05 1,828 03 3.06F 02 b,63F 02 7.72E~-02 4,608 02 9.92E-03 7.25% 019 3, 30E=-07 1.2L4%=08 1.03% C1 3QQ9F"O3 4,68%=-03 4,685-08 2- 29E-11 9.57E-01 8.90E=05 3.36E~-09 5.328-01 9- 183“'01 9, 77p-01 5. “61“"‘01 1.36% 00 2,83%~03 5.40F=01 2,99e-08 1.50F-03 2,87E~08 L, 47 =04 0.0 1.518=09 0.0 2,27~ 11 0.0 2,62E=-104 2. 85?"15 8.0 4,72E-1L 5. iuf"’ 13 0,0 2, 19F=01 1. 13801 4,678 00 9,82¥F-08 NUCLTDE CONCENTRATYIONS, GEBAM ATOMS BRSTS = MNT CF HERVY ®ETAYL CHAPGED 330. D 1. 15805 60 808-09 « 70F=-08 0.0 2, 24E-05 3.48B~-0535 1,428 03 3.06F 02 L.63® 02 1. 17E-01 L.50F 02 1.0BE=-02 T.285F 0% 3.98E‘D7 2.78%=-08 1.03F G1 5.27E-03 5,L98-03 5.55%E-08 2,338=-11 8,57F-01 1,34E=-04 3.43r-09 5,32E-01 C.19E-01 9.877-01 B.LEF-0Y 1.36% 00 2.898=05 5.39F=01 3.058~-08 2.25?"‘06 2- 272‘-03 2.927-08 6, 72R=00 0‘0 1.51?‘09 0.0 2.31E-11 0.0 2,68F-74 2.918=15 0.0 4,82E-14 5.247-13 2.58E-15 0.0 20 19E"O“ 1. 132-01 h.oe6® 40 1.00E~03 sug., D 1. 19%=05 1. 1BE=0R 0,0 2.31E-05 2.69E-10 3.60B~05 1. 627 03 3.06% Q2 $.63E 02 1. 57%-C1 4,60% €2 1. 13P-02 T.25E 1 4,10F-07 u‘ 93?"08 1.03% 01 7.098=-013 S5, B6E-03 €. 15E-0B 2, 40F- 11 $.57E=C1 1.81F-08 3.53r~-09 £.32¥-01 9- 21‘2"01 9, 97E~-01 5. 46E-01 1« 35% €0 2 QBE‘OS 5.397-01 3. 142-08 2.32E-06 3. 05E-03 3.018-08 9. OEE-OL\‘ €. 0.0 2.388-11 0.0 2, 78E=-14 3,00R~15 0.0 i «96F-1L £.39E~13 2.66E-15 0,0 2, 19E-01 1. 138=-01 4. 668 0D 1.03E~-03 S50. D 1.23¥-05 1. 73E-08 1.82%=-08 0.0 2.39E-05% 24792-10 3,.74F=-05 1,42% 03 3.05% 02 §.64% 02 1.998-01 4.60E 02 1. 188-02 7.25% 01 fl‘l 25}:.‘“07 7.72F-08 1.02F O B, %8F-03 6.128~03 6.65%-08 2,497-11 g,c7E~01 2.30E=00 3,66%-09 5.328-01 9,2UFE-01% 1.01% 00 5.u6F=01 1.35% 00 3,08%-05 5.,39%-01% 3.25F-08 2.40E-06 3: 85 E"o3 3.128-08 1, 14R=03 0.0 - 513‘09 0.0 2. u-fllE" 11 0.0 20 863‘1“ 3. 118=15 0.0 S. 157-14 5.58E-13 2.75E-15 0,0 2. 19F-01 1.13E-017 8.65E 00 1. 07E=03 £60, D 1.29E-G5 2. 4€E=-08 1.898-08 c.0 2. 49E-05 3. BBE-08 1. 427 03 3.05F 02 L. BUE 02 2, 428-01 4,602 02 1.22E-02 7,28F 61 u‘i u2E‘0‘f 1. 11E-07 1.02% 01 1, 09E-02 €. 37F-03 7.20=2-08 20 59?‘ 11 9.57F-C1 2,80®r=-04 3.81E-09 £,328-01 9, 26E~01 1. 02E 00 8, U6F~0 1 1. 35F €0 3, 21E=05 5, 397-01 3. 38E~08 2. 50E-06 4.67E~03 3.2uE-08 1. 38E=-03 0.0 1. 518=09 0.0 2. 577~-11 0.0 2.97r-11 3, 23e-15 .0 5. 35F-14 5.80%-13 2.867-1% 0.0 2. 19B=01 1.13=-01 4.6%% 00 1. 11r-03 TO REACTOR 770, D ‘t3u‘E-05 3, 35E~-08 1.978-08 0.0 2. 6CE-D5 3. 02?‘ 10 L, 04%~08 1. 42F 03 3.058 02 4,64F 02 2.87TR=-91 4,60F 02 1' 273“02 7.25% 0% L,EQE~07 T.528-07 1.02F Ot 1. 30P-02 6.632-03 7.BO0E~-08 21 70E' 11 ¢, 57R=-01 3.33F-04 3.97%-09 5.328-01 9.297-01 1. 03F 00 5u u6F“g1 1. 35% 00 3. 348=-05 5.38F-01 3.52E-08 2.60R-06 5- 52?"03 3- 382"08 t.64R=03 0.0 1,51E~06 0.0 2., GBE-11 ¢.C 3.108-1L 3. 37?'15 0.0 5.58E- 14 6., OUR-13 2.98E-15 G'O 2, 19E-01 1. 13F-01 L,A84F 00 t.15E-03 880, D 1.“0?‘05 fl. qu'OB 2.068-08 0.0 2.71P-05 3.159‘10 H.ZGF-Gs 1.82% 03 3.04%® 02 4,64E D2 3. 31&}3*01 4,€0% 02 “a 33E-02 T.25FE Ot 4,.308=-07 2.00E~-07 1.02% ©1% 1.512-02 £.81%-03 B.UTE-D3B 2, B2F~ 11 9.57E-01 3.85E-00 4, 13p-0% 5.32%-01 .32E-01 1. 04F 00C B BEF=01 1. 35% 00 3. 48E=-05 5.38%-01 3.67F-08 2.717=(6 69 38E-G3 3. 852F-08 1,90E=03 8.0 1. S0E- 06 8.0 2,80F-11 0.9 3.238-114 3.51E=15 0.0 5.810=-14 6. 29E"13 3. 11E"15 0.9 2,19F=-01 1. 138-01% 4.63% 00 1.207-03 990, D 1, 467-05 5| 69E-08 2. 1uw-08 2.0 2.82%-05 30 28E- ?0 4,377=05 1. 628 03 3.0LF 02 L,65F 02 3.83E-01 L,50% 02 1. 388-02 7,287 01 5.00®=-07 2,EB5E-07 1.028 01 1.739-C2 T.2%B~03 9. 20%~08 2:938-M11 9. 878-01 4, u5E-04 L, 31=2-09 5.328-01 9. 34R”-01 1.05E &0 S.45E=01 1. 35F 00 3.62%=-05 R.388-01 3. 82R-08 2- 82F" 06 7. 28R-013 3.67F=08 2,177=-03 2- 1QE-01 1. 13- 8,637 00 1.252-03 1100, D 1. 52?‘05 7.16E=08 2.239-08 e.0 2.93E-05 3,L2E8-10 L,85F7=058 1. 02% 03 3.08® 02 L, 63E Q2 B,347-01 L. 507 (2 1. QHF-UZ 7.25% 91 5,207=-07 3,16m=07 1.02% 01 1.9%¢-02 THE0°-03 9.96E~08 3,05F=-11 9.56F~-01 5,048~-00 4,48%=-0%9 £.327-01 9.37E-01 1.0677 00 5, 66F=01 1. 35% 00 3,778~-05 5.372-01% 3.988-08 Ze q3E"06 8,187-03 3.817-08 2, 453F=03 6.0 1. SOF-OQ 0.0 3. 04Lm-114 .0 3.508=-18 3,81F=15 G.0 €.308-14 6.80E-13 3. 37E- 15 0.0 2v 19F’01 1. 139-01 8,62% 00 £ol POWER= SNt117 SN118 SN119M SN119 gN120 SK121M sSHi29 Spi22 SN123M SH123 SHt24 SK125M SW125 sB121 SB123 SBI2LM SB124 S8125 SBi26% 58126 TEY2L TF12%Y TE125 TE126 Ta189d 2181 Tr1824 T2182 W80 H1E1 7132 wi83M 9183 wigd w185% 7185 w186 Hig? TOTALS FLOX WODODI OO DMOIOIOOD SOOI OO . O a & &4 83 B & 5 % e @& & & @& B a2 & a2 A 4 g 4 & 2 & s @ & s =B g s s OO0 DOITOOO TN D000 DOD RO w o > L) 30.00M9, BURNUP= 110, D 2.L7E 0O 7.73E 00 1. 037-05 2.70F 00 1.008 01 $,398-0% 1.3LE=-05 1.477 00 1. UBE~-0E 1.538-07 1.82F 0¢ 3.358-09 1.95%-07 8.89?‘0” 4,08F=-05 1, 18E-13 1. 353-07 3.80F-05 ¢.61E~13 1.528-09 E‘QQBE-QS 3.90=2-07 1.098-06 L,87E-09 < - WODOODDOO0DODO OO s 4+ & & & B & % » & a a » 8 DDA DODOO DA DD 8% 03 2.587 13 Tagie £-3 (CONTINUED) PEFERENCE PWR EQUILIBRIDM FUEL CYCLE -- 3.3 O/0 EWRICHFD N 33000, MWD, FLUX= 2,92F I3N/CM**2-S3EC 220. D 2.47F G0 7.70% 00 1.802-05 2.73F 00 .07 071 1, 28E=-05 1.35E-05 1.47E U0 1.48%-08 2' 37?‘07 T.82F 00 3.36E-09 1.95%-07 T 78?’03 8.0L¥E-05 2.27%-13 3.23F8-07 7.37F-05 1. 87F=-12 3,20F~-09 3.63F=07 1. 11E-0F 4,71r~0F 2.55F=~08 WO DO DA DDO * a & [ I - 8 e & * & » a - OO OQODOCOUOOO TOCTLIDE CONCEXNTPRTIONS, BASTIS = 330. D 2,47 00 7.74% 00 2.38E-05 2.738 00 1,048 01 1.938-05 1,378-05 1.678 GO 1.518-08 2.851-37 1.827 00 3.,437-09 1.99E-07 2.58E-03 1.29R-04 3.&7E' ?3 S, 18%-07 1.08¥-00 2,79%-12 B.,997-09 2. 018-07 1.89E-06 1,10R=-05 6.B0E-08 0.0 WOODDIO2DOCO “ o & & 8 DO DO OTIIDIOO 8% 03 2,538 13 MT OF HFRYY MRETHL CHARSED uz0, D 550. D 660. D 2,477 00 2.47F 00 2,LEER D0 7.75%F 00 7.75% 00 7.7fE 00 2.,B4F=-05 3,22P-05% 3.55F%-05 2,737 00 2.73F DO 2.72F 0O 1.04E 019 1.007 O1 1.02F Q7 Z.59P-0% 3,29%-0% L,Q0E-0B . 44F-05 1.u45F=-05 1.5%2F-05 1., 498 00 1.87E 00 1.487% 0D 1.567-08 1.82FP-08 1,68E=08 3,167-07 3,39%-07 3.5BF7=-07 1.82F 00 1.82% 00 t.82F 00 3.53F-09 3.66%-09 3,817-09 2.08F~-07 2,93%-07 2,217=07 3,59F-03 &,53F=-03 5.49%-03 1,61P=-04 2,038-08 2,45F-04 B, 78E-13 6.23E-13 7,.BUE-13 T.298=07 9.34E-07 %, 16F-06 1. 81FP=0U %1,742-08 2,086E-0L 3. 75E-492 4&,7%®-12 5,92F=-12 £.,8%E-0C 8,76F7-09 1,09F7-085 1.69F=-08 2.75%~-06 U,.09E=-06 2.86%=-08 3,U2E-D6 4,178-056 t1.98E~-05 3. 12F-05 4.50F-05 1.808-07 2.48FE-D7 4,04F-07 C.0 0.0 0,0 0.0 0.G 0.0 0.0 D.0 0.0 5.0 0.0 n.c G.0 0.0 0.0 0.0 0.0 g.0 0.0 0.0 G,0 C.0 0.0 0.0 C.0 0.0 0.0 c.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0C 0.0 0.0 3,687 03 3.08®% 03 3,088 03 2.7 13 2.8%% %3 2,93F 13 GRAM RTONS ™0 RFACTOP 770. D 2, 487 02 7.76F 00 3- SHE'OS 2,728 00 1. 047 01 2.317=-07 6. 47E-03 2. 897=-00 9.€2F-13 1, UOE=-06 2. 39F~-014 Te WE-12 1. 327-08 5.739-06 L.,91F-06 6, T4F=05 6. 16E=-07 0.0 0.0 0.0 830. D 2.U8F 00C T.7TR 00 4, 13E-05 2,727 00 1.0u8 04 S5 52E8=05 1, 47E 00 1.83E-08 .93E-37 1.82F 0C 4, 13=-N9 2.407-07 7, u87-03 3.337-01 1.6 E-12 1. 6UF-06 2.74E-01 8.45B-12 1. 56F-08 ="o 58?-66 5. 66F=-08 8.02E-05 8.96E-07 OO0 0 . . 5 ks & e QOO T O DO QDTHIAD . WO DO O L . 3. 187 13 590. D 2. 58% 90 T.777 D0 b,367-05 2.73® 00 1.08% O 6.33E=-08% 1. T72%-05 t.47F 00 . 90F-08 L,i52-07 1,822 0C 4.31%-09 2.50E-07 8,527=-03 3.79E-04 1. 37E-12 1.90e-06 3.008-04 9.88E-12 1. 837-08 9.95R=-08 b, U1E~06 1.018-QU 1.26R=~C8 WD DODOODODDD>DO DO - & » *® = & = & s = » [ ] - - OO0 DO 8r 013 3,317 13 1100, D 2.458% QO 7.78F GO 4,607-0% 2.71F 00 1.0u4F 01 T, 1TE-0F 1.798-05 1.4L77 00 1.98F=-08 L,277-07 1.82% CC 5,087-09 2.63F=07 9,58%-03 4,25%-04 1.60F-12 2.17E=-05 3.37F-C2 1., 167-11 2. 11E-908 t.26E-0F% 7.17F-06 1. 25704 1.71%-06 DO « & & & &4 S+ & & B & s s &= 3 = DOoOODDDDIDODDIIO WO D0 DO x o [ ] w i . e w i e ¥t} ¥0lL PORE = HE 4 TL207 TL208 TL205 EB2CE BB207 PB208 ®B209 PR21D PE211 pBZiz EBZ14 BT20O BY210 BT211 BTZ12 BT213 BT2%L PC210 o2 P5212 PC213 POZIL BO215 PG216 Po218 RT217 ‘RNZig PN220 BEN222 PR221 FR223 RRE223 TR224 FR225 PR226 RE228 BC225 rC227 ACz228 TH227 TH228 TH229 TH230 TH231% TH232 TH233 TH234 PE231 Pa232 PR233 « & & 2 B 40w 2O DO O D » -:3C)OOOOO(JQO(DOOOOODOOOOOOO(‘I s & ® 2 ® & W (s a O DD OD s & &8 & 4 & @ QOISO IISTTIOSIIGDODD > 2 @ . o = g - . CDOCADDDOAICDMSD O SOOI . 30,008W, BOURNUP= 110, D 3.74E=-05 3.57E=20 3.80P-17 1.388-22 t,17%-20 1.97E=-16 1,198-12 5.53E=-19 5,94p~-17 2.708-19 2.178-14 3,77E=-2¢ 8.89%-17 3: 23E‘ZO 1.618-20 2.,078=15 1.318-19 2.77R=2¢ 1.0UR-19 10 9’4‘3“"25 1.098-25 1.918-28 4.€97=-27 2.24F-25 + 52E‘20 bL.298-21 1. 49E-24 8,98%-22 3. 18R=17 7.74E=- 18 1.38E-20 5.,51F-21 1.23F7=18 1.79F=-13 Sc 95E‘17 T.18%=12 T.4EF~20 4,028-17 2.03%-13 T.T98~24 2.79E=18 30 fl2'§7"11 L,u8w-12 8. 8“3"07 1.56E-09 1. 50E=-08 2, 807~14 5.68P-08 7.U2E-08 g.01R~11 1. 13E-09 RFFERENCE EWP BQUILIBPION FUTL CYCLE 33000, 9D, FLUX= 220, D 1.728=08 2.83E-18 1.5&E"16 6,508-22 3.67E~18 3.295-15% 9,72F-12 2, 14 E=-18 8, 79E~14 1.83F-1% F.5347=18 2.53E=10 1.287-1¢ B.37E-15 6.31E-1¢ 1.05%~19 1,33F~18 « SEE=24 4,42E-25 9, 198-28 1.78%=-26 1.78E-24 34 QSE-'IB 1#63}2"20 7. 1ER-24 3.96F%-21 1.29%=-18 2: 933‘1‘7 5,44%-20 2.928-20 9. 7UE=18 7.20F=13 2.B85F=-1¢ 4.508-12 5.71E-19 1.08BE-12 5.,95¥%=-23 1.86E=15 1.39E-10 1. 6L F~06 2.40F-09 5.73%-08 9. 14¥~14 5.91e-08 2. 07F-07 2.52E-10 4,31E=-09 BUCLIPE CONCENTRATYONS, GRRR 17T0ONS BASTS = MNT OF HP2VY MR™AL CHARGED 330. » 5.18%-04 2,007-19 3.65E-16 1.63E=-21 2.558=-18 1. €1E-14 3.398-11 fiq B?E“"‘g 1,27E=15 €.808=18 2.088=13 3.06E-19 . E9T~15 81 Z?E-‘!g 4,058B~-19 1.98p-14 f.788-18 2.288=-19 £, 95L%=-18 5.90¥-28 1.058=-24 2. 318-27 3.818-26 5.652-28 8,187-19 3.49F=-20 1:80:&"23 1.286%-20 3.06%-16 5;29‘5"‘17 1.628=-19 8.007=~-20 3.098-15 1.728-12 7. 13E-18 3. 628~12 t.84%-18 L.85%=16 2.53E-15 3,287-10 3.85%-11 2.27%=08 3. 16E-09 1.23%-07 2.008-13 5.918=-08 3.86E-07 ug‘?gE"O 9105E"09 bup, v 1« 378-D3 2.01R-18 7. 06E=16 3. 28R=-21 9.75%~18 4,847~ g, ug=~-11 1.337-17 2.90F=-18 1. 528=-17 £, G2P=-13 5.17E-19 9. 72%=15 1:892" 18 9003E“19 3.83R~1L 3. 15%=18 3. 802" 19 1.093-23 2.02%=24 4, 59E=27 €.43E~26 1.26%=23 1. 588=18 5.888=20 3; 5‘,‘5“'23 2.807-20 5,90F-16 1.0€6E= 15 3.22%8=19 1.6EE=19 6- SQE" 15 3.317-12 1. 425-15 1. 623"‘11 4,188-18 9.65u=16 B.0BE~-12 b, 378-22 1. 1981k £,33E-10 6.,85%-11 2,79E=-0§8 3.85E~-09 2, 09E-07 2 519‘13 5. 89E-08 €.,03%=-07 7.T2E=10 1,51E-08 2,92% 13V/CH**2-5FC 550, D 3. 24F-01 3,6%E~-18 1.228-15 5."7‘3-21 Za TOE=-17 V. 13‘E"13 1. 77810 2.36%-17 5,85E-15 2.7%2-17 €.97E-13 7.67E~19 2. 10FE-14 + 56718 1.56E-118 E.E68R-14 5.60E~13 2.647-43 ¥,28E-17 2- O1E“23 3.518-24 8. 16E~-27 9. 54 R=26 2.3Z8~-23 2.7 =18 B.73%-20 6.368-23 5,158-20 1.02R-15 1. 87F=16 £E.72%8-19 2.89%-19 5- -’5?"‘12 2,52%-15 2. 41E=-11 7.84F-18 1.72E~15 1.078-11 8, 18%-22 2,16E-14 1.10%=09 t.09E-10 3,20E-06 b, 87R-09 3, 12%-07 £.083E-13 5.888-08 8., 49R-07 t.132-09 2.23%-08 860, D 6. 87F=03 6.03%-18 1, 98E~1E 6. 12%-17 2,23%7=-13 3,30E=10 3.928-17 3.05E-15 u,56%-17 1., 137-12 ?eOSF“g L.oLom-1y 5.927=-18 2,729 18 1.08E-13 2.318-18 ."c 69”"19 7, 86E-17 3, 28%7=23 5. 68%-28 1. 36E~-26 1. 30%-25 3.798-213 4, uBr-18 1. 19F-19 1. 06822 8. L2720 1. 66E=15 2, 15F=15§ gs 515-19 4,57E~-19 2. 07F-14 9,31F~12 o 1EF~15 3. 292"11 1. 308=-17 2.85E-15 1.69¥%-11 T. 369-21 3. 48E~14 1. 78E-09 1. 64810 3,52F-06 5.038~09 &,31E=-07 7.7%E=13 5.878=08 1. 12BE-08 1. 548=-09 3.03F=-08 ™0 FEACTOP 770, D 1. 32F¥-02 9,07F-18 3.05F-1% 1- 52?‘ 20 1.21E-156 3.96E-13 5.72F-10 6. 22E-17 1. 38E"’ ‘Hl 61 863-’ 17 1.74P=12 1. 35E-18 7. 20F=- 14 9, 02E~-18 1.668-13 T UBE- 37 9,627~ 19 1. 338-18 4,947-23 B, 74p-24 2. 15F-26 5,708-23 6. B3E-18 1, 5uF- 10 1.687-22 1. 27F= 19 2.55F-15 2,77r-16 1. 51F- 18 6,718-19 3.12F=18 T, 03P=-11 6.63F~ 15 L, 2eP-11 1.98E-17 4,538-15 2. U7F-11 2.07E-21 5. 18E~ 14 2, 7T4E~-09 2.007-10 3, 758-0¢6 5.52E-09 5.62E=07 1. 06E=-12 5. B3E-08 1. 39E-06 2.018-09 3.91F=-08 80, T 2. 31E-02 t.28%-17 4,51F-15 2.33E~-20 2.158-1¢ 6, 46F-13 gq 362— 10 9.52%=17 1.98E=10 8.70F=17 2.57F=-12 1.87%F-18 1.21%8-13 1. 29F-17 5,77E~1§ 2,45%-13 2.26%=%7 1.238-1R 2.0LP=~16 6, 98F-23 1.29E-23 3,28%=26¢ 2,078~ 25 8.06P=-23 10 D‘E‘ 17 1.90%=10 2.56E=-22 1. 798~ 19 3. 77TE-15 3.427-15 2.31r-18 9.31E~19 4, 81E- 18 2.12E-11 1.01%=-1¢ 5.238-1% 2,80%-17 5.92%=18 3,438~ 11 2.37E-21% T 27E-18 4,08F-09 3, U2~ 10 3.B9T-06 5.92E=09 T.03E-07 1.389-12 S5.83r-08 1. €8E=-0€ 2. 518=09 L,85F=-08 Taste A4, Isotopic ConceNTRATIONS (G-ATOM/METRIC TON OF U) OfF BeTiIniDES AND THEIR DAUGHTERS £S A FuUNCTION OF irrapiaTion Tive (Davs) -= 3.3 0O/0 FNRICHED U 220, D 3.77TE=-02 1.737=17 6, 43%-15 3.485E~-20 3.568-16 9,918-13 1, 46809 t.L1%~ 16 2. ‘TOE‘ 1{3 1.318-18 3.66B=-12 1.99F- 18 1@ 95‘:- 13 1. 778~137 -ra —',QE-' 18 3.689E-13 3. 35%=17 1.47E-18 2.858-15 9, 42R”-23 1.84E=23 L.Bgr=26 2, 48w=25 1. 09%=-22 1. 6L%5=17 2.278-19 3: 80?‘ 22 2n 523" 19 5,388-1% fi' GQE" ]5 3. 42%=-18 1.24%-18 5. 95E- 14 3.028-11 1.5CR- 14 6, 26¥%- 11 3. 89%~ 17 1.03%=-14 4,56%8-11 4.06E-21 9, 75%-14 5. 768~ (8 4.837-10 3. 96E=0E 6.28E-00 B.528-07 Te TUR=~ 12 5.82E=-CR 1. 957=-058 3. 058~09 5.817-08 1100. D £.78F=-02 2.25E-17 B,89%-15 4,967-20 E.BUEF-16 1.457=-12 2,21F=09 2.038-158 3.558-14 1,70%~-15 5.07r-12 2,32r-18 3.087-13 2, 32F=17 1. 01E~-17 4.83r-13 L.B2R-17 1, 71E-18 U,07P~ 16 1.22F=-22 2.55F-23 T.028-26 Zn 895‘""2: 1.412-22 1.992-17 2q 61"?-19 5. 47822 3, 18%-1¢ 7: ufiE"S L.77F=-16 t,927~-18 1.59F- 18 7,73E-14 4,13F-11 2, 168- 18 7.29%=11% E.12R=-17 1.488~ 18 5.B6%~11 5,35p-21 1.262~13 T.87F=-09 6.7€F-10 3.9‘73'06 6. 0T7F-09 1.018-06 Ze 157=12 S.80B~-08 2.22E-086 3.81E~-09 6.79%~08 501 Tapie A-U (CONTINLED) FEFEPENCE PU® FQUILIBRTIUN FOTL CY¥CLE -~ 3.3 020 PURICHED © POYEP= 30.00MW, BURWUP= 33000,%4D, FLUX= 2.92% 13N /CH**2=GTC ¥UCITDF CONCENTPATTONS, ~TRA% ATOES w93TS = M7 OF HFAVY MSTLL CH®7GED TO ®FACTOR CE2PGF 110. D 220. D 330. D beg. D 5S4, D GED. D 770. D B30. D 990, D 1100, T PA234 0.0 8.30F-13 13.33F-12 2.0%®-12 3.038-12 8,27E-%2 5. 7gT-12 7.50P-12 9.49F-12 1.178-11 1.U0F-11 1232 0,0 2,508-08 5.53E-08 G.7T4F-08 1.58F-07 2,42E-07 ~.58F-07 5,007-(7 T7,02F-07 9,38®B-0D7 1.,228-0% U233 0.0 £.36E-06 1.12F-05 1,09¥-05 1, 76F-05 1.95%-0% 3. 07F-05 2.14F-05 2,15F-N5 2, 12®-05 2,06¥-05 U234 1.73% 00 1.05B 00 9.84F-01 L17P-01 B,53%-01 7,91%F-01 7,31E-01 6.7uF-01 £,29FE-04% S,€£8%-01 5,19F7-07 y23s 1,809 02 1.24%® 02 1.09F 02 9.61F 61 £.82% 01 7.35F 01 6,3BE 01 S5.50F 071 L, 71T 01 5,018 09 3,407 04 U236 .0 3,372 00 £.29% 00 &,88% 00 3.%11% 07 1.318 D1 1.48F 01 1,627 01 1.75F 01 1.85F O T1,93F D1 9237 0.0 5,042-03 1,27E-02 1.72E-02 2,15E-02 2.572-02 2.99F-N2 3.38¥-02 3.77E-02 4,13¥-02 U, 47P=02 ¥238 4.06® 03 4,057 H3 G4,048F 03 4,088 03 L,03F O3 5,02% 53 L.O1F 03 4,00F 03 3.98% 03 3,97% 03 3,967 03 U239 0.0 1,78%=-03 1.,777-03 1.81E-03 1.8582-03 1.92%-03 1,997-33 2,077-03 2.%15F-03 2.24E-C3 Z.32F-03 uzan 0.0 1.22F-24 2,06%-31 1,58F-29 3.48F8-28 3,87%-27 2.p07-26 1.51F-25 5,897-2%5 2,36F-20 7.51E-2k NP23¢E 0.0 §.118-10 1.23¥-09 2,407-09 3,94F-09 5.84P-D9 8.129-A9 1,07F-08 1, 37E-0R 1,69F-08 2,04F-0R NP237 5.0 5.37TE-0G2 1.60F-01 3.072-01 &,BB8F-01 6,99%-01 g.132E-01 1.18F A0 1,8458F 90 1,72% 00 1,997 00 ¥P238 0,0 1.7298-04 3.85F-04 7.55%-04 1,2LE-03 1,BUR-03 2. 55F-03 3,38¥-03 4, 30E-03 5,32P-03 6,L17-02 Np23¢ 0.0 2.56F-01 2.35F-01 2,60F-01 2.67%-01 2.76%-01 2, 8867-0% 2,98¥-01 3.09F-01 3.212-07% 3,337-01 Np2L0N 0,0 1.05E-36 1.77F-33 1,36E-31 3.00E-30 3.34%-29 5 L2E-28 1. 30F-27 5,60F-27 2,0u4F-26 65.LBF-26 HP249 0.0 6.33F-06 6&.33F-06 6.57E-06 6,96F=-06 7.LB6F-06 8, 067-06 &,72F-06 9,US5F-0f 1,02F-05 1,107=-0% PU236 0.0 7.89F-09 4,55F-08 1.25F-07 2,607-07 L,63F=07 7.44F=-07 1.31F-08 1,57F-0§ 2,137-08 2,797-06 pyU238 0.0 1,86F-03 1.07F=02 2.998-02 $.,27E-02 %,12%-01 s.81E-01 2.71F-01 3.94%-0%1 5,19E-0% K,76E-01 _pU230 _ GLO £.73% 00 1.15F 0% 3.29% I1 1,73 01 1.89% OF 5,807 0% 2,07F G1 2,12% 01 2,158 01 - 2,17F OF pg2il 0.0 3,69%=-01 t.,23% 00 2.3u4F 00 3,53% 00 4,.7%% 00 5.852F 00 6,828 00 7,69F 00 8,u42F 20 9.02F 00 PU2LA 0.0 J.61P~02 1.65F-0t UL,LBP-01 6,686%-0% 1,397 OO 1.98F 50 2.59F o0 3,207 N0 3,77F 00 L.297 0O PL2L2 0.0 6.=7P-04 B.42F-03 3,55F-02 9,47®-02 1,97%-01 3.50F-01 5.56F-01 B,15F=-0% 1.%2% 03 1,0€F 0O DU2L3 0.0 1,92F-07 2.45F=-06 1,06F-05 2,91F8-05 €,28%-05 3. 1BP-04 1,92F-06 2,0LP-0% &, 208-0¢ 5,71F-CL U240 0.0 §,28E-28 1,0€F~-20 B, 14F=-19 1.79¥-17 2.00F-16 q, 84%-15 7,76¥F-15 3.35P-14 1,228-13 3,B7P-13 U245 0.0 9.03%-30 1,52F-26 1,19®-28 2,792-23 3,13F-22 2,35%-21 1.32F-20 5.92FE-20 2.25E-19 T U2P-19 Akt 0.0 9.30F-05 1, 1LE-02 U4.51E-03 1.312E=-02 Z,16E=02 1, B4F-02 5,37E-02 6,93E-02 B,71F-02 9.007=01 AM2u2% 0,0 8.31F-07 1.76F-0% 9.,267-05 2,78E-0Q4 §,0U7-0L 1, 0aF-03 1,70P-03 2,41P-93 3,16T-03 3,89F-03 AN20u2 0.0 2.172-07 2.66F-06 1.07E-05 2,75%=-05 5,507-00 9.35F-05 1.52FE-04 1,99F-0u 2,81%-04 3,2LF-0F AM2U3 0.0 4,058-05 3.,737-0u4 2,39E-03 §,71%-03 2,32E-02 5, 07F-02 9,64FE-02 1.,65F-01 2,£IF-01 3I.88E-07 AM208 0.0 L,75%=10 1.23°7-08 B8.0uF-08 3,0%°-C7 B8,32F-07 1.89%-06 3,7LF-05 B6.698-06 1,10F-05 1, 70E-0% AK2US 0.0 5,65%=-26 1,06F-24 7.93¥-23 i,728-27 1.89E-20 1.38F-19 7F.28F-19 3,12F-18 1.13%-17 3.55F-17 cHau? £.0 3,93%-06 9,237-05 5,37E-08 1,76FE-N3 4,22°-01 8,29F-03 1, 42F-02 2, 19F-02 3.927-02 u,17°-02 CH203 0N 3.07F-09 1.23P-07 1,25E-06 5.49P-D6 1.657-05 3.929-08 7, 877-05 1,39F-08 2, 26®-03 3,327-CU cHMuu 0.0 3.45F-07 1.80F-05 4.77F-04 B,86T-04 3,05F-03 3. 28T-03 1.01P=02 3.89F-02 7.Q1E-02 1,2067W-0% cHM2L5 0.0 2. EUP~CC 2.66F-07 3,83F-06 2,50%-05 1,06%-00 3, 38E-04 8,9%5F-04 2,05E-03 u,2%1E-03 7,69K-03 cH266 .0 2,158-11 &.40FP=-09 ©,77E-08 8.78¥=-07 4.817-06 1.937-05 6.21E-05 1.70R-0& u,127-0f 9,01P~001 £H2087 0.0 2.46°-1% 9,97E-12 3,338-10 G,05E-09 2.398-08 4,38F-07 5.28F-07 1.69F-0f L,68%-05 1. 16@=0F c*®2L8 0,0 1.26F-146 1.08E=-13 5.328-%2 B.B2E-1% 7,90%-30 4.70F-09 2.22F-08 B8,40%8-08 2,72%-07 7,787-07 CM2U9 0.0 1,067=-27 8.73E-19 G.57E-17 7.81F-16 7.25%-15 4,58T-%4 2,217-13 B.71F-13 2, 947-12 e TRe-42 CM250 n,0 0.0 -,12¥-23 5,69®-21 1,337-19 1,58%-18 1, 23E-17 2, 167-1" 3.38P-16 3.31E-195 U4,4GF-15 BK2u9 0.0 1.6%7-10 2.56%-36 1.92%-1% 0, 18E-13 4, 58712 3.200=91 1.76F-10 7,55F-10 2,73E-0% 2,€1E-70 BK250 0.0 9,23F=-23 1,U7E-19 1.128-17 2.51E-16 2.877-15 5. 10E=-i4 1.19F-33 5,34F-13 2,01%-i2 6,60F-12 CP2L90 ¢.0 2,20E=-21 §.85F-18 1.067-15 2,92E-14 3,82%-13 3. 13P=-12 1,8%5%-11 A,58E-1%1 3,312-10 1,107-08 C¥250 0.0 k,09%-21 1.291E-17 3.278-15 3, UYBE-1k L, ,567-13 3,75F=-12 2,237=11 1.0%%-10 L,09P”-10 t1.37F-99 CT251 0.0 3.E0%=22 1.93F-1R 2,85%~186 O, TiE-15 1,48%2-92 1,39F-12 9, 13P-12 G, B4F=-%1 1,C8F=-10 6,90%-10 CF252 0.0 3.E1P-23 1.658-1¢ 3,72E-17 1,73F-15 3.Uu2%B~10 3,98E-13 3.12F-12 1.88T 11 9,11F=1%1 3,73F-10 CF253 5.0 6.0 9.6uF-23 2,79E-20 $.50FE-18 3, buP-37 L ULOFT-76 3,80F-15 2.47%~3& 1,29%-13 5.63E-13 CF25L 0.0 0,0 G.D 8.86T-2L §,29F-22 1,71F=20 2,55F-312 2,53F-18 1.857-17 1.07F-%F B,.11F-36 TE253 0.0 9.0 3.72F=23 1.408B-20 9.C%E-19 2,28¥-17 3,09F7-16 5.837-15 1.93%-1L 1,047-33 U, E9%-33 POTATS 4.20F 03 U4.99E 03 &.17%® 03 L, 16F 03 L.ILE (3 g.13° 63 &, 11® 03 4,107 03 b,09F 03 4.07F 03 5,067 03 FLOAL 2.58% 13 2.58F 13 2,63F 13 2.71F 13 2.81% 13 2.93F %3 3.05¢ 93 3, 18F 13 3,31¥ 13 3,u5F 13 g0l POHER= 72 -y 72 73 73 L 7 74 75 " 754 ® 15 75 76 T8 76 = 76 774 A 17 77 78 ® 794 BONK TeBLE A5 » 8 @ e #* ® a M & & & o DODIOODOTITOIIDDITODOADDDIOODDODDNOADDOODDODIDTIDIOADIDIOIDODN 4 & ® & ¥ @ 4 @ B * & w T . & & @3 @& & ® ¥ & & ®w S 4 @« @ Q4 A = DO QOOTIINOTITITITCUOT IO AOOSOORITOEIOIDADINDDDODODDOD 30,0CHW, BURNUP= 110. D 2.05%-03 1.06E~-07 3.208~-08 3,19p-06 5,68F~08 1.66E~05 4,.18E-09 50u3E'GS 23 ‘IOE"OQ 8a053‘10 B.B0B-08 T.15R=04 1;79'5."09 3.648-00 6:2“3“09 2. 118-07 8.17E-05 2:91R=06 216&3“05 3. BIE=-12 1.18%-03 2.419=-04 0.0 2.,L297-06 2,9EP-03 6. UTE~07 2,81%-07 R.02E-03 7.06¥=07 3.178-08 1.3298-02 3.278-0¢ BOROE’OS t.638~-04 1.07¥%-08 1:102'06 3. 46F=-08 2.0868~-02 3»72E“11 1, %18=05 4,STE=02 6, QUE~-09 2,2TE=-06 6,02r=05 3.%1E=07 6.%1E~06 8.B5E=-05 6,838=05 7.51F=02 3.81E=-08 1. 81F=-07 Tive (oavs) RFFERENCE PWR EQUILIBPIUM PUEL CYCLE -~ 3,3 070 ®NTICHED U 33000, ¥¥D, PLUX= 2,92F 13IN/CH**%2-SEC 220. b n,258-03 1.408-07 4,23F-Q2 B.07E~-06 4,.940E=-08 3.37E~05% RQSGE_OQ 1.16E-00 2.078-0% T 9EE=10 B, 5GE-08 2.308-08 1.808~0¢ 7. 36E"DL= t.25%=08 8, 48R=07 E,23E-09 2.93E=08 2,B62E~0% 9! BBE- 12 2, 818-03 2.642-086 0.0 2.523‘36 £E.018-03 6.23F-07 2. 70F=07 1.58R-02 1. 41F-06 3:0“3‘08 2,78 E=02 3. 15E-09 8, 38%-08 8,30r~04 1:053”08 1.09%8-0¢ 3.378~06 4,068=-02 7, 188-11 7. 45705 8.96E-02 1. 16808 L,39%-0f€ 2.298=-04 3.538-07 6.28%-06 8.,018-05 1.83F7-01 3.57E=-06 13323'07 NUCLIDE CONCENTRATTONS, GPAM RTOMS BASTS = MT OF HFAVY METAL CHARGED 330, D £.567-03 1.67E=-07 5. 08E=-08 1.428=-05 5. 17E-08 5.38E-05 L,847R7-09 1.828-00 2,068-09 7892E'10 B, L5E-08 3,U5F-04 1.828-09 1.118-03 1091E‘08 1.938-06 8.311-09 2,96E-06 2.68%-0% 9,582~12 3.64%-03 2.46E=0¢ OQO 2,55%-06 90 '!BF'03 6.06%-07 2, 638~07 2,348-02 2,128-08 2,958-08 4,058-02 3.088-09 8.53%-08 1.29%~-03 1.098-08 3.32¥-08 €£.03r=-02 1. 0€R-10 1. 658-04 1.32%~01 1. 75E=-08 £,598~-06 5.07E-04 3. 288-07 5.828-06 7.387-058 5.70r-05 2.05e~-01 3uflGE'06 !-25?'07 uy0, D 8.95%8-02 1. 90807 5, 7TE~08 2. 13?"05 5.37E-C8 7.37E=0% %.15E=09 2. 53E-D4 2.05E-09 7.89F=-10 8. u2r-08 L, 59E-0n 1.837-09 1.50E-C3 2, 61E-08 3. 47R-08 8.38F=-0%9 29985‘06 2n66E‘05 1.01E=-11 L, B8E=-03 2. 49%=-05 0.6 2.38E-06 1023E”02 5,92%=-07 2,57E=-07 3,08E-02 2,838-08 24873“08 5,338-02 2,99r-09 B,77R=-08 1. 67%=-03 1. 05%-08 1.09E-08 3.27E8=06 7097E‘02 1.412=10 2,927-08 1. 73E=-01 2.378-08B 8,93F-06 8,97p-04 3.00E-07 E.L3¥=-08 £. 85805 5.29%~-05 2,61%8-01 2,26%-0¢ 1+208=07 550. D 1.18-02 2. 12807 £,02%-08 2,54P-05 5.557=-08 9.048-05 5, 39%-09 3¢28E°Du 2. 05%-06 7.86FE=10 8.,u40T-08 8.72E=00 1. 858=09 1¢B88E~03 3,38%-08 5.8507-08 8,45%=0¢ 3,018-06 2, 69T-05 1.02%-11 £.13F~03 2a 523“’06 5& BOE‘”D‘, 2,51v=-07 3,80E~02 3.54F%-06 2,80F-08 €.58%-02 2.928-09 8,07FE-09 2,02F-03 1. 06E-08 1.10E8-06 3.23%-0% 9188?“02 1.77R=1) 4,.56F=-08 2. 13E-01 3. 04E~-09 1.1&?&05 1.40E=-03 2,78%=-07 5.09E-06 6, 388-05 4,932-05 3.12%=-01 3.138-06 1. 15E=-07 €60, D 1, 397=-02 2.318~-07 T.01r=-08 3.828-0% 50723‘08 1.16F=04 5. 82F=09 4,07E=-0b 2.0“E-O9 TaBUEF-10 &, 38R-08 6. B5F=-04 1, 86E=-0Y 2.27E~-03 4.212-08 B, 06%-06 B.52E~-09 3303E'06 2, 7T1F-05 1. 03F7-11 fii36w‘03 2,54%=05 0.0 2.63E-06 1. 89%-02 3, 69F-C7 2.87R=07 L,52F-02 fl426E°06 2.7uE-08 7.81F-02 Z.B*E-OQ 9,01F-08 2. 36E"03 1, 07E-08 1. 11E-06 3320?‘06 1. 18%-01 2.15%-10 5.595'Cfl 2.53F=-01 3, 7SE=-08 1. 41E-05 2.63r-03 2. 57p-07 b, 78r-06 5,98E=-90% 4, £0F=05 3.57E-01 3,9027-08 1.11E‘07 ™0 RFACTOR 770. D 1. 65802 2.508-07 7. 58E-08 4,78%-05 5, BEE=-08 1, 38E-0QL 5.BUE-CS 4. 83E- 0L 2,0LE-39 78310 §. 3ER-08 T.97E=08 1. BBE=-(% 2.67E-03 5, 10F- 08 1, 128058 8,59~ 09 3105?”06 2( 73?"05 1. 0LE-11 8. B6CE-03 2.57E-D6 3.9 2. 66E-C6 2,228-02 5.598=-07 2. 42F=-07 5, 22E-02 4, 97E-086 2. 69E-08 9.01F-02 2,828-09 3, 78E-08 2,687=03 1. 09E~-08 1.138=-08 3. 17E=-06 1. 368-01 2,5%E~-17 9;92?“0& 2.918=-01 4.51E-08B 1. 70F~- 05 2.7%E-03 2. 39E-07 4, 88E-08 5.58E=05 4, 292-05% 3.98E-01 2., 91E-06 1,07E=07 BBO., D 1.919-02 2,68R-07 8. 1f1F-08 5.82F~05 6.03F-08 1.60E-0L 65.05E-09 5. Tir-04 2., 0UE=30 jaSEE—1Q &.35E-08 2, 08F-04 1. 29F=-079 3. 0AP-~03 6, GB%=08 1, L9%-08 8.REF=0% 3.07E=0F 2. 7HE=05% 1.058=-11 3,83%-03 2. 59F-06 2.0 2, 68F=-06 2.56F%=-02 5.50F=-07 2. 38807 5.90E-02 5. 68E=06 2,5638-08 1. 028=C1 2.77E-09 1.02F=-07 2.98F=~03 1. 117=-08 1. 158-0¢ 3,158-06 1, 5EE-01 2,95F- 10 1. 19E=-03 3,28P=-01 5.33»=-08 2,018-05 3,488¥-03 2. 21E=-07 L,23%7=05 5. 1BE~05 8, 00F-05 #,338~01 2.81%=-0% 1. 03E=07 Isotopic ConceENTRATIONS (G-ATOM/METRIC ToN OF 1) oF Fission PrODUCTS AS A FUNCTION OF {RRADIATION 990, T 2.17»=-02 2, 8um~07 8., 62708 5. 928-05 f. 18E-08 1.83%-04 6.258=09 6. E2E=-04 2.03=2-09 7.818-10 8, 3uR-08 1.028=03 10?03“09 3, 46®E~-03 7. 08r~-08 1. 92E-05 §.73%-09 3, 10p-058 2. T7E-D5 1,078~ 11 1, 1T1E-03 2. 62705 2.0 2,717~ 04 2.918-02 T, u1E=07 2,3%5E=-07 6. SBF'—DZ 8, 39R~08 2, 58¥-08 1.138-01 2.738-09 10 QEF"D“? 3,268~03 1. 12E=-08 1. 178=06 3, 12E8-06 1, 72E=-01 3, 36E-10 1 E1E~-03 3. 65801 6. 19B=08 2.33E=-05 §,708~02 2.O&F’07 3197E'Q6 #,83%=-0% 4,eur=0G1 2,72F-08 9, 918-08 11608, D 2.UuF-02 3.00%-07 8,118-08 8008E‘05 6, 327=-D8 2.07r-0L £.44%-09 7.53E~00 2.03R-C% 7080?‘10 8.348%-08 1. 137~03 1uqu'G§ 3.87%-03 A, $&F~08 2,428-05 8.79E-D9 3, 12%=0¢ 2. 797058 1.08r-11 1, 23F=-02 2.6“?“06 0.0 2.73F-06 3:26E_02 5.,348-07 2-31E“07 T.2UFE-02 7, 09E=08 2 SUF=0E 13252-G1 2.69?'09 1010?‘07 3.527-03 1. 18%=08 1. 18E=-0¢6 3, 10E=-086 1.889-01 3,782-40C 1.887=-03 §,01E=01 7.09%-08 2.6TE=08 5.868-03 1.88?‘07 3. 74r-0¢ 4,50R=08 3.47F-0% 2,912-01 2.637-0€6 9,587=08 L0L FOWER= 90M 9% ¢ 91 gz 92 92 92 G2 @3 83 92 93 93 Q3K 93 QL 9L 94 30.00M%, s ® 4 4 B = & B ® 8 & & & & & & & & 2 @ 3 s @ 4 & a DOO0ODDCOLIODDIOOITDDDIDD IO ODODODIOID IO ODIITOODIIGODODOOOODIIDIODTOD a & 4 B § & B » e A 4 B 8 » B g s 8 g B A s s e A DO O0ODDIOODDODIOOCDTOTZIODDDOTTIDTIIIISTTIODIGDTITIOITIAOGOINODDN 110, D i.uBF-O1 2.807-07 3.073-06 4.03R=-04 4, T1F-02 1- 3“3"01 2.16E-0¢6 2.829-01 5.78F-11% 5.87E=(% 1. 188-05 2.718-06 2,327=-04 3,98E-01 2.%19E-12 4.5%8-10 . 147=-06 7.35F-04 7.798-05 BIQTE-O1 b4, 09w-07 1.BOF-05 5.67F=05 3LUBE-03 3.21E=01 3.377-0% 1. 78E-05 7.99F~-01 1.458-19 20113'0& 2.938-03 7.2UF-07 2.10F-0% 4, 1aE-03 2. 13704 b,537=01 3.67E~-01 1. 22F-07 5.898-07 1.08%-03 1.608~03 8.50%-01 2.16E-08 7.223'07 6.21%=-05 L,7%8-03 9.13B-01 6036E-08 3.278-10 5.32%-0% T 61207 9-09?-06 SURNUPE= 33000. MWD, 220. 1 2082?‘07 §.20¥-07 3.79¥-06 3.16F‘0u 9,02F-02 2.60E-01 2.00%-06 5.457-01 T.53F7=11 1.2CE=-05 4.B02-05 2.59¥-06 2,15%8=04 5.71E-D" 9.20E-12 3.85E-09 1-05?‘06 E.8487=-04 7.25E-08 9,6%E~-01 3.788-07 1.6fi?-05 8.03F=05 4,037=-01 83,87E-01 3.14F-06 1.66%-05 1.54%7 00 B.O0YE~T0 4,08F=-0L 1,17 E=-0Q2 &,T18E=-07 7.558=-06 3.908-~03 1.98%=04 5.U09%7-31 1.08F 00 1. 16707 5.55F‘07 1.02%-03 1.51E-03 1.66% 00 2.3TE~08B 5.88%~-07 5.917-05 4,527-03 1.79F 20 2.50F-07 2.59?'09 5.20%=09 1.55F=07 B. TLE~06 NOCLIDY COHCRETPRTIONS, GPAM ATONMS RASTS = ®T OF HYAVY METRL CHARGED 330. D L, 17E- 01 7.76E-07 3.59E-086 3.56%-08 1.308-01 3.8%E-01 1.888-08 7.98E-01 9.36F-11 1.828=-05 1.707-084 2.36%-08 2.037=-00 9.,77E-01 2.18%-11 1.35F-08 9.94%-07 6. LET=-008 §.,84F=-05 1. 408 0O 3.54F-07 1.572-05 7.558-05 3.97F-01 T.88R 00 2.988-0¢ 1.563'05 2.23% DO €.82E-10 5.93E-Ofi 2.60?‘@2 61“0?‘0? 7.1%8~-06 3-703‘03 1. 88E-08 5,538=-01 1.78% 00 1.112-07 5.318=-07 9,79%-00 1.408-03 2,847 00 2.318-08 £.838-07 5,7CE-05 B,36%-03 2.64%E 00 5.53F-07 B.€1r=-0Y 5.16E~-09 1.51E-07 8.498-06 TABLE A-5 (CONTINUED) PEFFRENCE TWR FQUILIBRTUN FOEL CYCLE == 3.3 0/0 ENRTIERD U tug, D 5.512-01 7-382’07 3.,41%2-05 3.38E-00 T.67F=01 4.96%-01 1. 78E-06 1.838 00 1.13E-10 2.L6F=-05 1.98BE-00 2.237-0% 1.928-04 1.277 0D 3,99%-11 3.318-08 9,u2%-¢7 6. 137=-04 £§.50E-05 1. €28 00 3,34%-07 1. L3E-05 1-‘52—05 3.80E-01 2.05¥% 00 2.81%=06 1.4G8E=-05 2,88F €0 9,758~-10 7. 08204 L.54%-02 6.117=07 8.89F~-0% 3.52¥~03 1.792-08 5.260=-01% 2,508 00 1.078=-07 5.11F=-07 9. 418=-08 1. 39%-03 3.18BE (O 2.26E’08 6-&3?—07 5.537-05 U.237-03 3. 46E 0D 9.67E-07 2,01E~-08 S.167=-09 1. 6BF=-07 8,29F7=-06 FLUX= 2,.92F 13N/Ck**2-SEC SED. D 5,838-01 7.05?’07 3.25E-06 3.,23%-01 2.02%=01 6. 088=-01 1,697-05 1.25% @0 1.33?‘10 3.93%-05 3.138-00 2,11E-06 1.83Rr-04 1. 54F 0 £, 50F-11 5.71?’08 8,958-07 5.85E-04 6.20%-05 2.22% 60 3.168-07 T.418-05 6.80%-05 3.827-01 2.597 no 2.6B7=05 1. 82%=05 2,498 €0 1.28%-09 9-33?°0fi %,978-02 5.857-07 6.52%-06 3.37?'03 1.717-048 5.15P=-01 3.19% 00 1.03%¥-07 .93F-07 9.09%-04 1.30F-03 3.81F 00 2.237=08 6425207 5.3387-05 4,1t7-03 4,257 00 1. h9%-06 3.883—08 5.19%-09 1, 45F-07 8,12F7=06 560. D 8. 13E-01 6,758-07 3, 128-06 3. W0F-04 2.35F-01 7. 158=01 T« 61P-06 1.47F 00 1. 55E-10 3.84F=05 4,56F=08 2. 01%~-0¢ 1. 74F-00 1.87F CO 9,538=-11 1.20%-07 B8.53%-07 5.59E-0U 5.92F8-05 2. 607 DO 3.00E-07 Y. 34E=-CS £,L8F-CS 3.4657-01 2117 20 2.56%-08 1,35FP-05 4,07 00 1.607=09 11093‘03 9.867-02 5.62Fr-07 6-25?*06 2,237-03 T BLE~DL 5. 95F-01 3.86F 00 1. CO0E~C7 a,778~g7 g.79F~00 1.30E-03 L,&69F 00 2.208+308 6,097-07 5.2L2-05% 1, 012=-02 5.02F 00 2. 10E-G6 6-62?‘08 5.23F-09 1. 028=-07 7.967=-06 TO PFACTOR 770. D 9, L3E-01 6.077-07 3.00F=-06 2.07P-01 2. 604F-01 B.10¥-21 fi.53F-96 1.68F &0 1 77E-130 bh.59%-05 6.30F-04 1. ¢3F=-06 1. €6E~-00 2.06E 00 $.23P-10 109?E'07 R, 1UE-07 5.35e-04 5.67E-058 2.87F 00 2.85F-07 1,28F~-(05 6. 48T-05 3.29P-0% 3.69F 00 2.U57-0% 1, 307-0% 2,62F QOO0 1.,937-09 1-2“2'03 1032?‘01 5.80F-07 6. 00E-05 3, 10F-03 1.58E-04 4, 15P- 01 4.%0F 00 176E‘08 4.627-07 B. 527~ 70 1.25F-03 5.298 00 .?SF*DS 5.957-07 5.12P-05 3, 91F~03 5.7BF 00 2,B2E~086 . D48~-07 5,282-03 1.00F-07 7. 82F-05% BBO. D 1.C7F 00 5.21?‘07 2.887~06 2. 857-0L 2,927-01 9, 20B-01% 1, iSF~06 1.87% 00 2.01F~10 5.38F-0F 8.367-~01 1.819F7~0¢ . 39%-04 2.30F 00 1.987-10 3, 10707 T TEE~07 5.12E-04% 5.43F-05 3.327 0¢C 2171F‘07 ?.227‘05 5.93F=25 3.138-0% 4,087 00 2.35F-0F 1.248-05 5. 147 00 2.277=09 1.38E-03 1. 697-01 5.20F-07 5.717P=-0¢ 2|99E‘03 1.527-08 L,567P-01 S.12F 00 3,51E-08 4. 48F-07 8.26F-00 1.227-03 5.95% Q¢ 2,1r?=-08 5.81%-07 5.00E-05 3.82F-03 6.51% 00 3,52%-08 1.33E-07 5.358-09 1.38E-0" 1-59?-06 950, n 1. 207 00 5.97E=-07 2.767=06 2,7ue-0u 3. 167-01 1. 022 Q0 1. 3IB8F=05 z2. 067 00 2426710 6. 21E-05 1.07%-03 1. T3E-05 1. 52F-04 2.5%3% 0O 2. &5F-10 L.6TE-07 7, 41R=-07 e 91F-04 5.212-05 3,65F £O 2.57%-07 T, 17R=-05 3, 83®=-05 2.998-04 i, 53% 00 2.28E-06 1.19%-05 5.63F7 Q0 2.63%-049 1.52%=-03 2. 11E-01 5.018=-07 5. 558~ 045 2.877=-33 1. L6%=-0U 4, 397-01 5.72F 00 9, 27R=-08 4, 3Rw-07 8.037-0UL 1. 18%-03 6.59F 00 2.15F-08 5.68%=-07 L, 39%~-05 3.742-03 T.22% 00 u,52F-06 2. 16E=07 5.U427-09 1.388-07 T.ETR-0F 1100. D 1. 33F 00C £, 74F=-07 2.,587-08 2.64%-00 J.42E-01 1.177 0D 1.32E’06 2.247 00 2.53E-10 7.0€6E-0F 1.35E-013 1.84F-0€ T.U45F =010 2.752 0D 3.45E-10 €.59F=-07 T.087=-0" u,7iE-QL 5.007-0% 3.97F 00 2.U5E-07 1., 127-05 5. 38%-0% 2.86F-01 U, 967 0C ?2.1¢7=0¢ 1. 9LF7~-0% 6,107 00 3,007-09 1,657-03 2,58F-01 u,837~0" R.36F~98 2.777-93 T.U1F~08 G,22F-0¢ f.297 D0 9,057-0¢ Le237~07 T.80F~-04 1. 152-03 7.227 DO 2.137-08 5.567=07 L,79F-D% 3.66F-032 7.99F 00 5.50F=0% 2,92F=07 £, L87-09 1.35%-07 T UEFP-0E 801 POWER= ®o 99 2 S9y T¢C 99 B 39 NR100 HO10C TC100 RO100 NB101 %0101 TC101 RU101 80102 TC1028 mC102 RE102 me103 TC103 2103 PH103% FH103 MO108 TC1086 RU104 RE10UN RH10L ED10% ¥0105 TC105 * & &« & o @ = C 0 0 o 0 0 0 0 0 0 . * @« & o 8 F & & & 8 @ e ® B a3 a QOO OISO ITIOOTODC OO DDIADAOOODDIOORIDIGOIOS DA DD - SOOI OOCC OV DOOPAOODANDDDAIITIORODDAOIDIISITO DD * & ® 8 4 % a & w & = s 8 8 & & 30.00¥W, BURNUP= HAPGE 116. D 1.U28-00 9.20E-01 g.10®-08 4,83%-06 8,B5E=-05 5.268-01 6. 11E=01 1.212-01 1,B%E=-01 11912“05 4,202-01 3. 61R-06 7075E“0u T.R1P~07 7,97E~03 7.568=06 5.638~-04 B8.7BE~01 7,70E-06 1.34E-05 5,328-05 B.56E-01 1. 96E-05 3.298-02 2.56%~-03 8.60E-01 4,237=-07 2.588-05 g, 37E=-01 2.42¥-08 L:n 59E_03 8, 92E~06 1. 01E=0L 9,728=-05 7051E-D} E.50F=05% 1. 38E-05 2.48E8-07 6: 383-01 t,77E=-058 3.8RE~06 2. 183-01 2.188-08 2,586B=-01 %.288-06 5.85E-05 3.2%p-01 8.238-08 1.833‘67 1,06E=02 1.35E-06 2.738-07 TaglE &-5 (CONTINUED) REFEPENCE PP EQUTLIBBIUN FUOEL CYCLE =-- 3.3 070 ERPICEED 3 33000, ¥¥D, PLUX= 2.92F 13W/CH**2-IEC 220. D 1.36F=0U 1.81F 00 8.86E=08 L,69F7=06 8.59%-05 €.812-01 7.97E-08 3.30E-01% 7,858-01% 1.86E~05 1.82E 00 SiQuE-OS 6.00F-03 7.68E-07 7, B80E-03 7.378=-06 5,53F-04 1.76F 00 7.62F=0€ 1.52E=08 6, 098~06 1.71F 0¢ 1.94E~-C5 3.268-02 Z,5U4E~-03 1.75% 06 1. 72E-08 2.58E=05 1.88% 00 t.Q2F-08 1. 918=02 £.96E«06 1.02E°0H 9, T7E=05 1.51F 00 £.718=-05 1.37E-05 2.58E=-07 1.31E 00 5.05E-06 H;U7E‘GG 2, 67E-01 2.67E=(04 6. SZE-01 L,87%8-06 £.78E-05 7021?‘01 2. 20®=057 4,B9E-07 6- 1“E-02 10693*06 3.80%F-07 WUCLTIDE CONCENTRATTONZ, GRAM ATOMS BRSTS = MT OF RFAVY MRTAL CHARGED 33¢. b 1.33F=-04 2.68% 00 8, T0F-08 4,60R=-06 8,82%-05% 7.198-01 g,45F~-Du 3.77F=01 1.56E 00 1.82E=05 2,.7T1E GO €,37E-06 1.908-02 7.608-07 7.76E~03 7;303‘06 5. L7P-04 2,63 0C 7.57E~08 14513‘05 §,72E~-06 2.58F 00 1.938~-05 3,25E-02 2.53E~03 2.62F 00 3,BO9%-06 2.598-05 2.8uF 00 7,552-08 8,36%-02 70 01E'05 1.03E~08 3,8BE-05 2.28% 00 6.888-05 1. L3R-05 2.861E-07 2,992 00 5.298=-06 L. 27205 2,888-01 2.88E~-04 1.12E 00 %,372-06 7.47E=-05 1.16% 00 31683‘0” 8919E-07 1-622’01 1.36E-06 3.95E~07 ueo, o 1.29E‘0u 3.54% 00 8, 59E~-08 4,53%-06 8028E-05 7.24E-01 g,512=-04 3.89F-M 2.39% GO 3,59F QB8 6,94r=0% 4, 128=-02 7. 54E=07 T.T0E=03 T 2Uw=-08 E.438-04 3.50F 40 7. 85E~08 1.51F-05 T.26F%=05 3,447 00 1. 93E-C5 3. 24802 2.528-03 3.45% 00 £.,91P2=-0¢ 21 60F-05 3. 8% 06 1.0LE=-C7 7.89E-02 707206 1-OHE*0H gaguF‘OS 3.05% 00 7.0U4r=(% T, LBR-0F 2.8EE-07 2.73E €0 50 SOE‘OE B, 40F8=08 3,03E-01 3.03E-04 1.58% 00 SOSOE-OE 8,06E=-05 1. 65F 00 5.218-07 1. 16E~06 3. 18E-1 2,20%-06 8,428-07 550, D 1.27%=-08 4,38% 00 B.50F-08 4,378=-056 8-17E‘05 7, 19%-01 &,468-008 3- 893-01 3,22% 00 1.77E=-05% 4,058 09 7.39%-06 7.388-02 7. 49807 T.E5F-03 7.20%-04 5.20R=-04 B, 367 00 7, 53%-08 1.51E=-05 7. 5E-06 4L,31% QQ 1.93%-05 3, 28E-02 2.52%=03 L,38®% 60 1.087-05 2161E“05 4,78% 00 1.34E-07 1.26E-01 7. 12R=06 1.QUE-GQ 1- GOE"O“ 3,82% 00 7. 18E~-05 1, U78=-035 2,72E-07 3,48F 00 5.70E=086 4,B0E=-06 3. 16 E=01 3.15%-04 1.93% 0 £,.20%-06 B8.61E-05 2,.17¢ 00 £.78E-07 1.512-06 5. 20%=01 2,42%-086 u,B858-07 660. D 1. 24F=-08 5.218 OO L,BiF=-06 8, 06E-05 7.12E-C1 8.37%-08 3, 86F-01 4.03F 00 1| ‘?53-05 5.318 00 7.80E-06 T UER=G7 7.51F~03 T.AEE-08 5.37F-04 5.2198 00 7,528-06 1. 5CE-05 8, 21E-06 5. 17% 00 1,838-05 3,24B-02 2.528-03 5. 20F 00 1. 55F=-05 2, 837-05 5.76F 00 1. 66E-07F 1. 850-01 7, 18E~06 1«053"03 1: 0 1E-Ou 1,608 0D 7, 329-05 1. 507=05 2.,77E=07 8,25% 00 5, B9F-06 4,758=086 3,278~04% 2.29E 00 5, 57E~-06 9, 13E-05 2.72F 00 8.37E-07 1.B6E-06 7.80E~01 2. 62R-06 5.2¢8-07 ™0 PFRCTOP 70, b 1.228-04 6. 03E 0O 8,378-08 uo37F‘06 7,97F=-05 7. 0UF=-01 8.28F~01 3.82F-01 4,82F 00 1. 73F=05 6, 167 00 8. 19F-05 1, P3E-01 7, 827=07 7.58E=-013 7, 13E~-06 5.38%-08 €, 08F OO 7.51E~08 1.50R-0F 8, BUE=-06 6. 04F 00 1.938-85 3, 2u4B-02 2,828-03 6.C4% 00 2; 10“'05 2. 68F=05 &, 74F 00 2.01E=07 2.57E-01 7. 23E-06 1. 06E-04 1. 02F-04 5.37F 00 7, 85F-05 1. SZE-DS 2. B2F=07 5.0u® 00 £. 07E-06 4,90F~06 3. 39E-01 3.38F=-04 2.82F 00 6- 922-06 9.61?‘05 3.37F 00 9,97E=-07 2.22e-06 1.0%F 00O 2. 818-06 5| 6“F"07 8ed, D 1.2C0E-04 6.43E 00 8, 32%-08 4,33P-06 7. 89E-05 6.97TF-01 8. 19F-00L 3. 78E=-01 5,%9F 00 1. 71E-05 7,008 0D B.S8E-06 2, U3R-01 7339?‘07 T.S5R-03 7:102“&6 5.33F-08 6,91F% GC 7;51?‘06 1. 50F=08 9, 050-086 6,927 00 1. 93F-05 3. 24F~02 2.538-03 6.86% 00 2. 73E-05 2.56E-05 7.73F 00 2.38F-07 3,43%-01 7.2%E-086 1.078=-08 1. C3E-OL 6,157 GO _F.. 592-05 1. 35808 2.87TE=-07 5.857 OO F. 24706 5.0“3“06 3,49E-01 3.39?—0& 2.91E 00 7.26E-06 3,92% DO t.16F8-06 2.57F-06 1.46% 0GC 2.99%=06 6900E”07 990. D T.63F Q0 B, 277=08 4, 29F=-06 7-81?'65 6. 30%-01 8. 11204 30 7&“5‘@1 6,387 06 1, 70E-05 7. 84F 00 2,96E=-06 3. 20E=01 T.378-07 7.52E8-03 7.08E~06 5.312-04 7,758 00 7.21%=08 t. 50808 9, ULr=-06 T.T%E G0 T.93E~05 3.2%E-02 2.538-13 .67 0D 3, 88%-085 2 ETR=05 B, 73% €0 2.788-07 b, b4r=-0% 7. 34%~06 1.08%=04 1, fiR-0U 6, 928 00 7. 718=05 1. 588=05 2,92%=07 £E.E8% QO 6551?“05 3.60E-01 3. E0E=-04 3I,17E G0 fiISSE-QG T,05%=04 4,57% @G0 1. 31E-06 2.928-06 t.88% 00 3, 16F=08 6,308=07 1100, D 1.17E-08 2,428 00 802“?‘08 bh,257=-06¢ 7.7UFE=0F 6.83¥-01 2.03r-Cu 3.707-01 7.07% ¢ 1. 68E=-0% B.66% OO §,32E=0¢ t, 14F=-01 7.38E-07 7.507-03 7.067-06 5., 30E-04 B.58E 0 7: ‘31?'06 t.508-05 9,810=086 . 677 00 1.238-05 3.25%-02 2.548-03 2. BEF DO 4,237-05 24) ‘SBF"‘OS 9,728 08 3,198-07 5. 60%-01 T.L0E=06 1.09E=-04 1.05%=04 T.69F 00 7.83%=05 1,80E=05 2,878=-07 7.53E 00 6-57E’06 5.39F_06 3.89E=-01 3.6%E~-0L 3,407 00 7.887=-06 11108-0u 5.248% 00 1. UEE~DE 3.25F-06 2.38F 00 3.32P~06 £,67R=07 601 POWEFP= r3705 PE105% PHI06 PD105 TC106 PUT06 PHI106M RH106 RIS rULOT ®EY07 PDI0TH D107 AGI1GT ®U108 PH108 1108 AG108 CDI0E R4109 PDIOYN PDY09 AGT09NM AG109 ch109 2H110 P00 AS110H %3110 D110 PD11IM PDI1Y AGTHN AGT1Y CD111H CD111 PD112 16Y12 D112 PD113 A31139 A5113 CD13M CD1t3 TR1Y3 DL ACT10 cpitg TR THIIL S¥19L D118 OB ANI IO OODDOODDOO0DOO - a a - - . - - - - . - DO OOODODODD OO0 4 4 & 42 & @& 8 #® * e & s 5 B % 2 8 8 % 8 o & & 4 = & & & o @ OOOWBMC 30D OOODIITODO0IIODOD MODOMOO000OOODOTIDDOODIOD DO DD DO OOOODIOOD s & 3 a = & & s & DO O 110, D 5. uSE-OQ 1.54E-06 3.338-03 1.L0R-01 8.10E-07 1.00E-01 2,00E~05 2.66%~07 5. LuBP-02 2,55%=-08 1.86E-05 8.218-08 65.548=-02 8,29E-10 2,298-06 1.04E-07 3.56E-02 9,928=-17 1.33B-12 1.36%=-07 4.63E-10 2.24%8-014 1.857=-37 1.778-02 U, F9e=16 9,18%-09 8.13%8-03 3.2ZE-05 8.32R=-09 B,923-04 106:-1’::-06 1.378-06 7.89E-08 6.84E-04 3.938-11% L,708~-03 6.338-05 6.59?‘06 2,83E-03 6.91E-08 S5.92E-09 1.,4179-05 1.33P-06 1.59%=-03 6.068-09 S-VSE-OB 2.008-09 5.79E=03 7,097=-17 2.70E-15 5,4UF=-11 te 56E"08 229. D 6.80E-0L 1.92E-06 u01?E’03 3.328-01 1.11E-08 2. 39E‘01 2. 49E-05 L, 40%€-07 1.53%-01 5.18E8-06 2. 73E-05 9,07E~08 1.818-01% B, 30°-09 3.57E=-06 2.25EF=07 1. 0BF-~-01 5.26F-1¢ 1. 36211 2.178-07 1. 4%F=-09 3.,52E-04 2.98E~-07 5.38%-02 9.09%-15 1.39E-08 2| 36?‘02 1.77E-00 2.53r-08 S5.32E-03 1.72%-06 1.518-06 T, 09E~-07 9.53F-Ct 1.87E-10 1. 31‘E-02 5.95%=-0°8 9,.06T-06 T.42F-03 7.48T-08 6. U?E-Og 1.53E-05 6' 66‘5"06 1.82E-93 5,7TuR=08 6, 84F=-08 2,37E-09 T.4%7-02 1. 067-09 3.19E=-14 1,25E-09 1.827-08 TasLE &-5 (CONTINUED) PPFEREINCE PWR TQUYLIERPICM FUPL CYCLFE -- 3.3 0/ TRRICHED U 30.00M%, BUFNUP= 33000.M¥D, FLUX= 2,92F 1IN /CHEA2-5RC NUCLIDFT CONCEWTRATIONS, BASTS 230. D 7.90E~-04 2.23p-06 U.82F-03 5.62E~01 1.358-06 3.97E-01 2.94F-05 6.27E-07 2. 993-0? £.49F-06 3.40%-95 1. 14E=-07 3.36E-01 1.208-08 U,61E-06 2.902-07 2.09%=-01% 1.“‘6E"15 5,582-11 2.81E-07 2.788-09 4,78E-04 3,94F-07 1.02F-01 SUHAE-1% 1.767-08 4,497-02 B, 7Lp-0L t,B8F~038 1,5L¥-02 1.82%-0¢% 2.357-05% 1-3“?‘{}7 io‘tflF-Og 5,52F-10 2.L1E-02 7.258-05 1. 1 1‘9'05 1,30E8-02 T.97E-08 5.83E-09 ‘5063?-{15 1.778-0% 1.927-03 2.20E-07 2.68%=09 2,3€E-02 5, 13E-09 1.40F-13 3.18E-09 2,038-08 = MT OF 4ug,., D 8.B8E=-0U 2.U9¥-06 5, 35F-03 8.2%2-01 Y. 57E=-086 5.B3E=-01 8.21E-07 4,93F7-01 T.62E-06 3,99F-05 1.34E-07 5.23¥-01 2, 47F-08 5.50E-06 3.46E-07 3.38P-01 3.10E=-15 1.55%-10 2.377=07 4.578-09 5.83F-04 4,BQE-D]Y 1. 578=01 1. 9-7?.-13 2. 09“'08 7.0BE-02 9.37E-08 7.7BE-0B 3. 28E-02 1.93F~-06 2.7LE-06 1.55E-07 f. 26F-03 1.217=09¢ 3.72%7~-02 §.39E-05 1,287-05 2.05E-02 8. 3%E-08 7.19E-09 1. 71E-05 3.638-05 1.97E-03 5.78E~-07 8. 51E-08 2.857%-09 32, 387-02 1. 573-08 4,10®B-193 3,15E-08 2,22E-08 HFAVY METAL 550. D 9,72%-034 2.74E=-05 5.837-03 1. 1%% 0D 1.768-06 Te358-01 3.808-05 1.02%-0% 7.372-01 B.HUT-0F 4,538-05 ‘:.527_"07 7.36E-01 4,328-08 6.307=08 3,97R-07 '4- 782"01 5.63F-15 3.47E=-10 3,87B-07 €,79%~-09 5.82E=-00 5.62%=-07 2.198%-01% 5.UBE-13 2.38%-05 1.01%=-01 1,57%2-03 1.9128-07 5.908-02 2.05P-048 3, 09%-06 1, 75%=-07 1. 53F-03 2.268-09 5,227-02 9,42%-05 1, 44%-05 2.86%-02 8.7TF-0K 7.528-09 71 79‘.""05 6. 41E-05 2.00%-03 1.23F7=-06 9,217=-03 3.20E=-09 L, UTR-02 3.76%-08 9,51%=13 o, 067~-08 2.39%-08 GPAM ATCHS CHARGED 660. D 1. 06F-03 2.977-06 6.25F-03 1. 43% 00 1. 93R-06 8.98E-01 L, 24E-05 1.217-06 1. 03E 00 9,89E-06 5.02F-05 1.707=-07 9,78E-01 6, 84=-08B 7- 0&?'06 4.43F-07 6.517-01 9,29%F=-15 §.78E=10 4,337-07 9,462-09 7- 80?‘0;4 6, L27-07 2,827-01% 1.28%7=12 2,658-08 1. 35E-01 2.38F-03 1.51%=-07 9,558-02 2,177=06 3.,018-06 1. G4E-07 1. 70E-03 3.817=-09 F.918-02 1. 04E-04 1. S8E-05 3, 77E=02 9, 14E-09 7.8438-09 1.87F-05 1., 03E-00 2,007=03 2.298-06 9,377-08 3. 43F-09 5.63E-02 7.71E-08 1. 91F-12 2.178-07 2.5%¢-08 T0 PFACTOR 770. D 1. 138-013 3.187-06 6.647-03 1. 738 00 2.10E=-06 1. 0EF 00 u,68F-05 1.812-06 1.3BF 00 1. 08P=-05 5.59E-05 1. 86F-07 1.247 00 1. 01E-07 7.75%-06 4. 88E-07 8,20E-01 1.03E-12 1.20E-09 4,777=07 1.26E-08 £, 77F-0% 7.228-07 3.U9F-07 2. 65F-12 2.91F-C8 1 * 72?'0‘3 3.34%-03 1.94E-0"7 1.L37=-01 2.307-06 3.72F-06 2. 11E-37 1. B5F-03 5.95F-09 8,77E-02 1.137-04 1. 72P-08 uo VBE-O2 9, LeF=-08 8.13F-08 1. 94E-05 1.55F-00 2. 00E-03 3., B9F-06% . 05%8-07 3,647-09 6.8Lr-02 1. 42%=07 3,47F-12 b, 55%-07 2,70%-08 g80. D 1.202-03 2.397-06 £.997-03 2.08% 00 2.25F-06 1.22F 00 5. {4n-05 1.60FE=-0¢€ .77F 00 1.13F-05 5.9LF-05 2. 021:'"07 1.53% 00 1. 49E-07 Bo ’-‘2?-06 5.30F=07 1. 018 00 2.,08¥-10 1.98F-09 S. 19F-07 1.63F-038 9. 7'4‘3-03 B.027-07 4,158-01 5.02P-12 3.16E-08 2,13%-01 4,47F-03 2.41E-07 2. 04F-01 2,B3%-0¢8 L,01E=-0% 2,28F-07 2.00E-03 8.827-09 1. 082-01 1., 21F-08 1.85E-05% 5. 877-02 9.827-08 B.41E-00 2,01F-065 2,22F-04 1.992-03 6.1uF-05 T 11E-07 3,85E-09 B.10E-C2Z 2. 42F-07 5.85P-12 8.71==-07 2., B4m-08 990G. D 1,27E-03 3,.597-06 7.2%E-03 2. 43% 00 2, 417=-06 1. 38% 00 5. 80E-05 1., 788-06 2.22% 00 1.227=-05 £.378-05 2. 17E-27 7.83F 00 1.90E-37 9,05%-06 5.70%-07 1.22% 00 2.92E-14 3.10E-09 5.59%-07 2.0u%-08 7, 078-03 £.838=-07 u,827=-01 &, 888-12 3.369-08 2,579-01 5.,738-03 2.918=-07 2.78E-01 2. 577-0% L, 297-05 2- L‘J’UPE"O',I < ALER=N3 . 25F-08 . 30%-01 . 308-04 t, 878=-05 . O?F'O—" . 69F-109 . 07E-05 . O"E"Du . 978E-03 . 21%-06 . 17E-07 . 058~ 09 . 02%W=-02 . 88E-07 . 30%-12 1.558-06 2.98=-08 2 1 3 1 4 - 1 g 2 3 3 9 1 4 9 3 1100. D 1.347E=-03 3.77E-05% 7.60R-Q3 2.80F 00 2.56F-0¢ 1.53F 00 6.06F-05 1.978-08 2.71e 00 1.29%=-0°¢ €,778-0% 2.322-07 2.16F 0O 2, LAF=-07 9-65?‘06 6.08%-07 1. 48% 00 3.97P-14 G.pU7=-00 5.96%-07 2.51E-08 1.377-03 9.6UF-0%Y 5,.07P-01 1.487=-11% 3.61F7=-08 3.0u4F-01 7.138-03 3.8uP-0" 3.667-01 2.70F~06 b,557-06 2.60%-07 2.277-03 $.72F-C8 1,537-01 .37=-0u 2.09E-07% 8.327-02 1,047-07 8.,95E2-09 2‘ 135‘-05 b, 13p-10 1.95%-03 1.,327-05 1.22F-07 4,237-09 1.08?-01 R, 93F=-07 TLH1E-11 2.60F7-06 3. 11E-08 oLt POWEY= AG115H rG115 CD115% CDI1E THN115H IN115 SN115 AG 116 CD11€ TE11ER IN116 S¥11e AGI117 cni17M conTt? TEE1™ TNET SNIITH SH1YY cpitg INT18HN THiYE ERtiR CD1194 cn11% IRTISM TNI119 SN115H SH149 Ch1i206 TH120% TN12D SN120 Cpi21 TRI121H IN129 SK121H sei1z21 £B121 IN122 SN122 SB122K 3B122 TF122 TH123H TH123 SN123N Swt23 SB123 TET23Y TEI23 TH120 s a » & 5 8 & & & ® < . 4 & @ DODODODIDOD DT ODTA GBS OO IO O 30,00¥W, BURNUP= 110. D 1.94%=-09 2.99E=-07 6§.41E=-0C 6.277=05 5.27E=0¢6 1.588-03 9.22E-05 L,86E-0R 1. 95E=-03 1.89E-07 2,.178-10 2.L1E-01b 2. 26B-08 5.%118-10 2,8BE=06 2,38E=-06 8,25%=-07 3.53E-08 2,628-03 1.CG1E-C& 8.70%=11 1.71%¥=09 2.02?‘63 2,95%=08 1.06%»=07 3.83r=-07 2.298-0% L,E9P-08 2.165-03 2.29E-08 5,128-10 8.802-09 2,308-03 8,90E~-08 7.88E-08 2.19E=-10 £, R1E=-10 4.208-05 2.558-03 3.373—09 2.763-03 1. 2LE= 10 1. 19F-0¢ 1.06E=05 1.63E-08 5,568-10 1-33E‘07 2.04E-03 9.858-04 6., 36E=-10 1. 578-09 2,408-09 TreLE A-5 (coNTINUED) REFPRENCE PWR EQUILTRPIUM FUFL CYCLF -- 3.3 0/0 ENRICH®D U 33000. ¥WD, FLUX= 2,92F 13N/CH**2-3%C 220. 1 2.26F=09 3. 49807 8,92E=-05 734205 6.183-66 3.20E-03 2. 10E=Gu 557&5’08 4,32¥%-03 3.84F~07 b, 41E=-10 ©.91F-0u 2.60%=08 1. 13E-02 3.041T=06 207QE‘06 4,%0B=-07 1. TLE=G7 L. U46E-03 1. 16 R=0§ 1. 90 E~13 1.978-09 4, 48F-03 3.378-08 ?1252-07 L,49F-07 2.62F~09 5, 07E=0¢ 4,78%~03 2.59¥%-08 8,92F-10 9.94F=-08 5.01E~-013 1. 00E=07 8.87=~-08 2.18F~10 2.91E~09 33723-65 5.5E5E=03 3.80E-09 5.96E~03 2.70E~-1C 2-59E'06 6038&*05 1.86E=-08 6.25E-10 1.50¥%~07 3&S3E’03 3.0BE-03 4.B2E-09 1.418-08 2.T£R-09 NUCLTID® CONCENTPATIONS, GRAM ATOMS BASYS = H#T OF HEAVY 330, D 2.538-09 3.,90E~07 1.05%-04 8,258-05 6.54E~-06 L,7¢m-03 3.UE6T~-00 €.37E-08 7.038-03 5.75E’07 £.50%-10 2.253-03 2-893* 8 1.8388-09 3.78E=06 3. 0LE-06 B.ULE-COT ,28E-07 7.20E-03 1.29E-C% 1. 18R=-13 2.19E~-09% 7028E-03 3.727~-08 1.388=-07 4.66E-07 2.898-09 1.308-33 7066E“03 2.8LF=08 7. FBE~10 1.09E-08 8. 05803 ?aDQE-Oj 8,697-08 2.22F- 10 7.00E-09 5.15E~05 B.BE€F-03 g, 138-09 3,51F-03 4,30%E=-10 b,215=06 1.53P=-08 2.04E-08 6., B5¥9-10 106ug‘07 b, E8P-03 5.967-03 1.5UF=08 5122?'98 3,08F=-09 bao, b 2.76E-09 4,26F-07 1. 18%=04 9.05%=05 7.61E=06 6.0118-03 L, 97R-0U 6|93E“08 1. 008-02 7-58‘5"0“T 8.71%=10 4.00m=-03 3.?33'08 2, 762~09 L, 115=-05 3,31E-06 5691F-07 B.G9E=-07 1.03E~02 1.408=-0€ 27E-13 2, 3BE-0¢C 1.08E~-02 b,02¥-08 T.49E-07 5, 362-07 3, 13%=-(3 1.658~05 1.09%-02 3,06%-08 8¢!BF“10 t. 178=-08 1. 14E-02 1.178=-07 1.0LR=07 2,298~ 10 1. 338-08 5,52F-05 1. 20F%=02 y,04%m=09 1. I4E=02 €. 33k~ 10 €. 08806 2,%0F-08 2.207=08 7.39¥-10 1.778-07 5. 50E-03 9., 438-03 3,53%~-08 1o 3LE-07 3.30%-09 55G. D 2.97E=09 4,58E-07 1.29%-04 9. 80%=05 8,24%=-0¢6 7.13E’03 6.62% =00 7.43%-08 1.328-1n2 9.388~07 1.07F7-09 £.23%=03 3, 36%=08 3478E-09 H.H1E-05 » SLE-0% 6.337-07 1.33E-06 1.36%-02 t,50E-08 1.602%-13 2,.55%-09 1.378-02 &,308-08 1.598-07 5.738-07 3.34%-03 1.97R=0% 1. 83E=02 3.26F-08 B.68%-10 1, 258~08 1.48F=02 1.25%=-07 1. 11R=-07 2.368=10 2.,20%-08 5.882-05% 1|62E'02 4,72%-09 1, 75%=02 8.56?‘16 8,21E=-086 &,B81%-04 2.35%E-08 7898~ 10 1.90%-07 6., 18E=03 1,33%-02 €.73E=-08 2;833‘67 30533“09 MBTLL CHARGED 660, D 3, 17E-09 b4,8ar-0" 1. 40F-04 1.05E8-08 8. 8L4E=-06 8.,087-03 B, 41E=-04 70912*38 1.67F=02 1. 10E-06 1. 288=09 8.918-03 3.57E~-08 L,9€E~-09 L.69E-08 3.77F=-08 F.748=-07 2.00F=08 1. 718=02 1. B5E-0€ 1,578-13 2071E-09 1, T3r-02 L. 56E-(8 1. 69P-07 €. 07E=-07 3.547=-09 2, 25E-05 1. 80E-02 3, uu=-08 9. 178~ 10 1, 32E=08 1.877-02 1. 32E-07 1. 172-07 2. 45P-19 3.378~08 6.18E"05 2.01%=-02 k. 97E=0Q 2.188-02 1. 118-0¢ 1. 0EE~05 7.328-04 2.49%-08 8.378=-10 2.01E-07 6. 75F-03 1.768~-02 1. 13E-07 5.287=-07 3.74%=09 TO 770. D 3.369-0% 5018E‘07 1. 512=018 1.12%=-08 %.43F-06 8, 88%¥-03 1.03r-03 8. 36¥~08 2.038-02 Te 267+ 06 T.QHE-OQ 1.20F=-02 3. 78E-08 6129?-69 L, 85E-06 3. 98E-06 7.128=-07 2, BUF-06 2.0%8R-02 1.68R=0¢€ 1 72F-13 2.86F-09 Z.11F-02 4, 8CR-08 1. 78r-07 6, UOE=-07 3&7&E"09 2,507=08 2. 19P=-02 3.62E-08 9, 647-10 1. 397-C8 2,279=-02 ‘|38E-07 T, 22807 2.55F=10 i, B7TE-08 £.49F-08 2.42%-02 5421E-09 2, 6L¥-02 1. 3%R~-09 1. 33E-05 1. 05E-03 2. 62E-08 8, 83F=-10 2. 128-07 7.25F=03 2.217=02 1. 82F=07 9. Q0R-07 3,9LF-09 RFACTO® 880, D 3.5tF=-C9 5.LEE-07 1.61?’6“ 1.19E‘Ofl 9,99F~0¢ S, U8F~03 1.238=-03 B.79E~08 2. U2F-02 1, 40F-0¢ 1.61E~00 1.558~02 3.97®-08 T.80F%-09 h.20E=06 L, 197=06 T LGF=-07 3.85E-0¢ 2. 48702 !977F'06 1. B9R=13 3.01FP=-0% 2.51E-02 £.08F=-08 1.87F-07 6. 72E=-07 3.928-09 2.73E-05 2, 59E-072 3v78E“08 1.01E-09 1, 45%-08 2.688-02 1. 84F-07 1. 2BE-07 2,65P=- 10 6, 731F-08 6.78E=0%5 2.8LE-02 5. 4tR-09 3. 11P-02 1. 70B-00 1. 63E=05 1. U5F=03 2. T4E-08 8,28E-190 2.,238-07 7.70?'03 2.68R=-02 2,73p-07 1. Bir=05 8,13F-00 990. D 3.71E-09 5.73E=07 1. 71E=-004 1.25E=-04 1. 06E=-05 9.98%-03 1.852-03 9, 20E-08 2,82%-02 1o BUR=0F 1. 769=09 1.8L6%=02 4. 15%=-08 9. 49F=09 8, 45R-0¢ Qa3BE“O6 7&8&E‘07 5.03%=08 2, 90==02 1. 85E-06 2.06FE-13 3.158-09 2,938-C2 5. 26%-08 1.558=-07 70028‘07 UqOQE-GQ 2, 94%=05 3.92%-02 3.958-08 1e 0SE~09 1.512‘08 3,13r=02 1. 50%=07 1, 33%=37 2.75%=10 9. 0tE-Q8 T, 06E=05 3, 27202 5065E“09 3.618=02 2,087=09 1.96%-05 1,932-03 2. BE®=08 9,71%=-10 2.34%-07 B, 11E=-03 3.17E-02 3.938-07 2.18E‘06 b.31R=-09 1100, © 3.887-09 5.98E-07 1.81?‘0“ 1.32F“0u 1111?“05 1. QUE=-02 1.68%=03 2.59%-08 3-2uE-02 1.66E-0¢ 1. 917 =GO 2.367-02 h,337-08 1.138-08 5.68%~-06 b,57E~04 g.,17e-07 £.3%E-06 3,338-02 1. 93E-96 2e237=13 3.287~-09 3.377=02 5, igF=08 2.03F=-07 7,308-07 4, 26E-09 3.147-058 3.48F=-02 L, 3107-08 1.09%=-09 1.57E-08 3.538E-02 1. 56F-07 1&38E*07 2.86%=-10 1. 17F=0" 7.33E-05 3.712-02 5.8€67-09 na‘BE“Oz 2.817=-09 2.31E=05 2.50E-03 2,%7E-08 1. 01E-09 2. uLp-07 8.50r-03 3.88E-02 E.UEF=-07 3.197-06 B,48F-09 111 PONREFR= SN1z24 Sut2aM SB12b TEi2L c¥125m SW125 SB125 TE{25M Te425 SHi126 SB126M SB126 TP126 SNi27R =N127 SB127 TE12TH TF127 7127 $¥i128 S828M SH128 TFi28 TY28 Xr128 SH129K §N129 531209 mE129Y TE12%9 T129 KF129M4 Xr129 SN130 SBRY304 s8130 TE130 TI30M 1130 XF130 S¥131% SB131 TE13 18 131 T131 XE1311H X233 % sSwil2 SBi32M SR132 TE132 T332 30.008%, 4 & & 4 ® % & & 3 4 4 & & & B T & ® 3 4 w & @ GrT3 O DO O DD OO OD D DD DO O DD D) DD 2D DDA DODDODPDAOOOTIGTIOOOOODDIODTOOD OISO OD ® A B & & 4 A& 8 & & a2 8 & a4 @ s a4 ® a4 W B g & & wx ® g = » OO OO0 O DDA I D DT 110. D 3.817~03 2.77E=12 2,86F-0% 1.208~086 1.56%7=07 4,10F-00 3.83F-03 3.72E-05 1- 023*"1& 8,018=-213 9,978-11 1. 132=-05% 5,08F=086 1, 028-08 2.68P-05 1.21r=-03 3, 30%-03 1.07E-00 1,71F=22 5.61E-05 6.52F-06 L,L4TE-05 £.74E-02 £.128-08 1.21E-04 £.537-05 te TER-D7 9,897=-03 9, 30%-0% T.u27=-01 2.96E-09 5.B4E-05 7.14E-08 ‘i.c '73}3-05 9.97F-06 2.998-01 €.BEF-03 3,668~06 £.U8F=-04 1.377-05 9,387-05 1.10%=-03 8,97E=-05 L.7u4p-02 L, 97e-04 3.80E-03 1.28E=-05 t.C 1.227-05% 2.74P-02 8.35%-00 BUFNOP= TrsE A5 {CONTINULED) REFERENCE PHP PQUILIBRIOM PUFL CYCLE -« 3.3 0/0 ENPICEED U 33000. HED, FTIO0X= 2.92F 13W/CH**2-SEC 220, D 8,36%-03 B.8TT=12 1, 13F=-05 9,74F7-06 1.96F=-07 5- OSE-OB 9.069-03 1429F=-00L 5.208-0u 1.84E=-02 2.38E-10 1.35E=-CE 1.38%-C5 t.42E=08 3.0uR~05 1,377-03 5.67E~03 1.28F-04 L. O0F=-02 L.0R7-05 7.38F%~-0¢ 5.%2F~05 1.87E-07 1.427=-07 5.037=0L 8,94r=-05 1. 74207 3.92F~-04 1.156E-02 4.858=05 3.038=-01 3.338-08 Te20E-08 7.25F-06 1. 76E-05 1.017-05 6.,08%=-01 1. Ua7=-Q7 1.797=05% 2.60E=03 14 397-05 9,52F~-05 1, 12F-C3 9.10¥=05 4,B1¥F-02 5. OQE-OH 7.B8E~0Y 1.27F~05 0.0 1.23F-05 2.76E=-02 3,30F-0uU FUCLTDE CONCEWTPATTIONS, GPAM ATOMS BASTS = KT OF HEAVY METAT CHARGED 330. D uié. o 550. D 650. D 1,35%-02 1.99pP-02 2,%1%-02 3, 15E-02 1.72F-11 2,80®=11 ¥,10%R-11 5,62F-11 2.L1E-08 4,0UF=05 5,96F-05 A,12F-05 3.209-08 7.31F-05 1.378-04 2,27F-04 2,2BE-07 2.56%-07 2,BE17-07 3,058-07 5.82F-04 6.507-04 7T,1%F-00 T.68E-QU 1,508-02 2.15F8=-02 2.83%-02 3.5L4F-02 2.50P-04 3.89%-0L 5,39%-NL §,97E~00 1.35F-03 2.6U%-02 L,U03%=03 §,758~-03 3.07F-02 4.45%-02 5.97E-02 T.61E-02 3.9GF-1%0 5,88E-10 8.03¥-90 1,04F7-09 1.7CR-086 2,07F-06 2.50F-05 2,99F-N4 2.538-05 U.15E-05 6.40E-0F G U0E-0S5 1.885P-08 1.09%-08 1.582-08 1.60E-08 X.384E-0% 3,60%-0F 3,83%-05 L,052-05 1.509-03 1.62%-02 1.72%-03 1,82E-03 7.33F-03 8,%6E~02 9,52F7-03 1,03E8-02 TL,48F-04 1.58%T-08 1,69FE-08 1.80P-00 6,5638-02 9.52E-02 1.26%-07 1.59E~0Y 4, 478-05 4.BYF=-05 5.12E-05 5,417-(8 8.09F-06 B,70®~-06 9.28%-0U5 9,.78R-0% 5,LBE-D8 5,87E-05 $£.238-03% 5,578-05 2.,36F-01 3.34%~-07 &,38E-01 D.UBE-CF 2.3%E-07 3,838-07 UL.85E-07 6.34F-07 1.3488-03 2.58%-03 4,.34F-03 4.69%-03 9.298-0%5 9,60F-05 9.83F7-05 1i,01E-04 1,77F~07 1.82E-Q7 1,89F-07 1,98E-07 4,07E=-00 4,20®-04 B,337-04 4,L5E-D4 3,229=-02 1.277-02 3.3%1E-02 1.35%-02 1.03%-04 1. 06E-00 31.09F-04 1.712E-04 0,728-0% 6.46%m=-01 5.25%-0% 1.01F 00 3,33%-08 G.H52E=-0B 1. 18¥-07 1,BSE-07 te382-06 2,50F-0L 3,189-pL6 3,88R-01 7.,36F~06 T.46F-086 7,.56%-06 7,65T-06 $.78F=-05 4.81P-03 1,83%-05 1.8%F-05 1, 03F-08 1.04F=-05 $.06F-05 1.077-05 9,2LE~-0% 1,25F CO 1.57% 00 1,80% 0O 2.328-0%7 3,27F-07 4,33F~-07 5,50F-07 2,61¥=05 3,947«05 5.207-05 §,60%~0% 5,0%F-03 1.108-02 1.797-02 2.57E-02 PLL9F-08 1, 43R=-0% 3. BU4F-05 1, EEE-OR 9,66R-05 9,78%-05 9,91%-05 1,00%=-0& 1.13F=-03 1.157-03 1.157=903 1,18F-03 9,238-05 9.387-05 OC.48E-05 O.R0E-DF 4,88E-02 L,957-02 5,.01¥-02 5,077-02 5.,18F-NU R,27F-04 5.35%-04 5,48uf-04 1.17F 00 1,832 00 %,B&R 00 2,167 (D 1.28E-05 1.29®-0% 1.307=05 1.318-0%5 0.0 0.0 0.0 0.0 1.24%-0% 1,258-0% 1.26F-0D5 1,27F-D05 2.788-02 2,80®-02 2,837+02 2,B5F7-~0Q2 B,uB®-04 B,5%F-04 8B,62F-00 B,70F-D14 TO BRFERCTOR 778, D 3.B3E-02 T 3EF=- 11 t.05E-00 3. U6E-0U 30 27F‘0‘7 8, 23F-018 b, 28F~-02 8.02F-00 9,628-013 9,37E~-02 1.3%E-09 3.%53F-06 1.38F-04 1., 66F-08 L.25r-05 1.91%-03 1. 10F=-02Z 1.90%=-004 1.93F7-21 5. 6BE-05 1. 03E-05 6.B897-D5 6, 657~ 01 8.01F-07 Q. 7%P-03 1.04F-04 2.03%-07 U, 5€F-04 1.39r-02 1. 15E=-00 1. 18F 00 2.8CF-07 L, 52F- 01 7.7UF-06 1.68F-05 1. 09F-05 2,247 Q0 £.79F- 07 8, 13F-05 3.76F7-02 Y. 488-05 1.02g-04 1, 19703 9, TMF-05 5.13r-02 5. 52E-04 2.43F 00 1.329-05 .0 Y.298-0F 2.88r-02 €. 77E-0U 380. D L,our-02 9.3%F-11% 11 31“‘,“0“ L,97r=-0U 3.48¥%=-07 « 76E-QU 5. 037-02 1.03F-~03 1. 31%-02 1.328-01 1.61E-09 b 12E-0¢ 1.918-D1 1,73%-08 b,45E-90%8 2.00==-02 1, 17E-02 1.99E~-0L 2.28E-01 5.9L47-05 1. 077-08 7. 19E-0°F T.867-01 9.87%-07 9. 3%E-C2 "IOOSF-CIH 2.11E-C7 4. 87E-0OL 1LL37-02 1.98P-00 1.38F 00 L.CSF-07 5,38F~{¢L 7.83F~-06 1.30%=-05 2,587 00 8.23E-07 9.6NE-05 5. 13P-02 .:. th"GS t.03=-0UL 1.217-03 9.82F-0% 5.,39F-02 5. 60E-0L 2,67 N0 1.33F-05 0.0 1.307~05 2.90%-02 8, 8LE-0L 990, D 5.298-02 1. 157-10 1. 58¢-CL 6, B2%-04 1. ETE-O7 9, 26E~-04 5.79%-02 1.238-012 1, 71E=02 1. 32%-01 1.93%8-09 T76P-05 2, 60%=-00 1. B0F~-08 L, g47-08 2.087-03 1. 238~02 2., 08E=-08 2, BUE-07 . 1BE~05 1. 12E-0% T, LB8E-QS 9, 137-01 1.19%-06 1, 807-02 1.0928-04 2.20%-07 L, 77r-Qu 1, 46%=-02 1.21==-04 3. 57F 00 5.4%58-07 6. 18F-05 ‘T' 92?‘06 1. 82E-05 1. 128-05 2.93% 00 9,72%-07 1, 167=-04 f,TIE-T2 1.5%F7-0% 1., 0UR-0u 1,227-03 9, 9uF-05 £,257-02 5- G.QF"OU- 2.89% 00 1. 3LE-05 0.0 1.317-05 2.92F7-02 £.9ZE-04d 1100, T £, 06F=-02 1.38%-1C 1.BEF-3L 9,02F=-00 3.8E8-07 9.73%-08 5.57F-02 1.,38%-23 2.16r-02 1.53F- 0% 2.257-0¢% 5,457=-0F 3.4%9%-04 1.872-08 4,817-09 L IER=03 1,28F-02 2, 16r-0L 3.01%-01 5.422-C7F t. 16F-05 “’O.TSE-US 1. 04F 0D 1., 83F%-06 2.357-02 1, 1197-008 2.28=-07 4.878-Ju 1.49F-02 1.239-04 1.76F% 00 7,.66F-07 7.02¥-04 8,00%-05 1.94F=-05 1.13FP-05 3.27% 0O 7. 137=06 Je IRF-O0 8.62F-02 ic "'32“"{]5 h{l OSF"OU 1.237~03 1.008-02 5,3%r-02 8,778-00 3,078 Q0 1.35p-0% 0.0 1.327-05 2.958-02 8,99F-0L Zll POWETR= ¥r132 5B133 TE133% TE133 T133 Xr133¥ ¥E133 €8133 SB134 TF13L T134 Yri3n CS1308 €3130 BR13L TE135 r13% EE1358 XE135 CS1354 C8135 BR1354 B2135 Y138 X¥136 CE136 BR136 Ti37 XF137 CS137 Br137n BA137 T138 XE138 Cs138 Er138 r139 XE139 ©5139 BA139 121339 XE14Q cs140 BATLO Lr149 CE140 IE14 cs141 BE1L41 TR141 CE141 BETL « ® 4 & O o & & 3 & 8 e & s 3 3 & 4 s e & 4 & B g e @ « & 3 ®» & g > E 5 B & 3 & 3 & DTV CAO OO A0 OD DO IO N OO ITIITIIDS QDO O0OCADDOTTOOPROODOODODDPOODDDIOALL2OROTITIOAD DO I RODASON 30.00#¥, EBORY¥UD= 110. b 6. UBE~01 2.21B-05 3.35?‘@“ 3.00m-05 1 VIE=-02 6089?”04 €.678=02 8.72E=-01 2.26E=-07 3.84%-00L t. 188 00 3.99E—05 1.‘18?':‘02 S.BUE*OQ 3.852-06 3.238=-03 3&762“65 1.25E=013 1. 13207 2- 115.7‘3-'0? 2.458=-10 3.32E=08 5.312-06 1,647 00 7;3:5‘:‘0& 2.35E=03 3,008-06 3!18?'05 9,08E=01 3.165=03 7.378-07 1, 338-04 2.528-04 8»53E”01 2.298-07 5. 128=06 8. 13E-05 7.‘9E”0u 9.55E“01 1,348-06 1733’06 1.558=01 2-033-02 7- 86?'01 6-082-08 2,818-06 1.488-0U 1.95E-03 3,56%=-01% 5,69E=01 Tapte &5 (conTINUED) FIFERERCE PWR EQUILIBRIOM FUYL CYCLE -~ 3.3 O/0 ENRICHED U 33000. X¥D, FLUX= 2.92F 13X /CW*%2-SEC 220, D 1.378 00 2,20E-05 3.33E-08 2.,98E-05 1. 10R=02 6-81E°0u 5 60 B-02 1.78F 00 2,22¥%-07 3.78E“04 5,36E=04 2,348 00 1. 02F=05 T7.07E-02 3.787-06 3u ?QE‘OS 1.253P=03 L.47E=-07 4.94E-01 1.,938-09 %,218-07 3.30%F ¢O0 19 315"03 8, U2E=03 2,.98%=-08 3-17?’05 1.828 00 Z.TSE*G7 1. 27E"02 7.36E=07 1.32E-0u 2.518“0& 1.72% 00 2.24E=07 5.01E-06 7.97E~05 T.04¥E-04 1.90F 09 1. 31E=06 B.53E=05 1.52E=01 2. 00E~02 1.74F 00 5.935E~-(8 2,33r=-06 1. 60E-OH 1:90E'03 3.79E-01 1.65E 00 KOCLTDE CONCPNTPATTONS, GPIM ATOMS BASIS = MT OY HEMY ¥RTAL CHALPGED 330. b 2.14F 00 2.19E—05 3.32%-C4 2,978-0% 1.0%2-02 6.77T-0U 6. 56F~02 2.65T 00 2,198=07 3, 7TLE=0b 5.308~-08 3.50% ©C 1. 55E-05 1.558~01 1.63F=02 3,74e-06 3, 18%=03 3,678-05 1aguE-03 5.96F=07 T2 1R-01 6. u7F"09 2,03E~06 4,928~06 ,97F QO 1. 86803 1,78E~-02 2.98%-08 3.178-05 2,738 00 4,138-97 2,85%=02 T.I6E-07 1. 33E-01 21 52E"’Ou 2.38E 00 2.218-07 4,95%-06 7.B7E-05 6,395E~-08 2,83% 00 1,2%E=06 8.81e~-06 1.50R=-01 1. 98%-02 2.68% 00 5.B8E~08 2.278-06 1. 6Y8=-04 1.86E~-03 3.75?4‘01 2.33r 00 2449, 1 2.95% 00 2.19R=05 3.318-0t 2097E'05 1¢09?’02 €. 758=-0k E.B3R-02 3.48% 09 3.71E-04 5.268~04 t.66% 00 2.10%-05 2.67F-01 3.TIR=C2 3.718=06 3.12&'03 3. 658=05 1, 22E=03 t.77E=06 9.85%-01 {.54%~08 6.33E~06 4,78E-06 £.65% 00 2, 40%=-03 2.888=-0¢ 3,18B-05 3.6tF 00 5- 50?"‘ v 5.07E=02 7.38E=07 1;33?*03 2.53E-04 3.86F7 00 2, 19E~-07 4. 502-05 7. 79E=05 6.83%-0u 3.76EF 00 1.288=08 8.318-06 10“9E”01 1. 96E=-02 3.62F 00 5,82E-08 2,238-06 1. 38E~-04 1. 83E~03 3.69E=0% .21E 00 550. D 3.80% 00 2. 19705 3.31R-04 2.98%=05 1. 0BE-02 6. T4E-0U 6.,51E=-02 4,27% 00 3, 68704 5.227=014 5.81% 40 2.867R=0% B.C04E=-01 7.198-02 3.695-056 30 10E"03 3.5638-05 1,19%-03 2,.79”=-06 1.23% 489 3.058-0R 1,55%-05 H.GGE-OS 8.35E 40 2.958=-03 o -621‘:"32 2,99%-06 3. 18F=45 b1.55% 00 5.87E=-07 7.928-02 7,397-07 1, 33708 2,54®-08 L,3nw 00 2. 16E~07 L,BE6%-08 7- 72?"'05 6.83F=01 4,672 G0 112#E-06 1.878=-01 1.95%-02 4,558 €0 5.78®-08 2.198-06 1,36R-04 1.80E-03 3.648E=01 4,078 00 660. D 4.70F €O 2,20E-05 3,32E~-08 2, 988-05 1.08BE-02 61 73?"0& E.50F~02 5.028 €0 2. 147=-07 3, 66804 5. 19%8=014 6,957 00 3.268~-05 5. 668-01 1. 2%E~01 J.6TE-T6 2. 098-03 3.612-035 1. 16F=-03 L4.06%-06 1. 4867 00 5.36E~CE 3.,238~08 4, 55E~06 1.0t 01 3,518-03 6. 58¥-02 2.99¥-0¢8 3. 195=-05 5. U458 GO 8, 28E-07 1. 1WE-T1 T, 01E-07 1.388=-04 2. 55%-04 5.23%2 00 2., 18E=-07 4,828=-06 7.67F~05 €. 78E~-0U 5.%8% §0 1. 26 E-06 8. 17E~-06 1. {;GE‘D“ 1.9“3“02 S. 48" 00 5.758-08 2. 16E-0¢€ 1.3u9-04 1.778=03 3. 60E-01 4,91® 00 TO BEACTOR 770. D f.64% 00 2.208-05 3. 32F-04 2.998-05 1, 08E-02 6. 73R-04 6.L9F~D2 5.71% 00 2. 13E-07 3. 65E-04 S'tvE-Ou 8.09r 08 3, 86F=-08 7050?'01 1. 89%~-01 3.65E=-08 3.07E~G3 3. 60F-05 1., 13%-03 3,60F-06 1,70 20 B.E7E=-08 £.0ur=-05§ 4.058-086 1,182 01 4. 11¥-03 B, BOE-02 2,.998-06 3, 20E-05 €.35% DO 9,608-07 1. 55E~-01 7. 483807 1. 308~-04 2.56E-Ofl 6. 128 00 24 13E-07 3.79?‘05 7.622-05 6. 74F-04 6. U8F 00 t. 2EE~06 B. 11¥~06 1,8598~01 1. 93F=-02 6.41F 00 5.72E~-08 2. 13¥-06 1.33e~-04 1. 758-03 3.56?‘01 5.7T4E 00 880, D 6.63F DO 2. 20F=-05 3.,32F-04 3.0CF-0G5 1: 08?-02 6.73E-04 5. 49F-02 6,35F DO 2.12E-07 3.63E-0L 5. 15R=-0U 9,238 00 b, 838=-05 9. 54F-01 2. 76E=01 3s SQE-OG 3,06E-03 3, 59E-05 111@E'03 7cu2P"06 1, 93R DO 1.328=-07 1. 04R-01 4. 368=-08 1.358 ©1 uaTBE‘OB 1, 14E=-D1 3.00F-06 3| 21E"OS T.25% 00 1. 10706 2. 028-01 T.ULE-07 ‘a35E'Gu 2057E‘0u 7.018 0C 2.11?‘07 4,777-08 7.58E-0% 6, 7T1E=0U 7.38% 00 1. 24%=-06 B. 068=06 1, 88F-01% 1. 33E=-02 7.33F 00 5.76F-08 2, 10B-06 1.31E-0% 1.73F-03 3-523-01 6.56F 00 ©a9, D 7.65% G0 2.217-08 3. 338-04 3.01E-03 1. 08R-02 6. 73804 6.U8R=02 6.97% 00 2-133'0” 3.62E”On 5.13®-C4 1.0u4% 01 5. 12B-05 1. 18% €O 3.8um=01 3. 62E=-0% 3.057=03 3.58%=-05 1. 07r=03 9.538-06 Z+ 167 GO 1.922-07 1. 707~ 004 fi-2’§“06 t. 53% 01 5. 3I8F-03 1, diw=101 3. 00E-05 8,152 o0 1- 23E‘06 2. 567=0% 7.LEE-07 1. 35E=-00 2. 58®=04 7.91% 00 2. 10E-07 3, 748-06 7.55%-05 6. 68E-0L 8,268 (00 1. 23%=06 3, 01r=06 1, 83r-01 1. 93802 8.258 00 5. 687=08 2.08E=-06 1.30E=-00 1.728-03 3, 48F-01 7.378 00 1100, D 8,727 00 2,218=05 3,33r-00 3.02E-05 1.08?‘02 6,7ur=0U 6., 487m=02 7.52F% 00 2.10F-07 3.6 1E=0H 5.12F-08 1.15F7 01 5.75F‘05 1.41F 00 S.16F-01 3.51F=06 3.048-03 3,58F-05 1. 047-03 1. 19E-05 2.80F 20 2. 68T=0"7 2. 627=040 i, 18F=06 1,708 01 6,057=03 1.787=-01 3.81E-C6 3, 2UE-035 9,007 GO 1.378=-06 3. 16F=-01 T.48E-07 1.36%=-08 2.58r=-00 8.81% 00 2.98%-07 b, 727-06 —’?o 5 1?-—05 £,65F=-048 9, 14F 9o 1.23F-08 T.97E-08 1. 82E-01 9.17F 00 5.67F=08 2.05F-08 1.29E-08 1.70F=03 3. 45F=-01 8.16E 00 gLl POWEER= XFPiu2 Ce1u2 BRIL2 TAIL2 Criu2 PPIU2 ¥D142 X1l cs5tL3 BRYL3 12143 CF143 PEiL3 ¥DIL3 La1ud CF140 P4l ¥DiLy orYL5 PRIUS ap145 CPils FRILD NDUE CEIL7 PRIUT ¥D147 pMia? SKAL7 CFiL48 PPILE D148 P¥IUEM PMILEB $¥148 PRILY ¥p1us BPH14G SLAK S HD1590 P¥I150 SH150 D51 P¥151 8%151 70151 PM152 3N152 EU152K rUYE2 GD152 PHIS3 30, 00%H, 110. D 1.308-08 1.76E=-0"7 8.23F-05 T 25®=210 B.73%~07% 1. 838-05 6.H92-04 1.60%-09 8. 16E=-08 1, 20E-CE 1., 0um=-00 1,472-02 1-”&?‘01 5, U9E=01 4,81=-07 7.06E-01 2,058-05 1.192-01 1.56E=00 1.86R~03 5.698-01 5.F88=-05 a,75%7=-0% Z:OE'HE-E}“! 3,487m-086 3.79E-0% S.07E-02 2.547-01 G, 18E-03 1.66E=0¢6 b,63%=-06 2,50E-01 3.928-03 2.22B-03 1.68F-02 3.42E-06 T,7LF-04 6.207=-03 2.,93r=C2 1.03E-01 2,41E-06 §.508-01 8., ILE-CE 1.34R=-03 5.75R-02 4,778-05 2.718-06 5.&7E‘02 1, 18E=-C7 1.30F-0C5 6.628~06 1.26E-06 BUPNOP= RPTTIRENCE PR EQUILIBRTUX FUFL CYCLE 33000. ¥¥D, FLUX= 220. D 1.26%-08 1.71E-07 8.01E-05 T.05F-0L .73E 00 4,65%=05 3.73%-03 1.56E-09 -?n HQE'—OQ 1,207=06 1.01E'OU 1.43E-02 1.40E-01 1. 450F 00 HCEZ.F’O—, 1.22% 00 5.238-0% 4.438-01 1.51F~03 1.818=-03 1.12% 80 5.5u4=-05 9.502-05 9.4%E-01 L,E3E-01 3.67E-02 1. BUE~DE 4,.58%-06 5.078-01 7.257-03 4,07®E-03 7.29E-02 3.6009-08 1,75F-04 7.16E-03 3.40EF-02 2.11E-01 2.79¥=-05 3,86€-01 B.50E-06 1.227-03 T, 257-00b 2.927-086 1,238-01 3.07E-07 £.19E=-05 3.,838-05 1.39%-06 TapiE A-5 (CONTINUED) -- 3.3 0/0 EWPTCHRED O 2,927 13W/CH#K2-SEC NUCIYDF CONCENTPATIONS, BASTS 330. D 1,25%-08 1.68R=07 7.87E-08 £.937-0C0 2.58E 00 7.66E-0% 9.617-03 1.54E-09 7.718-08 1. 17E=0E 9,90F-05 1.LCF-02 1.368%2-01% 2.10F 00 4.L9R=07 1.60F 06 6.832-05 9,298-01 1. LBE-05 1.77E=-02 1,6LE 00 5.,45%-05 9,38%-05 .37 €6 3.30E-08 3.65¥-0% 4,978=-02 6,017-0"7 7.55F-02 1.53E-06 4,57%-06 7.608-01 ©.528-03 £.39E-C3 %, 572-0% 3.467-0% 1,77F-01 71,912-03 3.95E-C2 3.238-01 3. 10E~06 6.,31F-01 8.,99E-06 1, 26%-03 1.408=-01 1.95E-08 2,10E-0%6 1.972-01 t.839E~-07 9-79E-05 1.,50F=-06 yug, » 1. 247-08 1.66E=07 7,78E-0B £.B3E~00 3.41%7 20 1. 397-048 1.85F=02 t,54"-09 7.56E-08 1.149=-05 9.73¥-C5 7. 35E~-01 2.7LE 00 L,3Re-07 1.87% 00 7.997=-0F 1.54F% 00 1. UE%-05 1, 767-03 2.15% 00 £, 38F-05 90 231:"05 1.84F7 00 3.25F-06 3.628-05 b,98E-02 €,90F=01 1, 20%=-01 1. & 3E~ 05 4,.55%~04 1. 0% 00 1.10F-02 5.33%-02 2, 54E-01 3.UuEP~ 08 1. 79F-02 3,507-03 8, 138-02 L, 3BR-01 3. 48E-05 £,97%=-01 4, 35%=06 Y. 31E-03 1.71P-01 2.%17=04 Z.27E=-06 2. 71E-0% 6.LUE=-07 2.00%=-0U 1.828-04 1, 597=-0E 550. D 1. 235‘0” 1.687-07 .86 E-N5 5.”57*0u 4,207 00 1, 838-01 3.05%8-02 1.5L18-09 <. uur-08 1.128-06 9,58%-05 1.36E8=-D2 T, 34R-01 3,333 00 i .257-07 2.07F 00 8.82R-05 2.28% €0 1. 43%=-05 1.717-03 2,647 00 5.32%=-05 G, 12%-05 2.31F 00 3.23%-05% 3,58%-03 t,93%-G2 FLURR-01 1. 667=-01 1.637=-06 b, 5% F=05 1.277 00 1. 19F-02 7.01%=-03 3,87R=01 3.60E8-06 1.8%7-04 8. SSE-OE 4,22%-02 5.57%-01 3.81E-06 17.17E 90 9.,59m-08 %.36E-03 1.98%-01 2.927-04 3.4%F=06 3, 42%=-01 7.79E-07 2.62%-04 2,867-04 1.67%-06 GPAM ATOKS = MT N7 SEAVY M®=TAL CHARGED 660, D 1. 22%-08 1.62E-07 7.588-05 6.587=01 . 067 00 1, 79E-04 4. 6CE-02 1. 54E~09 7.337=-08 1. 31E-08 9,u5E-05 1. 3LE-D2 1.328-01 3.836% 00 L’.‘ 202"07 2.23% 00 A, 45E-C5 3.06E €0 1, 4L1E-05 1, 69F~03 3.19% 00 5. 27E-05 9. 0up-08 2.80% 00 3, 21%-08 3.56F-05 4,931-02 7. 69F-0 1 2. 17701 1. 638-06 L, 557-086 1,52F 00 1.25E-02 7. U48F=-03 5. ZSE‘O? 3,52%=-06 1. 83R-04 G, 35%-02 4,247m=-02 6.772-01 4, Y4E-0F€ 1.458 00 1.007-05 1. HOE-OB 2,227-01 3.237-08 3.55%-35% L,09F~-01 8, 97%-07 3. 123‘0’-" 4,05E-04 1. 758-06 T0 FPFACTOR 770. D 1.22F-08 1,€07-07 T.518-05 6, 81F-04 5.R7% 00 2. 187-04 §5.50F-02 1.55F-09 7.237-08 1. OgF-QF) 9, 24F=-05 1. 32702 1. 307-01 L, 34f 0C 4, 137-07 2.30% 00 9. 818-05 3,9%F 00 1.39%-08% 1.677-03 3.56% 00 5.232-05 8,%67-0¢% 3.29E 09 3. 197-08 3.837-058 L, GLE~-G2 7. 78F-21 2.53F-01% 1.63F-06 L, BSE-06 1.77F 00 1,27E-02 7.80B-03 6.697-01 3.54F~06 1,685F-0b 9, 72E-013 L, 23F-02 £,007=-01 u, tTE-06 1.745F 00 1.03F-35 1. BEF-03 2tuaE—flfi 3, UTE-00 3.59°-05 L,o71E-01 1. 00F=-06 3,51%-0b £.38¥-0b 1.83F-06 880. D 1. 228~-08 1.59E~07 7. UL E=-05 6. 55F-0L 6.58F O 2.60°7-CL 8., 79F-02 1.55F-09 T, 162-08 1.08F-06 G, 23%-08% 1.3182-02 1.29%7-01 4.78% Q0 u,D6E=-07 2,367 GO 1. 0%7E-0L t.88F 00 1.38%-05 1, 65T=-03 3,997 NG 5. 19E-0°% 8, 897~-05 3.78% 00 3. 17E~N6 3.51E=-05 %,95F~-02 7,758-01% 2.918-0% 1. 638-06 4.55E-06 2.02F 00 1. 28E-02 8.018-03 8.227-01 3. 58F=0F 1,A88-01 1. 008B=-02 4.19%-02 0,257=-01 4, 79E-0¢ 2.02% 00 T.06F=-05 1, 5CE-023 2.657-01 5.23F-01 1. 507-06 3. 817-00 f.81E-00L 1. G0E-06 990. D 1. 21E-08 1.58%-0" ~,38E-05 6. %OE-OL% 7. 487 00 3.0482-04 1. 157=03 1.57%=-0%9 7. 06%-08 1. 0hp%-06 9. 138-05 1. 30F=-02 1.28%-01 5.16E 00 3.997-27 2.u0®" 00 T OZE-CU 5,872 00 1.36®-05 1. 53E-03 L.u17 00 5. 15%=-05 A, B3E-05 4,29F 30 3. 16B-06 3.50%-056 E,978=-02 7, E6R=-01 3, 28%=-01 1,63E-06 4,56%-06 2.27% 0D 1. 27F=02 B.187-03 9.80%8-01 3.58%-06 3. 90%=00 1, 037-02 b, 13%-02 1.05% 00 5.127-08 2.29% 00 1, 097-05 1. E3E-03 2.84F~01 3. 78E=0U 3. 9"4”‘06 5.B808-03% 1. 197~ 06 4,03E=-00 &,317=-04 1. 97%-06 1100. © 1.212-08 1.578-07 7,337-C% 6, LEF=-04 R.27F 0D 3.50F-0% 1.567=01 1,587=-00 £.,99F-08 1, 05E-08 9,04F-02 1.28¥~-02 1,267-01 5.06% 00 3.,93F-07 2,427 90 1.03%-00 £,938 00 1.388-0> 1.62FP=-03 5.80F 0C 5.92F=05 t, 81" 00 3, 14%-06 3,588F=0F% £,007-02 7.50F7=01 052?’01 1.63F-086 i,56r-05% 2.52% 08 1.25F=-02 8,.21F=13 1. tUE 2C 3.59F-06 1.92%-0L 1.,05%7-02 4, 07F-02 .,418E 00 B LUF=-0E 2,577 00 1. 127-05 1. 57P=-03 3.037=37 3-96?'&13 4,05%-06 £,28F-01 1.27R=-0C L, 21E~-0U 9,89%-00 2.03F-08 yLl POWEDR= SHIs3 FU153 GD153 PRISY SHiSY FU1SY Gh154 SK155 FUISE GD155 SE1SE BUIE6 GD1E6 SMIs7 FUSY GLIR"7 FU15E GD158 »UiG9 Gh159 TB159 RO160 GD16C TB160 BYTED GD16 1 TB161 DY161 GH162 TB162Y TB162 Y162 TB163H TB163 UY163 TBi64 DY164 DY16 3K DY1€5 HO16% DY1EE6 HO 166X BO165 ER166 FR1E7 TOTALS FLUX OO IO DD D DOAODO2DDIDDIODODIDIODND DDA OoOTIADDIIODDDOD s & s e & a » e P 5 5 B e &+ ® @ DTN D DD 30,00MW, BURNDP= 110, © 1.18E=-03 3326E'92 ue67?’08 3.66E=-07 1, 838-02 2.13E=-03 8,%5E=-06 1.90E-CE 3,018-03 4,03E~05 2.12E-05 2.00E-03 5,898-03 1,19F=-08 2, 18E=-05 6.70E=05 B.u4r-Q7 2.71E-03 9,12¥-0R 5.558=-06 3. 82"=-04 5.22F=0% 1-535‘03 7-10?'06 2.37E=-06 2:992‘&9 2,03FP-0¢ uvBOE‘QB 3.799-0% 2.73E=09 0.0 2.55E=05 6, LBE~ 1D 2,81rF-D8 1.27P-0%5 7.56E-038 3,.75F-C¢ 4,05%=11 5-5#3-10 1,79F-0¢6 5.32r-098 ,98E-10 1.97=-08 €,31E-07 1, 54¥-08 2,952 01 2,587 13 Temie A-5 {CoNTINUED) PE?EBENCE‘PWR PQUILIBRTUM FUTL CYCLE == 3.3 D070 ENRICHED T 33000. MWD, FLUX= 2,92F 13K /CH%*2-SEC 22¢, 1. 758=03 8.083'02 St36£‘07 L,268-07 3]‘8E“02 3.31¥-013 7,58%-0F 2. 43B-06 4.78%=03 §.618-0°% 2. 74E-05 317303 1: 96?‘02 1.61E=-08 2,94%-05 3. 1EF=-0C 6.48F=07 7.20E~03 1.338=-07 BQZOE'OS 1.05E=02 8.01F=-09 4, 498~0k 20995‘05 1.37E=D58 4,688-09 1. 23R~05 1. 82E-D 6, 187=03 E.U6P-0% 4.0 8, 597=05 1DOGE~09 L.BBE~{8 4,78E=058 Ta 24807 1.33E=05 9.66E-11 1. 937E~09 8, 28E~06 9. 31F=~08 £, 258-09 Q,OQE'OE 2,55%-06 1.237=-07 5.,92F 01 2,58F 13 NOCLIDE CONCENTRETIONS, GRAM ATONS BASTS = MT OF REAVY METAL CHAPGED 330. © 2.37E~-D3 1,888« 01 2,08E=-06 4.76F=-07 5. 18r=02 2.26E-032 2,68E~-04 2«873‘06 6.74%-03 9.258-0% 3,258-0% 4.35F-03 3,95E-02 1.95%8-08 I, 56F-0F 111fl?’0“ 8,138-07 1|3JE‘02 1, 67F=-07 1.0&E“05 1.93E-03 1. 027=-08 8&59?’0& 6'18E—05 6.E1E-05 €. 00®-09 1.E1E=05 2.608-04 8.11E=-G9 5.835E-09 0.0 1!73?‘0“ 1.29%=09 €.58F=-08 1.07E8=-04 1.62F-07 2.92E-G5 1.758-10 b, 517-09 EI 1&3—05 1. 25F=-07 2.388-08 £.£E6%-08 5,87%-0¢ 4,10%8-07 B.ggr 01 2,538 13 Lup, o 3,02¥-03 2.21&‘01 5.03F=06 . 1BE=07 7.39?'02 #, 2BE-02 6.60B-04 3025?‘06 Y. 24E-0UL 3.70E=05 50823’03 E.63B-02 Z.24E~-08 Bv 09?’@5 1. 25708 9.56%-07 2. 01:‘:"02 1. 96E=-07 1.247=0% 2&97E“03 1,22¥-08 t, 36F-03 1, 208-048 1. 83F-04 7. 15F=09 1.9%2¢=-08 3:91E'0u . T58~(9 7.038~09 0.0 1.53E-09 7. 96F=08 1. 93F=-00 1. 95"1‘"’07 2. 27805 2, 86%-10 8, 19E~0% L,398-Q5 1.52E=07 €, U3¥-08 1. 10F=0% 9.883-07 T.18% 02 2,718 13 550, 3, 71E=03 3.10E=01 9.82%=-06 SQSTE'07 9 ? -’BE—O?_ 7.05%m-02 1.33P-063 3.618-06 1,22%-02 1.63%-04 fl.OQE*OS 7. 698-03 1. 02801 2+51P-08 4,587-05 1. 38701 1, 087-06 2.825-52 2,23%-07 1.827-05 £,137-03 1, 39%-08 1!95E'03 1.85F%=04 2,8%7-04 B.20E~09 2.2018-05 5.33E°03 1. 12E~08 8! 10‘5’”09 0.0 4.019=04 1. 75 E=09 9. 2uE-08 3, 08E=04 2,24R-07 8, 48%-05 4, 39710 1.378=-08 TaB81E=08% 1.77E~-07 1, BUE-B37 1.598-037 1.E8%=-05 2.022=-086 1.88% @2 2,818 13 6€0, D 4.L17=03 L.088-01 T« REE-D5 chu?‘07 1. 237-01 1. 06P-01 2. 38E-03 3. BUE~-DE 1.60%-02 2. N9R-04 b,87v-05 1.01R=-02 1, 49F-01 20 75E-08 5.03F7-0¢ 1. 49E-00 $.207=08 3.74E-02 2, 472=07 1.608-05 5, 3%%-G3 1. 55R=(8 2.627=013 2. 6LE-G k.B2E-0U 9. 178=-09 2, 4e8-05 6. 632"0“ 1, 26208 2, 10E=-05 0.0 5. 35E-0L 1.858~-09 ‘uOQE'O? 4, 85p-00 2, 52807 !a 27 E"Ou ELLEE-10 2, 12E=-08 1. 31g=-010 20003’07 2.86%8-07 2. B0R-07 3.04F-05 3.732~06 1.78% 02 2,938 13 TO PEACTOR 770. b 5.13E-03 2.56?'05 t. 50F=01 1.49F-01 3.80r-03 H.ZSF-OG 2.08F=-02 2. 60704 L, 82P-05 1, 31902 2., 10E-01 2.99R-08 5. USR=05 11603‘0“ 1.328-0¢€ b, JEE-D2 2, 70E-07 1.788~05 6. TUE-0] 1. 718=-08 3.35E-013 3. 55R=-04 7. 3€F-04 1. 01F-08 2; 112‘05 B, B3F~0L 1. 397-08 1.00F=-08 0.0 6. 77E-04 20 1uF‘09 1. 15807 69 ’OE-Ou 2.78F~07 1&798‘0& 9. 158~ 19 3.13E~08 2, 08E-C8 2,228-07 5. 258=07 3. 578-07 4,752-05 6| HBE-OG 2,078 02 3,057 13 880, D 50 852"03 6.23E=01 3-67E‘05 6.62F=07 1. 79E=-01 1. 983"'61 5.,728=03 4, 56R-06 2,588=02 3. 248%8=-00 S5« 16F=05 1.678=02 2,89E=-01 J.218-G8 8. BER-05 1. T2R-08 1.22F~0¢€ 5,83%-02 2,92p=-07 1.96E=08 8-16?“03 1. 85E~-G8 L,Y6E=-03 b, 50®-0L 1i05fi'03 1. 10E-08 2, 958-05 1. 01003 1. 51E=08 1.09E=-0R §.¢ 8, 26E-04 20333_09 11265‘07 8, 00r-01 3.038=-007 2, 4z28=-04 1. 26F=00 4,41P-08 300fi3‘0u 2.438=-07 2. 038=-07 S 22E=07 7. 22F-05 1' 083-(‘5 2,378 02 3.18% 13 990. D 6. 578-03 T.35E=-01 5.028=05 6. GLF-07 2:09E-01 2.53%-01 8. tap-3 L, 8E%=-0F 3. 16%=02 3.9812-04 Z. 48705 2. 10E-C2 3.89?'&? 3. 42908 B, 25R-05 1.35E°Gfl « 53806 T, HR-02 3,138-07 2. 18705 9. 63E=-023 1.998=-08 5, 022-03 5. TBE-0L 1. HuE°O3 1, 187=08 3. 17%=05 t.20m=-023 1. 637-08 1. 18808 0.0 9-832‘0“ 2.50E=09 1e 36R=07 1. 01R=03 3.267=07 3. 16%=04 1.678-GS 5. 898-08 4, BOF--OU 2. EUT=07 t.4RE-06 Te 2TE~(7 1, 078=05u 1. 74B=45 2.67% 92 3.31% 13 1100, D qong-O3 B.UEE=-O1 6.58E-05 7-2“?'07 2.40%-01 3.13r-01 1.117-32 5-1“3-06 3.758-02 b, 62R=00 5.78P~06 2.609-02 5e12B=-01% 3. 6z2F-08 6.61E~05 1.897=-00 1- 62?‘06 §,51r-02 3.33r-07 2.327=-0% 1. 118-02 5,958~03 7. 08F-04 1.89E=(G3 1.26F=-08 3,3BE-0F% 1., 4802~-03 1.7&2—08 1, 26E~-08 0.0 1.15F=03 2.66%=-09 1. 467=07 1.25F~03 3, LBR-G7 3,995-03 2. ¥7P-09 T.B8T=08 6. 0%9F=0u4 2.83E-07 2.327-06 1.0“?-06 1.567=-00 2,718=0% 2,96% G2 3.85% 13 Gil TagLE A6, Stvmary TABLE oF isotopic ActiviTies (Ci/METRIC TON OF U) oF CLADDING AND STRUCTURAL MATERIALS AS A NLCLIDES WHOSE CONTRIBUTION TO THE SPECIFIC ACTIVITY OF THE FUEL S LESS THAN 0,001 Ci/meTrIC TON OF U AT A ELNCTION OF POSTIRRADIATION TiveE (DAYS) POSTIRRADIATION TIME OF 150 DAYS ARE EXCLUDED. PEFEPTNCY PW¥R EQUILTBRIUM FUEL CYCLE -- FUEL LRCAY TTRES POWER= 30,00MW, BURNOP= 33000.M¥D, FLUX= 2.92F 13 /CHA¥2-SEC NUCLIDE RADIOACTIVITY, CURIES BASTS = MT OF HEAYY MFTAL CHARGEL TO REACTOR CHAPGE DISCHARGE 30, D 9¢, D 160. D 365. D car 45 0.0 3.17F-02 2.79E-02 2.17F-02 1.62E-02 §,838-03 sc 86 0.0 5.26F 00 3,338 00 2.03E 00 1,14% 00 2,09%-01 CR 5% 2.0 2.95F 04 1.39E 04 3,127 03 S.45F 02 3,29% 00 My 5o 0,0 2,698 02 2,32F 02 2.02F 02 1.72F 02 1,087 02 PR 55 0.0 2.00F 03 1,95 03 1.87F 03 1.78% 03 1,53F 03 2 59 0.0 2,28E 02 1.U3E 02 5,69% 01 1.94% 0% 8,247-01 co 58 0.0 9,327 03 6.96F 03 3.89% 03 1,972 03 2,68E G2 co 60 0.0 6.04% 03 6.37F 03 6.23% 03 6.08% 03 5,64F 03 NT 59 0.0 3,852 00 3.8EF 00 3.B5F 0C 3.85F 00 3.8%% 00 ¥T 63 0.0¢ 5.652 02 S5.65F 02 5.6u4F 02 5,.63E 02 5.61E 02 SrR 89 0.0 1,812 01 2.56F 01 1,15F 01 4,52% 00 2.94%-01 ¥ 9% 0.0 1,01 02 7.108 ©1 3.50% 01 1.,53F 01 1.37F 00 zr 93 0,0 1.038=-01 1.03F=-01 1.03F-01 1.03®-071 1.03E-0% ZR 95 0.9 2,898 04 2,10E 04 1.1%%F 0d 5,25E 03 S5.90F 02 HB 93 0.0 8.32F-03 8.79%~03 9,72E-03 1,08E-02 1,39E-02 ¥8 95 0.0 2,80F 04 2.62F 04 1,79% 04 9,742 03 1,23F O3 20 23 0.0 2.008=02 2.00E-02 2.002-02 2,008-02 2,0CF-02 TC 99 0.0 1. 40E~02 1.40¥-02 1.407-02 1.407-02 1,40F-02 syit7m 0.0 1.21F 04 2.74% 03 1.40F 02 4,397 00 1.72F-0L SN119M 0.0 2,81F 01 2.21F 01 1.87F 01 1,5urF €1 8,7LF 00 sSN129M 0.0 3.37P-01%1 3,237%-01 3.37E-0% 3,36F-01 3.3U4F-01 S¥123 0.0 B,47F=01 3,78%-01 2. 71E-01 1,BLE-01 5,90E=-02 sp12it 0.0 L.73F 00 3.35% 00 1.87F 00 Y.LSE-01 6.98E~-02 Set25 0.0 4,47E 01 4,38F 0% 4.20% 01 4.00E 0% 3,L6F 01 TFr125K 0.0 1.62F 01 1.65F 01 1.66% 01 1.62% 03 1.43% 01 gupToT 0.0 1,96% 05 B, 03F 04 4,52F 0L 2,627 Qu 1,00F 0% TOTRELS 0.0 1.52F 05 8.03% Ou u4.52F 0L 2,62F 04 1.00% 04 3653. D 6.87%-09 3.35%=-13 0.0 5.87®%-02 1.3%F% 02 8.39%7-23 3.53F=-12 1.727% 03 3.85% 00 5. 24% 02 2.737-20 1. 03-5'—01 3.51F-13 5.318-02 T, u6T-13 2.00%=-02 1.40E=-02 t.0 9- 62E'0u 3.08%-01 -’l 1UE- 10 2,2u%=-18 3,437 00 1. 827 00 2,807 03 2.L0F 03 oLl TeeLe A7, Sumary TARLE oF IsoTopic AcTiviTies (Ci/MeTric Ton oF U) oF ACTINIDES AND THEIR DAUGHTERS AS A FUNCTION RUCLIDES WHOSE CONTRIBUTION TO TME SPECIFIC ACTIVITY OF THE FUEL IS LESS THAN 0,001 Ci/MeTRic Ton oF U AT A oF PoSTIRRADIATION TIME (DAYS) POSTIRRADIATION TIME OF 150 DAYS ARE EXCLUDED, REFERENCE PWR EQUILTIBRIUM FUEL CYCLE -- POWPR= PB212 Br212 PO212 PO2Y6 RY¥220 RAZ22Y4 TH228 TH231 TH23tk P1233 Pr234HM 5232 0234 0235 U236 8237 0238 NP237 NP239 PU23€ Py23R p1u239 PU240 PU241 PU242 AMZ241 AM2L2H AM242 AM243 cHM242 cHM2a13 cHzZiag cyzas CHr2ué BK249 SUBTOY TOTALS 30.00n%, CHERGE e & & 4 = a ® g = 4 & » 3% 00 ha NODOOAOOOODUCDOOTIIPOWOO I aTOTOIDIOOID 038 00 BURKRUDP= 33000. MWD, PLUX= 2,92F 13N/CH*%2+35EC FUEL CECRY TINES NOCLIDE RADIQACTIVITY, CUPIRS BASTS = DISCHARGE 1,50%=-013 1.50E-03 1.50%~03 1,508-03 1.508~-03 1. 498~-03 7.93E-01 3. 18E=01 3. 28F-01 3421E"01 £.07E~03 71 51F-01 1;713‘02 2.BBE-D1 8.65% 05 3.18E-01 3,338-01 1.85% 07 3.50E"01 2,72F 03 1,18E.02 4,778 02 t.05E 05 1. 388 0O 8,59F 01 9.16F 00 €.34F 08 1.81% 01 3.34F Ou 3.71E 00 2.,54F 03 30“1E"’01 6. 84F=-02 3:58E‘03 1. 96% 07 3.91% 07 MT OF BEAVY 3. D 1.618-03 1.61E~-03 1. 03E"'03 1,618-03 1.61E-03 1.638-03 1. 71&‘02 3.14%8-01% 3, 31801 3, 1P~ 01 6, 36%=-03 7. 52¥=01 1.718=-02 2.88BE~-01 3.978 0Ot 31 1BE"01 3. 80”=-01 2, 708 €3 3.448=01 2.77E 03 3,238 @2 4,778 2 1.08% 05 1. 388 QO 9.97F 01 9.16F 00 9. 16E 00 1. 82E 01 2.96F Ob 3,70 00 2,48 .03 3.01E-01 6., 84E=02 3,36E-03 1.B3E 05 1.B3F 05 S0. D 1, 908E~03 10 903’03 1. 21E-03 1- 90E"03 1. 90F~03 1: 9013’03 1. 928-03 1. 71E=-02 3.14F=01 3.38BF-01% 3| 1“3‘01 6. 8B8E~-03 1, 71F~02 2.88E-01 8,E63F 01 3,1U4F=-01 3. 40F-01 1.82% Q1 3.31E-01 2,80F 03 3.238 82 4.77E 02 1. 04E Q5 1,388 00 1.278 02 9. 138 00 9, ¥5E 00 1.82% 61 2,297 04 3.69E 00 2,427 03 3. 81E=-01 6. 8UF~-02 2! 9“E‘03 1.33F 0S5 1,33F 05 160. D 2. 29‘&“03 2,298=-03 1. 6E~-03 2,298=-03 2¢ 29E“"G3 2,298-03 2- 2"3-03 1. 7T1E=-Q2 3,1uB-0C1 JLU0F=-01 3. 14E-01 TLUBE-03 7‘ SSE'G“ 1. 71E-Q2 208 SE-G? 2. 54F €0 3, t4E=-01 3.40E~-0% 1.82%8 01 3. 16E=-01 2,82% 03 3,238 02 4.77E 02 1.03F 05 1. 388 (0 1. 598 02 9,148 00 9. 147 00 1,82E 01 1.78F 04 3.68E 00 2,40 03 3. 41E~01 £.84%-02 2,32E-03 1,268 05 1.26F 05 METAL CHIZGED TO RFICTOR 365, D 3. EOE-03 3.808-03 2, 17E-03 3,40¥~-03 3.80P-03 31 L‘QE-03 3.38¥=03 1. 71E~02 3. 1UE-01 3, 808~-01 3, 14E-01 S, 0TE-03 T S59F-01 1. 71E-02 2.8BF-01 2.41F 00 3. A‘uE'OT 3. 408-01 1.82F 01 2t 75E"01 2.86E 03 3,237 02 u, 77 02 1,008 @5 1. 3BE GO 2,507 Q2 9,12% 00 9.12F 00 1,828 01 7.12F 03 3.63F 00 2,357 03 3.41E-01 €. 88E=02 1. 60F-03 1. 18E 05 1. 14 05 3653. 1D 1. 60F-02 1.60E-02 1. 02%=02 1. 60%=-02 1.608-02 1. 60F-02 1, 71e=02 3. 1LE=-C% 3.4837=-01 3. 148=-01 1, T4E-02 8. 308~-01 1. T1E-02 2: 88}"‘0‘ 1.57% 00 3n 1uE—O1 3, 43F=01 1.82% Q1 3.68®9=02 2.70F 03 3.23% 02 2,79% {2 £.53% 04 1. 388 00 1.41%7 03 8, 7% {0 B.75% §0 1. 82 01 7. 182 00 2. 99F% 00 1.67% 03 3. 817-01 6.83%=-02 7.20% 0 7. 20" 0 L1 Tapie A-8, Stvmary Tasle oF Isovoric THERMAL Power (W/METRIC Tom OF U) OF ACTINIDES AND Tre1R DAUGHTERS AS A FUNCTION NUCLIDES WHOSE CONTRIBUTION 7O THE SPECIFIC POWER OF THE FLEL iS LESS THAN 0,001 WveTRIC Ton OF U AT A POSTIRRADIATION TivME OF 150 DAYS ARE EXCLUDED, REFERENCE PWR EOUILIBRIUM FUFL CYCLE -- FUTL TECAY TTEES POWER= 30.00%¥, BURNUP= 33000.MWD, FLUX= 2.92F 138 /CH**2~-SEC NUCLIDE THERMAL POWER, WRATTS B1SYS = HT OF HPLYY METRL CHARGED TO PEACTOR CEAPGE DISTHARGE 30. D 90. D 160. D 365, D Pa23Ly 0. C 1.65¥-0% 1,628-03 1, 62E-03 1.628-03 1,628-03 9238 4.71E-02 2.16¥~-02 2.16E=-02 2.177-02 2.17E-02 2.19E-902 0236 0.0 7.81F-03 7,81E-03 7,.81E-03 7.81E-03 7,812-03 0237 0.0 S.74F D2 2.64% 01 5,737~02 1.68E-03 1.609-03 U238 8.15F-03 7.95B-03 7.9%E-03 7,95E-C3 7.95E=03 7.958-03 ¥p237 0.0 9.178=-03 9,98¥F-03 9.998-03 9,99E-03 9,99%~-03 w2239 0.0 2,51 OU 3,65E 00 2,U46F-02 2,B6E-02 2,46E-02 PU236 0.C 1.22F-02 1.20E-02 1.15F=02 1.108-02 9,58%"-03 PU238 0.0 9.02F 01 9.17% 0% 9,27F 01 9.35% 03 9.472 O PU239 0.0 9.89F 00 1,00% 0% 1,00F D1 1.00% 0% 1.00E O PU2U0 0.0 1. 489F 01 1.49F §1 1.89F 0% 1,498 (1 1,497 01 pu2u7 0.0 4,36F 00 4. 34F 0D 4,31 00 4.27% 00 4, 186F 00 pU242 0.0 4.07E-02 4,07E-02 4,07F~-02 4,07E-02 4,07F-02 an2e1 0.0 2.878 00 3.33F 00 #,28EF 0C 5.30F 00 8.33F 00 Am242K 0,0 2,617=03 2. 618-03 2,60F-03 2.608-03 2.60E-03 am2u2 0.0 8,467 01 1,22E~02 1.22¥-02 1.22E-02 1.22F-02 A®2433 0.0 6.62F-01 6, 63E~01 6,.63%=01 6.63E~01 6,563F~01 cH242 0.0 1.23F 03 1.00F 03 B,45%F 02 6,278 02 2.62F 02 cH243 0.0 1.36F=01 1,36F-01 1,36F=01 1.35F-01 1.33E-01 c¥2u4 0.0 3.55F 01 8.52F 0% B.47F 01 B.H1E 01 8,23F 01 cw285 0.0 1.078~02 1,07E=-02 t.078-02 1.,07E-02 1,07E-02 cw286 0.0 2,20%=03 2,24F-03 2.287-03 2.24%-03 2,2UF-03 SUBTO™ 5.52F-02 2.72F 04 1,33% 03 1.08E 03 8,407 02 4, 78F ©2 POTALS 5,.728-02 T.46E O4% 1,33F 03 1,06F 03 B.40F 02 a.787% 02 oF PosTirRraADIATION TIvE (DAYS) 3652, D 1. 62E-013 2. 39E‘02 7.82%-03 1.04%7-03 T.95E-03 1.018-02 2 115"‘1-02 1.078-03 8.,9u® 03 1.00% 01 1. 49% 01 2. 71 00 4,07F-02 g, 71E 01 2. ugE-03 1, 17E-02 6.63F-01 2.65%-01 1. 10%-01 5.837% 01 1. 07E‘02 2.20%8-03 2,267 02 2,247 €2 8Ll TapLe A-S, Suwiary TapLe ofF Isotoric AcTiviTies (Ci/meTRIC ToN oF U) oF Fission PRODUCTS AS A FUNCTION OF NUCLIDES WHOSE CONTRIBUTION TO THE SPECIFIC ACTIVITY OF THE fuEL 1S LEsS THan 0,001 CismeTric Ton oF U AT PosTirraDIATION TiMe {Davs) A POSTIRRADIATION TIME OF 150 DAYS ARE EXCLUDED. PFFEPENCT® PWR FQUILTIBRTIUY FUEI CYCLE ==~ FUFL TECAY TIHES POWEF= 30,.00MW, BURNUP= 33000.MwD, FLUX= 2.92F 13N/CU**2-SEC KUCLIDE RADIOACTIVITY, CUPIES BASTS = NMT QF HEAVY METAL CHRERGED ™0 REACTOR CHARGE DISCHAFRGE . p %0, D 160. D 385. © B 3 0.0 T.09F 02 T.08E 02 6,99F 02 6,91F 02 6. 70®” 02 SE 79 0,0 3,98%-C1 3,98F-01 3,98F=-01 3,98E~-01 3,98%-01 kK2 85 0,0 1,13 {8 1,13 08 1, 11F 04 1,10 04 1, 06F 04 RB B 0.0 4.93F 02 1,628 02 1,767 01 1,318 00 6.57E-00 Sk 89 0.0 7.18E 05 60,81F 45 2,16F 05 B.S51% (4 5,538 03 SR 0 0.0 7.76E 04 7,75E O4 7,72E D4 7,68% O4 7,59R 04 Yy 90 0.0 B.07% O4 7,758 08 7,.72F O 7,68% Q4 7,58F 04 Y 9% 0.0 9.38BF 05 €,63E 05 3.27% 05 1.43F 05 1.28F {8 Z®» 93 0.0 1.89F 00 1,89F 00 t,89F 00 1,89% 00 1.89F 00 ¥B 934 0,0 1. 45F-01 1,528-01 1,66F=-01 1,83F=~C1 2.3tE=-D1 Zk 95 0.0 1.378 06 9,97F 05 5.26F D5 2,49% (5 2,80F 0Ok ¥B 954 0,0 2.B80® 08 2,112 O 1,.12F O4 5,29F (03 5.94F 02 ¥B-95 0.0 1387 06 1.28% 06 8.72¢° 05 B,73F 05 5,957 04 TC 99 0.0 T.U37 01 1.83% 01 1.U43F 01 1.83% 01 1.83F 01 RU103 0.0 t.22E 06 7,.21F 05 2,52% 0S5 7,417 04 2,0SE 03 PH103® 0,0 1.22% 06 7,228 05 2,52 0S5 T7,.41E 04 2,05E 03 RU106 0.0 5.457 05 5,1EE 05 4.59F 05 4,03E 05 2,73 0S5 RH10€ 0.0 7.80% 05 5.1FE 05 4,598 05 4,03® 05 2,73E 05 2n1¢7 0.0 1.10E~-01 1.10E-01 1, 10F=-01 1,108=-01 1, 10F=-01 AG110n 0.0 3,68% 03 3,3%F 03 2.88% 03 2.37%8 03 1.35% Q3 AG110 0.0 1.597 0% 4,41 02 3.74% 02 3,098 C2 {,76F% 02 AGt1Y 0,0 3.96E 04 2.48F 03 9.70F 00 1,50%~-02 B.B9®~11 CD113% 0,0 1. 058 01 1,058 0% 1,088 01 1.03F 01 9.99% 00 IR1144 0,0 1.55E €0 1.02F 00 4,85E-01 1,69E~-01 9.Bu®»-03 IR 0,0 2,217 00 9,87P~01 4, 30F-01 1.63R-01 9,U49E-03 cp115m 0,0 5.51 €2 3,40% 02 1,29F 02 4,18 0t 1,53F OO ERY17® 0.0 5.96E 01 1,358 01 6.92F-01 2,168~-02 8,US5E-~-07 sSEi19M 0.0 1.68% 01 1.518 01 1.28F 0%t 1.05E 01 5,.96F 00 S¥123 0.0 8.88F (03 7.528 03 5.398 03 3.66% 03 t.17F 03 TP123% 0,0 6.108-01 5, 118-01 3.58F~-01 2.36F~-01 7.02B-02 sg128 0,0 4,068 €2 2,878 02 t.487 02 6.39% 41 5,99% 00 sW12%5 0.0 1. 35E 06 1, H8BF 03 1,777 01 1.02E-01 2,77E-08 58125 0.0 8.70® 03 B8,6u4F 03 B, 29E 03 7.89E 03 6.83% 013 TE125M 0.9 3,118 03 3,20" 03 3.25E CG3 3,198 03 2.,83% 013 sS¥i126 0,90 5., 66F~01 S, 46E~01 5.06P~-01 5,06E-01 S5.46E-01 SB126% 0.0 2,25% 01 S.U6F-01 5. L46%-0% 5, 06FE-C1 5,406E-01 Te1278 0.0 1.54® C4 1,32E O4 9,.C0F 03 5,77F 03 t.57F 013 TE127 0.0 7.20F 04 1,338 O8 B,%0F 03 5,70® 03 1.55F 03 TEt29% 0.0 5.73F 04 3.13E ¢t 9,208 03 2,21 03 3,38% 01 TF129 0.0 3,378 05 2.00% 04 5,907 03 1,828 03 2,177 Ot 1129 ©.0 3,718~02 3,73B-02 3, T4F-02 3,74E-02 3, TUE-02 13t 0.0 B.61E 05 6,71 0L 3,83F 02 9,23E-01 1,99FE-08 X?1314 0.0 6.39E 03 2,56F 03 1.03% 02 1.78% 00 1.07E-05 X®133 0.0 t.61F 06 3,B3F OB 1,837 0% 1,44¥-023 2,80%-15 3653. D L. 03 02 3. 98R-01 5. 96F 03 0.0 5. 157~ 16 6. 07% Ot 6.,07% 04 1.897-13 1. 89F 00 B8, 40F-01 1.67E=11 3.54F-13 3.61E- 11 1. 43F 01 2,098=-22 2,08E=-22 5.50% 02 5.,50F 02 1, 10F=-01 1. 66F=-01 2. 16E-02 0.0 6. U0F 00 1.58%-22 1. 533"‘22 1. 4B¥E-213 0.0 6.56E-04 1. 42705 1' 92?' 16 0.0 6.78% 02 2.81% 02 5.86%8-01 5. 35?-01 5| H1E-01 1. 30E-06 1. 292-06 0-0 .0 3. 7&E-02 0,0 0.0 0.0 6l1 PEFEPENCE PHR EQUILIBRIUX FTUFL CYCLE -~ FUEL POATR= C5134 £8135 €S136 £sS137 B21374 BA1LD LA180 CE141 PRIL3 CE1UY PPita ¥b187 PEILT PM1L8H PHI14E sm151 Eg152 GD153 EU154 EU155 BEU156 TB160 SUBTOT ) O OO0 CVROCRLOO0O0O0OOIoSO E " % ¢ & 8 & & B & 8 8 8« e & = SO OO OO C DD ODD DO - - a - - - . . < SURNDP= TasLe A-9 (ConTINUED) 330060, MWD, PLUY= 2.92%F ¥UCIIDE PATDIORCTIVITY, CURIES BASTS = ! DISCHARGE 2,48F 95 2.86E~01 5.08E 04 1. 08F 08 1,01% €5 1, U5E 06 1.50F 06 1.39F 0% 1,208 06 1.112 06 1.12E 06 5. 887 05 1. 02E €5 3.88F 04 1.99F 05 1.25E 03 1.25% 01 3.55% 01 £.99F% 03 7.48% 03 2.26E 05 1.28% 03 2, 10% 07 1.38EF 08 30. D 2., 40" 05 2.86F-01 1.23E 0Ot 1. C8E 05 1. 01F 0% 2.E86% 05 3.30F G5 7. 38R 05 2.94F 05 1. 038 06 1. C3F 06 9. 04 Qu 1. C6E 05 2.37F 04 6. 06F 03 1.25F 03 1.25E 0% 3,28 O 6.97E {3 T.2%E 03 5.66E OO 9,618 02 1. (B8 07 1. 088 07 90. D 2.27E 05 5.0%E 02 1. 078 05 1.00E 05 1. 117 04 1.282 Ot 2, 04F 05 1. 412 Ot 8.92F 05 8.93% 05 2,137 03 1.02F €S 8.80F €3 7.09F 02 1.25F 03 14287 01 2,75% 01 6.92F% 03 6.81F 013 3.547 03 5. 407 02 5. 19F 06 §. 19F 06 160. D 2.12F G5 2,86%-01 1. 20" 0% 1.072 0% 9,98E Cu 2.5%F 02 2.89% 02 4,56F 0Ou 4,098 02 T.52% 05 7.52E 05 2,708 O 9.73E 04 2,77F 03 2.237 02 1.25% Q3 1.22F C1 2.25E M 6.86% 03 6.33F 03 1.39% 02 2.78E 02 L,19% 06 L.,19F 05 LFCRY TTMES T30 /CHR¥2-3EC MT OF HERVY METAL CHAPGED TO TRFACTAR 365. b 1, 76% 05 2,86E-01 2.168-04 1. 08% 05 9,857 J4 3. 797=03 L,36E-03 5.678 02 1.297=02 L.56F 05 4,56F 05 -"c 39!‘.‘-05 8.39E 04 9,407 01 7.55E GO 1. 207 03 1. 1E7 01 1.25% 01 6,698 023 5. 11F 03 1. 0‘72"02 3. 848 01 2,22% 06 2,22% 06 3653, 1 8.38% 03 2.86E-01% 0.0 &.56F 0OU 8.00E 04 2,57F-22 2.07E=-23 1. 168 03 7.08% 00 1,.02%~03 L, 53% 03 1. 63F 02 0.0 7.21E-13 3. 18E 05 3.8 05 0cl Tapte A-10, Therval Power (W/METRIC Ton oF ) oF Fission Probuct ELements As A Function oF Postirrapiation Tive (pavs) PEFTRRENC® PH® FQUILIBRT UM FUEL CYCLE -- FUERL TFPCAY TIMES POWEP= 30.00M¥, BURNUP= 33000.M¥D, PLUX= 2,92F 13N/CH**2-5EC ELEMENT THFFMAL FOWER, WATTS BASTS = MT OF EFAVY METAL CHRRGED TO REACTOR CH2RGE DISCHARGE 10. D 30. D 60. D 90. D 120, D 160. D 270. D 36%. D 1096. D 3653. D H 0.0 2,52F=02 2.52¥-02 2,517-02 2.50F=02 2,59F-02 2,47E-02 2,46P-02 2,628-02 2,38¥-02 2,13F-02 1.43%-02 ZN 0.0 2.70E-02 7.55P-04 5,89%-07 1.29F-11 2.Rt¥-15 §,12F-21 3,74E-27 3,03E-U48 5,27®-59 0.0 0.0 GA 0.0 1,91 01 1.75F-02 1.37F-05 2.997-10 6,.52%-15 1,82E-19 B8,67F-26 7T,04E-43 1,22¥-57 0.0 G.0 GE 0.0 3,81 01 3.57F-0F 5,837-19 3,B5E-38 2,54w-57 0.0 0.0 0,0 0.0 .0 0.0 AS 0.0 4,487 02 5.09F-02 9.35%-06 2.35%-11 £,88%-17 1, uBF-22 5,038-30 1.47P-50 0.0 0.0 €.0 SE 0.0 5.36F 03 2.53F-08 1.51E-0t 1,51E-04 1.51F-0% 1,51F=-084 1.5%18-0C4 1,518-02 1,517-04 1,51%-08 1,51E-00 BF 0.0 4,438 04 3.52F-01 2,84E-05 2,06¥-11 1,49F-17 1,08p-23 7.02F-32 0.0 0.0 9.0 0.0 KR 0.0 5.19F 04 1.86F 01 1,83E 01 1.82F 01 1.81F 01 1,80% 01 1.798 01 1.75% 01 1.72E 01 1.32F 01 9,68% 00 BB 0.0 1.16F 05 1.61F 00 7.67E-01 2,52E-01 8§,29¥-02 2.73¥-02 6,198-03 1, 058-04 3.12BE-06 1,282-08 1.2BE-08 sP 0.0 S.62F 0L 2.36F 03 1.83F 03 1,26% 03 8,79% 02 6.237 02 4,07F 02 1, 71E G2 1.19E 02 9,843 01 7.95% 01 ¥ G, 0 1.06F 05 3.65F 03 2.98%F 03 2,23% 63 1,70% 03 1,33® 03 9.97®m 02 5.98F 02 4,95% 02 4.24% 02 3.37% 02 ZR 0.0 2,577 08 E,86E 03 5,228 03 3,79F €3 2.75% 03 2,00F 03 1,307 €3 4, 0uE 02 1, U7E 02 €.05BE-02 2.24F-08 B 0.0 1.08% 05 €.62% 03 £,20F 03 5,24F 03 8,21% 03 3,28%F 03 2,2%F 03 7,70% 02 2.87E 02 1.21E-01 1, 498-04 ¥C C.0 5,857 04 S.18F 02 3.61E 00 2.10B-03 1,22R=06 7,13E~10 3,.456F-10 #,77E=-26 2,72E-36 0.0 0.0 TC G.0 7.63% 084 1,03EF 62 7.288-01 1,01®-02 9,69%-03 9,698-03 9,697-03 O9,69F-03 9,€69¥-03 9,.69E~03 9.698-03 PU 0.0 1.66% 05 3,807 03 2.81® ¢3 1.23F 63 8,587 02 5,17F% 02 2,68F 02 5.50F 0%t 2,29% 01 4,077 00 3.268-02 PH 0,0 5,817 04 6,1%1F 03 5,75® 93 5,31F 03 &8,95F 03 4.53® 03 u,27F 03 3, 4uF 03 2,87% 03 7,22F 02 5.78E 00 ED 0.0 1,30% 03 8.00F-03 S$.16%-06 €, 16E-06 §.,16E-06 9.162=06 9,16E-06 9.16E~-CE 9, 16%=06 9,16¥~-06 9,168-046 AG 0.0 2,347 03 1.08F D2 6£.68% D1 5,6%FE 01 5,137 01 4,.73F 01 8,248 01 3.13¢F 01 2,82% 01 3.26F 00 2.9€%=03 €D 0.0 2,088 02 2.85F7 00 1.28F 00 T.80F-01 L.B86F-01 3,05%-01 1,66F-01 3.93®-02 1,86E-02 1.202-02 B,U862-03 H 6.0 1.20F 03 7.54E-0% 7.26F-03 3.80F~-03 2,50F-03 1,85E-03 Q. t9F-04 2,07¥-C¢ 5,53%-05 2,20F-09 B,92E-25 5K 0.0 4,17E Ok 7.10E 01 3.61F 0% 2.36FE €1 1.92% 01 1,627 0t 1,30F 0% 7,04% D0 4,168 00 7,35P-02 5,91E-04 SE 0.0 1,04 05 1.20F 02 8,13% Ot 3,728 01 3.,%56% 01 3,83F 0t 3,298 01 2,99% 01 L78% D1 1,667 01 2,76F 0D TE 0.0 9.08F G4 5.85F 02 1,78E® 02 1,028 02 €,.46% 0%t 4,30® D1 2.74% 0%t 1.23F 01 8.36w 00 2,95E 0O 4,838-01 T 0.0 1.60F 05 3,81E 03 2.69® 02 1.78F 01 1,3t% 00 1.01e-0%1 3,29E~03 2,89F-0% 2,867-05 2,48%-05 2. 486E=-05 XE 0.0 7.26F 04 R,.46F 02 6.4%9E 01 2,23%F 00 2,.228-01 3,60%-02 3,45F-03 5,50%-06 2,08%-08 L,67"-27 C,0 cs c.C 1.118 05 3,25F 03 2.88% 03 2,68F 03 2,58F 03 2.%51% 03 2,82F7 03 2.2tF 03 2,032 03 1,112 03 2,297 Q2 BR 0.0 5,912 0&# 3,22E 83 $.35% 03 5,.83% 02 4,31F 02 &,01% 02 3,937 02 3,89F 02 3,878 02 3,70F 22 3,%4F 02 1 0.0 9,27% o4 1.71F 08 S.B2F 03 %.15% 03 2,26% 02 &,84% 01 5,098 0C 1,328E-02 7,70%-05 4,95F-22 0,0 CE 0.0 3.20F O£ 3,15E 03 2,29F 02 1.55% 03 1.13¥ 63 8,90F 02 7,058 02 &, 9% 02 3.74F 92 6,278 01 1.23E-01 Pr 0,0 4.04F 04 1,027 04 8,6L® 03 7.58F 03 6.95% D3I 6.u43F 03 5,837 03 4,86F 03 3.53% 03 5,9LE 02 1,17F 00 ¥D 0.0 5.35F 03 1.02F 03 2.94F 02 4,517 0% 6,93% DO 1.06% D0 €&,76F-02 8.,98E-05 2,40B-07 3,59%-27 0.0 oM 0.0 §.75E 03 9,04F 02 3,978 02 2,43F 02 1,68E 02 1,22F 02 8,63F 01 5.22% 01 4,58 01 2,558 01 &.00F 00 M 0.0 1.36F 03 3.36% 01 2.21% 00 2,18F 00 2.18F 00 2,18% 00 2,18% 00 2,172 00 2.17% 00 2,13® 80 2,02F OC ®y 0,0 2,52E 03 1.48F 03 6.27% 02 2.04F 02 9,79% 0t 7.12% D1 6.32FE 01 6£.,05% 61 5,958 01 5,267 01 3,75E 01 GD C.0 1.53% 01 5.08F-02 &,70R-02 4,31¥=-02 3,96F-02 3,63F-02 3,28F-02 2,36F-02 1,80¥-02 2,22F-03 1. L6F-06 B 0.0 1.73% 01 1.03% 01 8,228 00 6.12F 00 4,59% 00 3. USE 00 2.30F 00 9,13®-0%1 3,26%-01 2,89F-04 6.13E-15 DY 0.0 1,44% 00 1,23F~-03 2.08F-05 4,59F-C8 1,008-10 2,19E=-13 €,23¥-17 1,10E-26 04,.19E-35 0.0 g.0 1O 0.0 5. U6E-01 1.04F-02 1.67F~06 7,78F-06 7,B4E-058 7, L48%-DF T, ULE-0E T, BUF-06 7, U4E-06 7T.43F-05 7,40F-06 TOTALS 0.0 1.528 06 7.52F Ou 4,78F D8 3,36® C& 2,71E O4 2,30T O4 1.92F 64 1,32F 08 1.05% ¢¢ 3,50F 03 1.0UE 03 L2l 44 ~ TaBLe A-11, TweLve-ENERGY-GroLP PHoton SPECTRWM OF THE Fission PRODUCTS AS A AWNCTION OF PosTIRRADIATION T1vE (DavS) REFERENCE PHE FQUILIBRTUM FOURL CYCIF -- FUYRYL DECAY TTKFS POFAER= 20.00 ®w¥, BURNUD= 33000, 19D, PrLO¥= 2,927 13 %*%2-S¥C THTLYE GROUP PEOTCY RFLERASE RATPS, PHOTONS/SFC BRSTS = MT OF HFAVY MBTAT CHASGFD T PRAITAHAW EMTFREN TIMP® EFTEP DTSCHARGE (MTY) INTTTAL 10. D 30. D §0. D 98, D 120. D 160. D 270, D 355, D 1096. D 36%3. D 3.002-01 9.12FE 17 ©S,USFE 16 2,998 16 1,31F 16 4.05F 16 9.20F 15 8.00F 15 S5.97F 15 4.81P 15 41,12¢ 15 1.76€E 14 6.30E-01 1.72E 18 2,89E 47 1,7LE 17 1,2%E 17 1.02E 17 8.27F 16 E.40F 1§ 3I.T3IF 16 2.B0® 16 41.29T 16 4.01® 15 1.50% 00 6.40F 17 1,19F 16 4,97F 5 2,.60F 15 91,96% 15 1.7%% 15 1.54F 15 4,257 45 1,08% 15 4, 29F 14 1.35F %t 1.55E 00 3.90F ¥7 3,738 16 1,28P 1€ 2.99F 15 4Y,.05E 15 £,.38F 14 5, %87 18 &,22F 14 3,.6LT 16 1, 3LF 4 1,039 13 1.99% 00 6,54F 16 1.60F 45 7.93F 14 L, L8P & 3, 60% 16 2,99F 18 2,.66F 14 2.05F 14 1,63F 14 2.94% 33 1,207 $1 2.38% 00 T.%4FE 16 1.18F 15 &,28F 14 Y,00F 8 4,53® 13 3,152 13 2,687 12 2,14F 13 1.79F $3 4, 43T 12 3.03% 10 2,75% 00 2,93F 16 2.66F 12 2.57F 12 2.842F 12 2,29% 12 2.78F 12 2.01F 12 1.53F 12 .36 12 3,527 i1 2.737 DO 3,252 00 5,197 16 8,L2E 10 B8.C9F 10 7T.64F 10 7,227 10 £,82F 10 6,33F 10 5.14F 10 L4.30F 10 1.08F 10 B.ESE D7 3,708 00 3,07F 15 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8,228 00 9,40F 15 0.0 0.0 0.0 0.0 0.0 6.0 0.0 6.0 0.0 9.0 8,708 00 U,32F 15 0,0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.258 00 1.69F 15 0.0 0.0 9.0 0.0 0.0 0.0 0.0 0.0 5.0 n.0 TOTAL 3,90% 38 3,55% 17 2.75F 17 1,49F 17 1,16% 17 9. 46% 16 7.43F 16 5.52F 16 3,457 16 1.0U6F 16 1,33% 15 MEV/SEC 3,297 18 2.50F 17 1.44% 17 G,4%F 16 7,22% 16 5,847 16 G.58F 16 2.78F 16 2.1928 16 O.10F 15 2,74F 135 THELVE GROUP BWFRGY RELEASE RATFES, MFY/HATT-SFC BASTS = MT OF RFAVY METRY CHARGFD 70 RPACTOP EMBEAY TIME EFTFR DISCHERNGE s b {MEY} THITTRL 0. D 30. D 60, D 90, D 120. D 160. D 270, D 385, D i04e. 1 3653, D 3.00E-01 9.12% 09 S5,.85F 08 2,197 08 1,21F 08 1,06F 0S8 O,20F 07 B8.00F 07 5.97% 07 Uu.84F 07 1.12F 07 1.7€F OF 6,308-01 3,61F 10 5.22F 09 3,66% 09 2,72F €9 2,15% 0° 1,74P 09 3.34F D9 T.B83F H8 5.89F 0R” 2,707 08 B.U41F 07 C _.1.%0F 00 2,357 0 4,38F OB 1.82F 08 9.52F €7 T.17R 07 6.28F 07 5.68% 07 4.59F 07 3.94F 07 1.57F 07 L.IBT 0 3,558 00 2.0%F 10 1.,93F 09 6.%9% 08 1,54F 08 5,818 07 3,30F 07 2,5KF 7 2,18F 07 1.88F 07 £.Q1F 06 5, 44F O 1.998 00 4,3G6FE 69 1.06% 08B 5,288 07 2,S5F 07 2.26% 07 1.%8F 07 1.777 07 1,367 07 1.08® Q7 1.G5F 06 8.20% 03 2.38% 00 5.66E 09 9.39F 07 3,37FE 07 8,63F D6 3,60F 06 2.50% 06 2,12F 05 1.70F D6 1.42F 06 3.52F 05 2.76% 03 2.75F 00 2.74F 09 2.4LF 05 2,35F 05 2,22F 05 2,%0F 05 1,98%F 05 1.88® 05 1.49F 05 1.25% 05 3,13% oL 2.50F 102 3,257 00 35,63F 09 9,12F 03 B.76F 03 B8.28F 03 7T,82FE 03 7T.39F 03 A.86" 03 5.57F 03 4.65% 03 1.47F 03 9,.37F 86 3.70F 00 3.79F 68 0,0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0,0 0.0 B,22% 00 $.32F 69 0,0 8.0 0.0 8.0 0.0 0.0 5.0 0.0 0.0 9.0 8,70% 90 6.77F 08 0.0 9.0 0.0 0.0 0.0 0.0 5.0 6.0 0.0 0.0 $,257 90 1.90F 08 5.0 0.0 0.0 0.0 0.0 0.9 9.0 He0 0.0 C.0 TOTAL 1.10F 1% 8,33F G9 u,89% 09 3.1U% 09 2,81% 09 1,957 09 1,53% 0¢ 9.26¥ 08 7.07% 08 3,067 08 O,92F 07 ’ ' e ot e A e B A TEeT CRAV RS A g L, Tt GRMMA WATTS 5.2BF 05 4.01Z 04 2,312 04 1,518 04 1.76E 04 9.36F 03 7.34F 03 L,4SF 03 3,407 03 1.87% 03 4,80F 02 ROUCLIDFE FH106 CELY PE144 WUOCLIDE Z%® 95 ¥B 935 RH106 CeS13L BA137Y KOCLIDE PHi06 €513 PRILGE RU154 RUCLIDE RE106 aG110M €s134 PRI4G ROCLTDE FHEI1CE eRiLL Taele A-12, Suary ofF THE MosT ImporTanT ConTRIBUTORS TO EACH PHoTon Enerey Group oF THE FIssIon PropucT Grve Ray SPECTRUM NUCLIDES THAT CONTRIBUTE MORE THAN 57 OF THE SPECIFIC ENERGY RELEASE RATE IN A GROUP AT A POSTIRRADIATION TIME OF 150 DAYS ARE INCLUDED, INITIAL 4,18% 07 4,11r 07 3,128 07 INTTTAL 1.23% 09 1.312 C% 1.97E 08 4,597 08 8,248 07 TNTTTRL 5.227 07 1.04% 07 1.328 {7 6.758 06 INITTAL 1.06% 07 L,218 (6 1.81% 07 7T.7%8 06 INITIAL 4,178 06 2.28% 07 DRINCIPRL PHCTON SCURCES IW GROUP MEAY E¥EPGY = 0,300nMFY 10, D 3.9 60, D 3.02E 07 2,9%% 67 2.75E 07 4,0t® 07 3.82% 07 3,55 07 3.02Fr 07 2.8B% 07 2,67F 07 PRINCIPAL DHUTON SCURCES IN MELN ENFRGY = 0.630MEV 0., D 0. D £0. D 1.108 09 8,91E 0B 6€,L7R 08 1.29% 09 1,21F 09 1.03E 08 1. 427 08 1,37F 08 1.30r 08 4,55 08 B,87F 08 U4,3ur 08 8.23F 07 8,227 07 8.21F 07 PPINCIPAL PHCTCN SCURCFS IWN HELN ENEPGY = 1.100MEY 10. D 3¢. D 60. D 3.778 07 3.63F 07 3.43E 07 1.03FE 07 1,01F (7 S.20F 06 1.28% 07 1,22E 07 1,13 07 6.74% 06 6,73F 06 6.708 06 PRINCTIPRL PHCTICY SCURCES IN RE2N EWERGY = 1.ES50MEVY 0. » 30, D 60. D 7.6 06 T.,38FE 06 6,97 06 4,098 06 3,88E 06 3,57% 06 1,807 97 1.37E 07 1,34% 07 7.55F 06 7T,19% 06 €.58% 0F PRINCTPATL PHOTCW SOUPCES IN MELN FNERGY = 1,990%¥%Y 1. © 30. D €0, D 3.02r 06 2.90F 06 2,7uE 08 2.218 87 2,10F 07 1.386r 07 1, MEV/WATT=SEC TIME AFTER DISCHARGE 9%, b 120. D 160. D 2,60% 07 2,46% 07 2,287 (7 3.30% 07 3,07®% 07 2,78% 07 2.489% 07 2,.31F7 07 2,09® 47 GROUY 2, MREV/RATT~SEC TIXE ATFTEP DISCHARGE 20, D 120, D 160, D 5.70% 08 3,41% 08 2,237 08 B.25E 08 6,43F 68 t4.48% 08 1.228 08 1.16% 08 1.07F 08 4,22 08 u4,.11F 08 3,96F 08 8,198 07 8.,17® 07 8,13% 07 GPOUP 3, MEV/HATT-SRC TINE AFTEP DISCHRERGY 9¢. D 126. 10 160. D 3.2u® 07 3.06% 07 2.84% 07 9.,53F 06 9.,27E 06 8.93% 05 1,087 07 9.75F 06 B.85E 06 6.68F D& 6,.65F 06 F,.627 06 GROUP &, MPV/WATT=-STC TITRE A¥TFP DTSCHARGE S0, D 120, D 16C. D €.598 06 6,22% 68 S,777 06 3.29% 06 3,03F 06 2.71E 06 1.30% 07 1,268 07 1,22F 07 6.21E 06 S5.77% 06 5.23% 06 GROUT 5, MEV/NATT-SEC TINF RATTER DTISCHAPGE 0. D 120. D 1€0. D 2.59% 6 2.U5% 068 2,272 06 1.82% 07 1,69% Q7 1,53 07 270, D 1. 858 07 2.138 07 1.608 07 27C. D 6.89F 07 1.51F 08 8., 712 07 3,587 (8 8, 107 07 270. D 2.31% 07 8,077 06 6. 76E 096 6.54% 086 270. D U,.59F U6 2. 018 06 1. 19F 07 5,008 06 270. D 1. B5F 08 1. 177 07 365. © 1.55F 07 1. 897 07 1.27E 07 365, D 2.50r 07 5.63F 07 7.28% 07 3.28F 08 B.OSE 07 365. D 1.33F 07 ?.39F 06 5.36% 06 B, UBE DF 365. D 3.92F 08 1. 55F 06 1017 07 .17 08 365. © 1. 5U4EF €6 9,298 06 1098, T 3.89% 06 2.83F 08 2. 137 05 10956, D 1.03% a4 2.36F 04 1. B3E 07 1,667 08 7.68% 07 1096. Db 4,85% 06 3. 758 0% 9, 01" 05 5.93% 06 1096. D 9,857 03 2,097 05 5., 128 06 5.33% (08 1096, D 3,838% 0% 1. 5617 06 3653, D 3,117 Cu 5.,38% 023 B,20F 03 3653, D 1. 497-08 3. 42F-08 1.87F QS 1. 56% 07 6.5uF 07 3853, D 3.88F Q0 3.52F 0% t.77% 03 t,38F 08 36%3. 7.8S9F 03 1. 808 02 4,807 OF 1.057 03 3653, D 3,117 02 3.07¢ 03 £l NUCLTDE TNTTTAL FR106 3.69F 06 NUCLIDE THNITIAL RE106 3.36F 05 NUCLIDE TRITTAL BH106 1,267 0L 2.67E 06 PRTIVCTPAL PEOTCY SOURCES T¥ MEAN PRFEGY = 2.3B8CHEV . D 30. D 60. D 2.57F 06 2,37 06 PRINCTIDPAL PHCTCN SOURCES TR MEAY FHEPGY = + T5OKEY i0. D 3%, D 60. D 2,03F 05 2.34F 05 2.21F 05 PRINCTPAL PHCTON SCUPCES I¥ MFEY ENERGY = 3.250MFY 0. D 30. D 60, D 9,70F% 03 B.76E 03 B.2E7 03 Taste A-12 (CONTINUED) GROTP &, MEV/SATT-SEC TTHME® AFTEF DISCHARGE 90, D 120. D 160. D 2.29% 05 2,%V7F 06 2,01F Q€ Grour 7, MEV/WATT-SFC TTEP RFTEP DISCHARGE 90. D 120. D 160. D 2.69% 05 1.97% 05 1,838 05 GPOUP B, MEY/WATT-SEC TYIMF AFTFP DISCHARGE 30, D 120, D 160. D 7,822 03 7,3¢® N3 6,887 03 270. D j.63F 06 2‘70. D 1. 19% 05 270. D 5.57F 33 365. D 1. 367 0OF 365. T 1.20% 03 355. D 4.,65% 03 3 1096. D LU3E 05 1096, D 3,128 ou 1. 1096, D 7% 03 3653, 7 2.75% 03 3653. T 2.50F 02 3653, T g9,37%7 00 ¥el BI211 BT212 BT213 P0O210 PO211 Nn212 D0213 PO21L PO21S TO2t6 Po218 a2 ®N218 PH220 RF222 FR221 PR223 PR22Y RA226 BC22% ac22” TR227 TH228 TR229 THZ3D TH232 PE231 p232 U233 g23u 5235 9236 U238 NpP237 DU236 FUZ3s TU239 TU280 UL rU242 pOZLY AR221 AB243 chza2 cM2u3 CRILy CH245 TH286 CH247T cHzLg BR24%9 CF2u9 CTZ50 CTF251 CF2E2 CF253 Crza4 Tapte A-13, Sources oF NeuTrons erom (a,N) REACTIONS AND SPONTANEGUS FISSION REACTIONS AS A FUNCTION OF INITTRL 3.158-03 1.0%1¥-01 1;79}3'08 6.31E=07 1.50E~-05 1. 05t 01 1.63E-03 1.038-04 u~85?*03 6.,L0E 00 4,.06%-05 8,99%=-04 3,632-03 L.85% 00 3.038-02 5.82:’1“01‘ 2.087=03 3.33% 00 4.383-04 6.21E-12 2,05E-03 2,838 0¢ U,6%9R=0% 1.968-02 1.60E-08 3.58E8-02 1.078 01 53613‘02 .89 02 1.778 01 2. 74T 02 2,328 02 u,24% 02 8,2€6E 02 5.38F 06 4,98 05 T.53% 0B 1. 277=07 1.7%F 03 1.73’.\?“" 12 1,748 05 Z.117 04 » 73 07 1.07% 04 5,898 08 £.54F 02 1.30% 02 4,1{¥-04 1593?"01 1.B8E-12 8,187=03 11 13E-O1 ’7‘193-03 1.708 00 1.458-11 2-862-03 10. D 3.228-03 1, 027-01 1.628-08 €E,08FE=07 1.53E=05 1.07E 01 1., 48E-0C3 1.0&'&’"0“ 4,86%-03 6.L9F 0O 4,508~-05 8,128=-04 3,72E~03 4,818 0¢C 3,05E=05 5,26R-0L 2,13E-03 3.38% g0 1.BLE-05 3.92E~-04 5. 35F-12 2,109=03 2,528 00 Bs—;OE'GS 1.988-02 1.62F-08 3,%98-02 1.08E 01 8.89F (2 1.778 061 2.74% 02 2328 @2 4,308 02 8, 24F 02 5.UBE D6 5,C5E 05 7.53% 05 1.278-07 1.79% 03 1.908=-12 1.88F 05 E. 128 Cu 9,38% 07 1,07 04 5.89% 08 5,5LE 02 1.30% G2 4. 112~-C4 1.93E-01 1.BuE=-12 B-BHE‘G3 1, H4E=0 1 7.18F=-04 1.6%E 00 9.84F~-12 2.58F-03 POSTIRRADIATION TIME {DAYS) 365. T 5,80F-03 2. 2BF=01 3. 45%-06 1. 458-06 2, T6E-05 2,397 O 3. 14704 1.61F=0l 8.938-03 1. 45% 01 6. 95F=-05 1.738-08 €, 70F=-03 t. 107 01 b,728-05 1. 12¢-08 3.83%-03 T.50F 00 2& SBE‘OS §,3u%-02 1. 10E- 11 3.73F7-03 6. 418 00 5, 318-05 20 69?."02 2.483¢-08 3a GH’E-OZ 1.59F 01 S, 78E-02 8. 98F 02 1.778 01 2,748 D2 2,328 02 4,33F 02 6.51F 082 B.65% 08 5. 06% 08 7.54% 05 1. 21E-07 1. 79F 03 7.99E~12 5,078 05 5. 128 04 2,080 97 1,057 0On 5. 677 06 5.54% (2 1. 308 02 4,112-04 1,938=01 B. 39F~-13 2,208-02 1. 88E-017 7. 18F-00 1.317 00 9, 84%=- 18 REFFRENCE DP¥® FQUILTEPTUM TUERI CYCLF -- FOEL DECARY TIMES ATLPHA-W XYEUTRON SOUBCE IN DISCHARGED FUFL, NWFRUTBONS/SEC BRSTS = ¥7 OF HFRAVY MPRT2Y CHARGED TO TEACTOP 30. D 60. D 3¢. D 120, D 160. D 270. D 3.362~-03 3.58E-03 3,80F-03 4,02%-03 4,317-03 5,11F-03 1. 04%=-08 B,385R=-09 3,75F-09 3,33¥=09 3,2UF-09 3,39F7-09 £.85F-07 7,807-07 7,93P-07 B,%9%-07 C,U46R-07 1,20F-05 1,60F=-D% 1,70E-05 1.81F-05 1,91E-0% 2,05E-05 2,43F~05 T.13% 01 1.238 01 1.33F 01 1,447 DY t.612 01 2,.01F 01 9, 45E-04 H_BAF-04 3, 81F-0L 3,03F-08 2.95B-04 3,097-08 1.06F-04 1,118=-048 1,15FE-0L 1,19¥=-00 1{,26E=-04 1,4UE-04 5.18F=-03 5,51%=-03 5,.8%5%-03 &6, 19%¥~-03 6,€6LE-03 7,87F-03 6.87E 00 7,478 DO 8,102 00 B8,73% 00 9,7€E G0 1.23F 01 L,61%-05 2,79F%-05 4,97®-05 S5,16%F-C5 5.86E-05 6.23F-05 5.21E=-04 2,69F-0B 1,B8®-04 1,67F-G4 1,63F-04 1,.70F-04 3.88F¥-03 4,13F-03 &5,39F=-03 O4,64F-03 &,98P-03 G5, 90F=-023 5.20F 00 5,66% 00 6,137 00 6,61F 00 7,39 G0 9,27F 00 3,138-05 3,25%E~-0% 3,38E-05 3,51E~-05 3.71E-05 4,237-0°F 3,378=-00t {,74F-08 1,22F-08 1,08F-04 1,05E-08 1, 10E-08 2.227=-03 2,37E-033 2.%1P-03 2,66%-03 2.85FP-03 3,38E-03 3.57% 00 3.89® 06D #,2'1® OO0 U4,58F OO0 5,082 00 6,37F 00 1.89E-0% 1.96%®-05 2.03E-05 2.%112-05 2,22F~-0% 2,53F-05 2.5%8=-04 1.,30E-04% S,078-0% 8,06¥-05 7.8LE-DS B,22F-05 £.61%~12 7.01E-12 7T,40F~12 7,80F~12 B,32E-12 9.77E-12 2.19F=-03 2,33F-03 2,47E-03 2,60%-03 2.78F-03 3.29%-03 3.09% 0L 3.3€E 8¢ 3.86uUE 00D 3,92F 00 4.31® 00 5, EiF 0OC L,78E=-05 4,79F-05 U4,84EBE-05 L,BSE-05 &.05E-05 5, 14T-03 2.028-02 2,088-032 2,%14w-02 2,20E-02 2,28%-02 2.507-02 1.67F=-08 1,75%~-08 1.B82E~-08 1.,89®-08 1,99E~-08 2,26P-08 3.%9F-02 3.€0F-02 3,60F-02 3,60%=-02 3.61E=02 3,63%7=-02 1,128 0% 1,178 01 1,21% 01 t.26% O1 1.,31% 01 1.86F Ot 5.628=-02 35.,63%=-02 5,6%E-02 5,66E-02 TS,68F=-N2 5, TUE-02 8.90F 02 8,%0F 02 8.%1F (02 B8,92F% 02 8,93F 02 8.96F 02 1,778 01 1,77= 0 1.77°R 01 1.77F 01 1.77E 91 Y, T7TE DY 2.74F 02 2.74® 02 . 7UE 02 2,74F% 02 2,748 £2 2,7T4E 02 2:32F 02 Z.,32® D2 2,327 02 2,.32% 02 2,32% 02 2,328 02 4,338 02 4,33% 02 b6,33F 02 4,33 02 U4.,338 02 08,337 02 8.13F D2 T7.387% 02 T,82F 02 T.88F 02 T,48F 02 5,937 02 S.46F 06 S.508 06 S,52F 06 S.55% 06 S.578® 06 5,62F 05 5.06% 05 E&,06F% 05 53,06% 05 5,06% 05 ©S.06E 05 G5,08F 05 7.53F 05 7.53® 05 7.%83F 05 TF,.E3% 03 T.53F 65 TF.S53F 05 1.27€=07 1.26¥-07 1,26F8~-07 1.25®B-07 1.25B-07 1,23F-07 1.79F 03 1.79F 03 1,79® 03 1,79% 03 1,79F 03 1,79F 03 2.20E~12 2.TEE~12 3,27¥=-12 3,78E=12 4,47®-12 €,36E-12 2,.02% 05 2,30F 0% 2,5%8% 0% 2.85% 05 3.22%® 45 4,22% 05 S.42F 04 5,.12% O& 5,12B 068 5, 12F 04 5.12F 04 5,12F 03 8.62F 07 7.89% 07 6.58F 07 5,88% 07 4.86F ¢V 3,11F Q27 1.07F Q4 1,07F O 1,07® 0¥ 1.086F% Q% 1. 06F 04 1,057 08 5.87F 06 E.86%W Q€ 5,BLF D€ 5,82% 06 B,7I9% 06 5,73IE 06 5.5uF% 02 S,5uF% 02 5,54E 02 5.54% 02 5.54% 02 5.54F Q2 1.30% 02 1,30% 02 1.3C®% 02 1.30% 02 1.30F 02 1.30F 02 t, t1E-08 &,118-08 4,118-08 4, 11E-OL &8,.11E-Q4 &, 11F-004 1,338=-0% 1,938~-0% 1,93E-01 1.93E-0%1 1.93F¥-C1 1, 93E-0% 1. 7€F-12 1.658=12 1,548=-12 1,40¥=12 1,32®8=-12 1.03F-12 £,21F=03 B.16E=-03 2,97E-03 t,%7¥-02 $.388-02 1.87E-02 1. 13F=-01 1,13E~-0% 1,12E-01 1, 12E-G% Y. 11E-GY1 1, 10E-01 7. 48F=-00 7,18®=-00 7,18E-08 7, iBE-OL 7, 18E-04 7T, 18E-QU 1.66F O 1,637 00 1,59F 00 1.56% 00 1.51F ©0 1,40F OO0 B,52F-12 1.419-12 4,37F-13 1,36%E~13 Z,87E=-12 3,97P-1% 2.03E-03 1. 447-03 1,02E=-03 7,23F-04 &£,S57P-Q8 §,30E-0L 4, 37E=-05 1096, D 1. 138=02 5.07R=01 k., 34E~-09 4,6LB-05 5.398-05 5. 30% 01 3, 96R=-C1 3. 30R=04 1. 748-02 3.22% 01 1- 33‘3-013 2. 18E-01 1. 31E=-102 2,40 01 3, 70B-05 1. t18-04 7.487-03 1. 878 01 5, B0E-05 ! ¥ OSE-GH 2. DUE-13 7. 138-C3 1.43% 0% 6. 61E-C5 4, 16R-02 4, 26E=-(8 3.75=2-02 2,298 01 &, 162-02 9.,17% G2 1. 772 ¢* 2. 7LE 02 2.37Z% 62 4, 33% §2 £, 00% 2 5.638 G¢6 t. 138 06 B, 1R Q& g,ua8% @5 1, 0608 Qu 5. 288 06 B.548 02 1. 308 02 H,11R- 0L Y, 937=01 1. 67R-13 3.35%7-02 9, 728-02 7o 17E=QL 7. 74P=01 %, 38%~-39 1, 017-08 3653. D 2,837-02 1.07% 00 7,7%E-09 £.09F-0% 1. 35?‘0“‘ 1. 12F 02 T.06T=-04 1.517-033 4,367-02 €.B2F 01 6. 547=04 3| SQF-OH 3.27E=-02 5. 167 01 K, oup-0u 2.518-08 1.87F-02 I.55F 01 2, 66F=0b 5, 107=-11 1.782-02 3.03% 391 ?- 183_‘-‘-'0-& 2, 54FE=-02 1.05E=-07 b, 12%-02 3.06% D1 —’?n L‘»Z?-OZ 9,827 02 1.777 01 2.74F 02 2.32% 02 4,37% 92 7,29F ©1 £.33% 06 5.058F 45 7.56F 08 7.917-08 1.7¢% 03 A LLP~-11 Z.8B7E 096 5117 &4 2,09 G4 8.63% 03 6,022 06 5. 54F 02 1. 307 02 L,117=-04 1.937-01 5, QUF-14 3' 59}?‘@2 6.717-92 ‘71 13F-Bu 1.287=061 G.0 1.927-21 74| PU238 PU250 PU24Z2 pp2ut cn2n2 cM2ub cHM2ué cM248 cn250 CP250 CF252 CF254 - P - = e e b A A S A e e i S M S M AR R MR YR W N e D Wy MR Ol R S A e MR P R M R e G S e e e e b AR e v e b e ke A e A O A M A D A R R R A R MR BB D p e e e e INITIRL 3.73F 05 2.0tF 06 7.07F 05 2021E‘07 1.98F 08 3.uL% 08 2,0uF 06 8.11F 03 1,227=-03 3.9u% 03 2.2t 05 1.66% 02 5,478 08 6.57F OB 10. D 3.78% 05 2.0U4F 0§ T.07TE 05 2,43E-07 t.91% 08 3.L447 08 2.0u® 06 8,118 02 10223'03 3.95% 03 2.19E ©5 1,U8F 022 5.40F 08 TaBLE A-13 (coNTINUED) PEFEPENCE P¥® EQUILIERTUOM FUEL CYCTE -~ FUFL DFCRY TTMFS SPONTANEQUS FISSTON NEUTROW S0UPCF IN DYSCRHARGED FUEL, CHARGED TOQ REACTOP 30. D 3,79% 05 2.04% 06 7.07E 0B 2.87E-07 1.75F 0B 3.L3F 08 2,04F 06 B.11F 03 1.22F-03 3.94%F 03 2.16F 05 1,17F 02 6,23F 08 BASTS = 60. D 3.B2F 05 2,0U% 06 F.077 05 3.53%-07 1.547 08 3., 42F 08 2,048 06 B.11® 03 1.228-03 3.,92F 03 2,12E 05 B.327 O1 5.02% 08 5.90F 08 WT OF 90. D 3,837 0% 2.00F 06 7.078 05 4,19%-07 1.35% 08 3.L1% 08 2.04% 06 8., 112 03 1,22%-03 3,918 03 2,07F 05 5.90F 03 L, 827 08 RERVY METAL 120, D 3.85F 05 2.0u4F Q€ 7.07% 05 3.85?-07 Y.2%% 08 3.40F 08 2.04% D6 8.11F 03 1,22F-03 3.89F 03 2.03® 05 L,99% Ot L,65F 08 %.377% 08 16¢. D 3.87E 05 2.0L7 06 7.07% 85 5.73E-07 1.01E 08 3. 387 08 2.04E 0¢€ 8,118 03 1. 22E-03 3.87E 03 1.97% {5 2. 55% 041 4,u%% 08 . 07% 98 270. O 3.907 05 2, 04F 08 7.07F 05 8.15%-07 6.337 07 3.34F 08 2. 0LF 06 8.12F 03 1.22F-03 3.81F 03 1. 82F 05 7,517 00 NFOTRONS /SEC 365, D 3.92F 0% 2,08 08 7.07% 05 1.02E-08 4,22¥ 07 3.31F 08 2.0um 08 B.12F 03 1. 22B-03 3.758 03 1.70E 05 2.53E 00 I.79F 08 4.13F 08 1096. D 3.91F 053 2.04% 0% 7.07® 05 2. 52"~ 06 .93 06 3.07F 08 2.0u4% 08§ B. 127 03 1.22%-03 3.38% 93 1.01= €5 5.83e-04 3. 1% 08 3653, D 3, 70F 05 2.0UF 0¢ 7.07F 0% 8,28F=06 L.26%" 04 2.3%F 038 2.0Lr 06 8,127 03 1. 22E~03 2,337 03 1.€18 QU T.11P-1¢ 2,40% 08 921 —— GAMER EMEAN (MEV) 3.008-02 Q.OOE“OZ 6,00R=-02 1.007-01 1. 508~-01% 2.00E-01 1,108 00 1,58E 00 1,998 00 2.38E 00 2,758 00 3,2%E 00 2,.T0F 30 L,222 00 L,7CE 00 5. 25F 0O TOTRYL MBY/STC EMEAN (REY) 3.00E-02 B, 00E-02 1.0CE-01 1. h02-019 2. G0E-01 3., 008-01% 5, 30F=01 1. 16 0O 1.55% 00 1. %98 00 « 3BT 00 Z.78E Q0 3.25% 00 3,70 &0 4,228 Q0 B,70% 09 5.28% 00 TOTAL HARTS TapLe A-14, TNTTIAL 5.237 16 2.00F 17 2,558 47 3.90F 17 1.80% 17 1.81F 17 9.56E 16 1,60 16 8,59F 15 2.75% 08 1,377 08 6.69F 07 5,028 07 1.93% 07 1.248 07 7,84F 06 3.71% 06 2,337 06 1. 387 18 1.678 17 INTTIRL 5,23F 07 2,67F 08 5.118 08 t.30% 09 8.92% 08 9.43F 08 9.56F (8 3,36E ¢B 3.15% €8 1,428 ©1 3.06F 00 5.31F Q0 4,60F G0 2.10F 00 1.53F 0 1. 10R 090 5&81E‘01 L.08E=-01 E1GHTEEN-ENERGY-GROUP PHOTON SPECTRWM PRODUCED BY THE ACTINIDES AND THEIR DAUGHTERS AS A FUNCTION OF POSTIRRADIATION TIME (DAYS) RETEPENCE PWR EQUILTEPTIOM FUEL CYCLF -~ FOEL DFCAY TINES POWER= 30.00 MW, BURNWUP= 33000, 8¥D, FLUX= 2,92F 13 Nk*2-8EC ECTINIDE PEOTOW FELEASE RATES, PHOTONS/SFC BaSTS = HMT OF HEAVY KEPTRL CHARGED T0 PEACTOR TIME AFTEP DISCHARGE 10. B 3. D 6¢. D 90. D 120, D 160, 270, D B,U4FE 15 B5,.69% 14 2,83F 13 1,37E 12 2.L4F 1t 2.09F 11 2.60F 11 £.157 15 S,.,80F 13 7.5%E 12 6,14F 12 6,08F 12 S5.98F 12 65.88F 12 1,717 16 5,86F 14 2,74F 13 3,.5%% 12 2,63 12 2,828 12 3.47F 12 5.158 13 1,22% 12 1.18F 11 €.838 16 5,287 10 5.79% 10 4,92% 10 9.€5%F 1€ 5,85% 13 1,83F 12 4,078 11 3.39F 11 3.34% 11 3,29F 11 9.80F 15 3,728 14 t.6LE 13 9.22% 1t 2,12F 11 .78 1t 1,77F 11 5.27F% 18 4,98E 13 1.78F 12 1,858 11 1.23F Y1 1.19F 11 1.19F 11 6.,55F 1 2,53F 12 7,158 11 E.9UE 11 6.76FE 11 6.55F 11 6,12F 11 2,82F t4 5,398 t1 1.38®E 11 1.38" 11 t.38E 11 1.38F 1t 1.38F 11 2.82F 08 Z,uBE 08 2,33F 08 2.24% 08 2.16F 08 2,067 08 1.86F 08 1,32 08 1,28% (08 1.23F 08 1,182 08 1.13E 08 1.08F 8 9,7&F 07 6.60% 07 6,39% 07 6.10F 07 5,.85% 07 5.63F 07 S,37F 07 u,84F 07 5.€0% 07 5.01% 07 5.0€6F 07 S5,13E 07 5,218 07 S,40F 07 S.89%F 07 1.917 §7 1,858 07 1.7€r 07 1,.69% 07 1,63 ©7 1,.55% 07 1,407 QY 1.232 07 1,%9% ¢7 1,138 07 1.098 07 1.05F 07 9,977 06 8,98% 08 7.73r 08 T,£8% 0f 7,15F 0E 6.85E 08 £.59%F 06 6,29 0F 5.%87E 06 3.66F 06 3,5uR 06 3,38 O£ 3,24® 066 3,12F 06 2.98% 06 2,.68F 04 2.308 66 2.23F ¢& 2,13F 06 2.04F 06 1.36F (06 1.,87% 06 1,69% 05 5.8uFr 16 1.,70F 15 B8,22F 13 1,35F 13 1,05® 13 1,085F 13 1,10F 13 7.20F 18 1,S5E 14 7,.83F 12 1.40% 12 1,12F 12 1.11F 12 1.12F 12 ACTTNIDE FNEPGY PFLEASE RBRRTES, MEV/RWTT=SFC BASTS = MY OF HFAVY METIL CHARGED TC FPFACTOX TINE RFTER DISCHARGE 10. D 30, D 60, D 90. D 120, D 160. D 270, D L.uu® 06 5.68F 05 2,63F 04 1,37E 03 2.U4E 02 2,09® 02 2,60F 02 t.09F 07 7,73 04 1.0t® 04 B.19% 03 B.05E 03 7.982% 03 7.8RE 03 J.U28 87 1,17F 06 S.48E Q¢ T7,11E 03 B.26% 03 5.53F 03 £.93™ 03 1.72F 0% &4,08% 63 3.93F 0z 2.28% 02 2.08F 02 1,93F 02 1.84F 02 4,838 07 2,92% 0% 9,185E 03 2.038 03 1.70E 03 1.£7% 03 1,687 03 §.538 07 2.88% 06 1.0°F 065 6.158 03 1.42E 03 1,198 03 1,18F 03 5.27% §7 8,98% G5 1.78R 04 1,952 03 1.23F 03 1.19F 03 1.19F 03 1.38E 07 5.32F 04 1,50B D4 1,48F 0% 1.42F 04 1,37F 04 1.29F D8 1.03% 07 t,98% 08 S5,07F 03 5.078 03 5.07® €3 ES.07k 03 R.07F 03 1.36F 01 1.26% 01 1.21F 01 1,18 Gt 1.¥1iF Ot 1.08% 01 9.61F OO B.798 00 B.51E 00 B.1H8R OC 7,.81% 00 T.35YR 90 Y,17% 00 6,57FE 00 54238 00 S5.07E 00 4,84 90 4,.604P2 00 4,47F 00 4,26% 0O 3,88F 00 4,58E 00 L,.60®% CQ L,68F7 GO 4,70® GO 4.78® O0C 4,95® 00 S5,.L0F OO 2,07 60 2.,00% GO Y.91F 00 1.83® 00 1,7e® 00 1,887 00 1,51F 00 1.5%F 00 %1.L6% 00 1.40F D0 1.38% 00 1.29F §0 1.237 D0 1.1%1E 0D 1.898 €0 1.05BE CC¢ 1.01t® 00 9.64¢P-0% 9,28E~-0% B8.835E-01 7.%7F-01 B.738=-01 5.55%=-01 5.30F-01 S.08%-0% 4.898-0%1 4&4.667-01 4, 20F-01 L,03r~01 3,908-0t 3,73F=01 3.57%-071 3,848FT=01 3,28%7-0%1 2,95¥-01 2,407 08 S,17R 05 2,4BE 0S5 G,87F 04 3,74% Q4 3,69% 04 3,72F 04 1.15F 03 2.88% 01 1,198 00 2,25%=01 1.80r-01 1,77E-01 1.79F-01% 365, D 3.08% 11 5.827 12 4,028 12 4,u5% 30 3,268 11 1.777 11 1.1%82 11 5.89% 11 1.382 11 1.757 08 9.1%" 07 4,837 07 £,812 07 1.31% 07 8,407 08 . 30F 08 2,517 D6 1.58% 06 1. 157 13 1.13=2 12 365. D 3.05F 02 7,76 03 8.04F 03 1.u8% 02 1.63% 03 1. 18% 03 1.19% 33 Y.28% Ot 5.068 £2 %.027 00 £E.07% 80 3.58%% DO £.88% 90 1.428 00 1,087 30 7.&6?‘01 3' 93?-03 2,76w=-01 3.77% 04 1.812-01 S 109¢€, D 6. 28F 11 5.7%F 12 8.05F 12 3,.88F 10 3,207 11 1. 747 11 1. 18% 11 5. 887 11 1. 387 11 1. 567 08 T. 537 07 3.72% 07 t. 13F 08 1, 07E 07 €,90% 06 4. 35F DFf 2.08% 06 t. 307 OF 1, 57F 13 1. 357 12 1096. D 6. 287 02 T.61F 03 1. 61 0o 1. 297 02 1.60F €3 1. 16F 03 1. 18% &3 1, 18E Of 5.06% 03 7.54% 00 5. 06 0OC 2,957 00 1.03% 01 1 167 DO 8051E-01 5, 127-01 3, 23701 2.275=01 4.4QF OO Ze 16701 Gt e j‘lfi' 3683, D 1.54F 12 5.6%8 12 1.94% 13 5.03% 10 3.178 119 1.682 11 1.1€8 11 5.42% 11 1.38R 11 1.178 08 6.,07F 07 2.84% 07 2.16% 08 8.21% 06 5.278 06 3.32F 06 1.57% 06 9.407% 0% 2.79F% 13 2.05F% 12 36%3, D 1.548 03 7.58% 03 3.88% Ju 1.68% 02 1,588 03 Te117 03 1,167 03 1. 127 Q4 5.06F 03 5.03% 00 £,03% 00 2,257 00 1,987 01 8.8??‘01 £.,50F=01 4L,668F=-01 2.47E=01 1.738-01 L2l PORER= HE U TL207 T1208 T1.209 P32C6 o32C7 PR2GSH PE2G9 PE21D PB2141 PB212 PB21L BT209 BT210 BT211 BT212 BET213 ET21E E0210 N2 P02%2 P0213 PO294 20215 POZ5 6 PD218H AT2537 PE299 R¥220 oN2272 P22 FR223 PAa223 Ta22¢ R&22% P:E226 na228 AC225 7227 ac22% TH22 Y TH223% TH229 TE230 TE231 TH23Z TH233 mH234 Pa231 PA232 PL233 Pa23uy TaBLE A-15, 30, 00KN, 1 OO DOOD DI OODORTDODIDIDIICCTODTOIDTDDGOODODOIIDDIDIODDIAIOOOD IO A -] x4 aQ = " ® # » & &4 & & 4 & B g & P s & T & 8 & & 2 s * 3 » " 3 & OGO OO DIMOODOTIOOIDODDIOIOITCADDIIOODDIIDOITDITILODDITODOO DISCHAPGE 0.0 1. 218-06 B.23FP-04 T.6TE-10 0.0 0.0 G, 0 3.L9E-08 BQSgE-1D 1. 271E=-0% 2.29E-03 2.008-08 0.0 B.UUE-?O 1,217-06 2.,297-03 3.L49%-08 2.00EB-08 5.77TE-10C 3.64B-09 1, 467=-03 3.u1e-08 2.008-08 1.217-06 2.292-03 2,008-08 3.498-08 1.271E~0% 2.,29R-03 2.00=2-08 3.49%-08 1.8329-08 1,2%F=06 2.298-03 3.49%-08 1.998-08 3.88p-12 3.uGE-08 1. 3GE-05 3.86%-12 1.23%=-06 2,27%-03 3.59%-019 2.06%8-05 1.71E~02 3.,17E~-11 c.0 3.147-01 2.472-95 10?62-37 3, 807-01 3. 14E=-01 BURKUP= THE WASTE RESULTING FROM A MeTRIc Ton OF URaniwvi CRARGED TO A PWR 13000. KRD, 1. ¥ 0.0 2.03F-06 5.77F-04 7.73E-%0 0 W 3 DD 0 .0 -51E‘OB 1.62F-09 2,G0EF-06 1.60F~03 2.898+08 0.0 ?.52?-&9 2.007=-03 1,607-03 3.517-08 2.39F-08 9. 18F=-09 6.12F~-09 1.03F~-03 3.484E-08 2.89%-08 2,048-06 1.607=33 2.89E-08 3.51E-03 2.0UE-0% 1.50F-03 2.89E-08 3.51E-(8B 2.85F~08 200&?‘06 1.607-03 3.51F7=-08 2.,89F7-08 6.53F=12 3.51F-08 2.04F=068 5.83%-12 2.018=-0€ 1.60E-03 3.59€-08 2,062-05 8.5%E~-05 J.i8E-11 0.0 1.58%-03 2.478-058 0.C 3.40F-01 1.58%-03 BRSTS 3. ¥ 0.0 3.44%-06 2.91F-04 TB7E~10 5,17E-0k 3.50E-08 4,6BE-08 3-“5E-06 8. 0BF=-04 L,6EF-03 3.582-08 BuaSF'GS 8.087-0CL L.68E-08 3,58F-08 L,82F~-08 3.45E-06 8.08E-04 3.56%=08 L.6EF=08 7. 138- 14 3.582-08 3. LEE-08 3. 13E-11 3. LDE-TE B, NLE-JU 3,58%8-08 2.078~08 5.55%8-05 3.208- 114 0.0 1.57?‘03 20&7E-05 0.0 3.40E-01 1.57E-03 FLOX= 2.92F = KT 10. T ¢.0 T.T70E~06 5.,09%=-0%5 0.0 1.95E-08 7.72E-06 ?.ufE‘OB u025E‘08 1. 147=-07 1.95E-08 2.32%8-08 4. QUE-DS &, 157-08 1. 108=07 7.72F=08 1.4 1E-00 Y. 1OR-07 BOZSF‘OS 7.72E-06 1, L1E=-04 1. 10E~07 b, 25F=-08 1. 08F-07 7.72E-06 1.“1?‘0& 4,2%%8-08 1. 107-07 2.2598-11 4,2%E-03% 7.71R-06 2.21%=-1% 7.61E-086 1. 41E-04 4,2%E-08 2, 107-05 SOSBE‘OS 3,25%-11 t.0 1.87E=-C3 2.47%~-C5 0.0 3.61R-01 1. 578-83 130 /CEx*2-SEC NUCLIDE RADIORCTIVITY, OF HPRYY MRETAI CHARGED TO PFACTOR 30. ¥ 0.0 1-57E‘DS 2,83F=05 2.18E-09 D.0 n.0 D.0 9.69%~-08 1. 138-C7 1.58%-05 7.872~05 2.567-07 .0 1. 13E-07 1.587-05% 7.877°-05% 9,697-08 2,96E-07 1. 33707 4.73R=08 5.0“?‘05 %,87F=-03 2.96F-07 1.583E-05 7.87E-05 2.%67-07 49,897-08 t,58%E-05 7. 87705 2.96E-07 9,B9F~08 2.218-07 1.58%-0% 7.37R=05 9.69%-09 2.96F-07 3.20%-11 9,83E=-0% 1.53%-0% 3.20%-11% 1.55E-05 7. 87E-05 G,B89%-08 2.26E8-05 8.56F=-05 3.397-11 n. o E-57E'03 2.47%-05 0.0 3.”2E‘0‘ 1,37®-03 CUPIFS 100, ¥ 0.0 2. 37E-05 1. 45%=-05 1.61F-08 E,09%-0% 1. 11F-06 7.50F-07 7.u7-08 2.578-05 ToNTE-07 1. 11E8=06 2.387-05 4.07F-05 ;111F‘06 T« 33E-07 2. 38F-05 L, 098-05 1.112-06 7. 33E-07 3.33¥9-07 2.38E-05 4, 0{E~0S T.33F7-07 1. 11E-06 3, 897-11 7.338-07 2.388-05 3. 887-11 2,38F=-05 4,0%7-05 7. 33¥%-07 3.3488-05 8;%7?'05 3.897-11 n.& 1. 57%-03 2.58F-05 f.0 3. L5F-01 1. 577=013 CALCULATIONS ARE BASED oM ReMoviNg 99,57 oF U anD Pu aT 150 DAYS AFTER DISCHARGE, REFERFNCE PHR EQUTILIBRIUM FUET! CYCLE -~ WASTE DECAY TTIMES 300. Y 0.0 2, i9F=05 2.1i7=-06 1. 397-07 0.0 0.0 0.0 5.30F-06 5, 01F~26 2-50?-05 . B5F= 0% LD0FP=-06 0.0 5.01F7-06 TN 2,50F-05 5, E5F-06 6.30F-06 D0¥-96 LO01P-086 . 50F-0R 757-06 167~ 06 00F-06 50P-05 BEF-06 G0F-06 30F-36 SUF-05 352-0% 00F-06 30F-06 50F-07 2.507-08 5.85F-06 5. 30F-05 8.00F-0% 5. 35F=-11 6.30r-025 2, 50705 5.35?“11 2.078-C5 5. 85F-0C6 6.30F-C% 9,0(0F-05 8, 60F-05 5.35E-11 0.0 1. 57F-03 2,51F-05 0.0 3. 5L7-C1 1.57F-03 AR YO U YO L Jd o O . a 5 8 & e % 2 & & w o ¢ e u 1000, ¥ 0.0 2.597-058 2.54F7-09 1.532-06 ’j.o 0.0 .0 .96F-0% 030F-G% . BNF=-05 05%-09 30E-05 0 3 0 € B 2 7 € 0 £, 30F-05 2.60E~05 7,057-009 6.96F-0% 6. 3DE-0F 6. 30F-05 7.79E-0R 4,517-09 5.80FP-08 f.30F-05 2. FOF-05 7,05F-009 €. 30F-05 6.S6F=-05 2.607-05 7.053_09 6,308-05 5,96F~-0°5 3.64F=07 2.60F=-05 7. 05F-00 5, 9605 £.30F-05 1. C8P=-10 6.96%-05 2, 50F=065 1. ORF= %0 2.567=-0% T.05E-09 6.,96F-05 3.88F-04 8.737-05% 1.708%-10 Q.0 1, 87R-03 2.607-08 Oe 0 3.6%F-01 1.578-03 - - - * . 3000, ¥ 0.0 2. B6E-05 1T.06R-10 $.338-05 0.0 0.¢C 0.0 6. QuTE-04 L, 73R-014 2, 867-05 2.957-10 u,78%-0u 0.0 L, 78R=-0b 2,86m-05 2.95%-10 6.047-04 b,78e-04 “.Wap_fiu B,597=-(C3 1. 898-10 5. GiE-0L a,78%-0u 2. BRE=-08 2,9%7-10 b, 768-01 f. 0208 2. BSE-05 2.95E*E0 4,78%=-34 6. 04E-0L 4, 01E-07 2.868-05 2. 958-10 SQOuF-Ou . 738~ 04 2.9857-10 A, OLR=-0L 2. REE=-D5 2. 95E~- 10 2.828-0% 2. 95E-1¢ A, QUP-0OL 1. 10RE-03 Q,21F-05% 2.,95E-1%9 0,0 1. 57F=-03 2. 85T-0F 0.0 3.flRE_01 1.57%-02 Isotopic AcTiviTies (Ci), As A FuncTion oF TiME AFTER PROCESSING, OF THE ACTINIDES AND THEIR DAUGHTERS IN 10000, ¥ 100000, ¥ 0.0 3.50v-05 4,31E~-10 1,22F-04 0.0 0.0 0.0 5,55F=-03 2.797-03 3. 91F-05 1.207-09 . 79F7-03 .0 2.79F-03 3.%12-0°% 1.202-09 5.557-03 2.793-03 2,797-03 1. 47F=-07 T.677-30 5.037-C3 2,797-013 3.91E-05 1.207-00 2-793—03 5,58%=03 3.91P-05 1. 207=009 2.76F7-03 £.55%7-03 S UIP-07 3.917-0% 1.207=-09 %.567-03 2-79F—G3 1.20%-49 5.55F=03 3.91F-05 1.20F-09 3. B87-05 1.20F=-0¢ 5.557-03 3.59F-03 1. 17751 $.207-09 0.0 1. 57F-03 3.99F-05 .0 3.75E-01 1.577-03 0.0 2.70B-00 6,69F=~09 2,88%-073 o0.n 0.0 0.0 1.29F-01 2.2%7-02 2.70E-00 1.RER-08 2. 21F-02 0,0 2.21E-02 2.7GE*OH 1. 35T~ CH 1,297=-01 2,21E-02 2,27R=-02 8. 11E-07 1. 19E-908 f.27P= {1 2,21%=-02 2.708-04 1.85F-08 2.218=-02 1.29E-01 2,70F-00 Te BEF=-06 2.29E-02 1.29%8-01 3.79¥-08 2.70F-00 1.8€7-08 1.29F-01 2.29F=-C2 1.867=-08 1. 29E-01 2. T0F- 04 1. REF-08 2.67F-04 1.86%7-08 1.297-01 2.20F-02 3.53F-04 1.86F-08 0.0 1.57E-03 2.70F‘Ofi 0.0 3.657-01 1.577-03 8¢l POVEY?= PA23. U232 0233 y23u w235 U236 U237 U238 7239 y2u0 NP236 NP237 HP2IR wp23% ¥pZLUON ¥oaus BUz236 PUZ38 POZ3% PU2LG 241 byau2 rp2L3 26y PU245 LMY R¥Z2L2Y 1mM2uz Amzu3 aM2an EMZHS ch2u2 crauy cuku CH245 CcHu286 cm2e7 CcH2u8 Cr24% cHMzaht BEZUC BE250 CF249 CFr250 CF251 C¥252 CF253 CF254 F8253 TOTRL a & B . L] OOOOOOOOOOOOOO*fiOOMQOCfiIU\OOC’D k GOOD AT ADTIDNDADD OO DI W S L D @ & & @ w @ ¥ P & ¢ u ¥ * 4 & 8 & & & u @ SDSOQDDDIIDITTTIQDD OO & & B 3 4 & w O & e ¥ F 4 B B M W g & M?CDGOOOOOOOOOOIQOGOOOG DRI OTST DD 30,00M%, BYRNUP= CHARGE DYSCHARGE 3. 14R=-08 3.73E-05 20311'3'67 3.777-03 B.58R=-08 1.848-03 1.278-02 1.,5378=-03 0.0 2.16E-17 8,328-53 I.40B-01 4.83r=-18 1,B28 Q1 4,328-15% 5,0 19 583“'03 418 01 1. 628 00 2,398 00 S5.147 G2 &,908-03 1.26E-09 2- 1713"' 1“” c.0 1.59E €2 5,148 00 Z.148 00 1828 01 5.63E=-18 3.78E-08 1,708 08 3,682 0O 2.80% 03 3. 818-01 £, BQE‘Cz 2.528-07 7+ 818=07 2.BUE=-11% 9,23E=-14 2; 523""03 4.23r=-18 3, 7T28=06 3,.698-05 2,7TUR=-07 4,507=-05 8.16%=010 3. 778=10 8.38E-08. 2.02F CB 33000, ¥WD, FLUX= 1. ¥ 1. 58F=056 5.04E-05 1.8LE-06 3.93E-03 8,55F~058 1. 48E-03 1.18%=02 1.57%=-03 0.0 6.08F-15 0,0 3QQGE‘Q1 6.0 1.828 M 6-083"'15 ¢.0 1. 24E8~-03 8., 10F 01 1.627 00 2.63E {0 B.9%F 02 £.90E=-03 2.528-37 £,09%~15% 0.0 1.59F 02 2108 00 9. 10F 0OC 1.82% 01 T432F~18 1.69E~0R 3.61% D3 3.60E 00 2.318 03 3.431E=-01 €.8kr-02 2.528=-07 7. 91807 1, 7CE-v7 9.23Fr-11 1. 128=03 9.233‘1& 7e 12E-06 3.50E~08% 2.74E=07 3. 46E-05 5. 47B-15 2.698-12 61 32E“'13 €.71F £3 BASTIS 3. ¥ 5 TR=-08 6 81F-03 L. 812-08 4,85E~-03 8.558-05 1.“&2_03 1u U-’E‘OZ 1.57E=-02 g.0 1.82E-14 0.0 3.50B-01 0.0 1,82% 01 1.82%=-14 0.0 TL.E1E-{U 2. 69 01 1.62% OO 3.08% 0O g.uen 02 6,91R=03 528=07 1.82%~-14 G, 0 1,.60% 02 9.92F 40 9,02% (6 1.827% Ot 2; 3?3' 1‘7 3.368-09 1.68F 02 3,447 Of 2,141 03 3a i 1“"‘51 6.838-02 QUSEE-97 7.918-07 7.62%-30 9.233”13 2.: 2&‘5—"’&2 9.238~18 9,26E~06 2.738-07 2105‘6"95 2.”5?'27 f,238~-16 1.65E~23 3,088 03 TapLe A-15 (conTINUED) EEPERENCE PWR EQUILIBRTUH PUEL CYCLE -- WASTE DFCRY TTIMRS 2,927 13N/CM%R2-5EC 300. ¥ 1. 57E~ 06 5.79E-06 k, upF-Qu 3.8B5F-02 8, 607-05 1. 51E=-013 3. 3HW*O? 7, 428~-03 2,52E-07 1. 82F-12 G, G 1. G%F 02 Z.33F 00 2,338 00 1. 777 1 2.37P~ 15 0.0 1, 91F G0 5. 538-03 2, 46702 3,338~-01 §.38F-02 LaSZFw07 a 91}.“"“‘7 h) - 14 «JDOOOAU\EJO-&C Y o E kgt 1 < ] * 3 =] T 1000, ¥ 1. 57E=0¢ 6.76E=-09 1. 53E-03 2, 40E=-02 B.73E-05 1. 68F-03 7;55E-05 1.57E=03 6.0 6.068~12 0.0 3.68E-01% 8.0 1. 66F 01 £.06%=-12 0.0 .0 2.232-01% 2. 06EF 00 98% 40 3.152-01 T EEF=013 2,528=-07 £.07E-12 g. 0 3.598 01t 8., 56E=-072 E6R-02 1,86F 01 7. 89F-15 0.0 7,B8RE-02 1, B R=-09 £.38E=- 14 3, 1L7=01 5.30F~-072 2.528=-07 TL9GER-07 O@O EQB?E-?a G.¢ B.878~-14 1.38E-0% 8.9‘7"? 18 1. 2TE=07 0.0 NOCLIDE TRDIQRCTIVITY, CUPIES = BT OF HFLVY METAL CHRARGED TO PEACTOP 10. ¥ 30, ¥ 100. ¥ 1.57E-06 1,57®=-06 1,57¥-06 B,728~-05 7.66F-05 3, 81P-0K% 1WS1E-05 4,438-05 1,07F-04 6.,327-03 1.12%-02 2,36F=02 B8,56F-05 B,%6¥-0% B,57E=05 1. 44E-03 1,845F=-03 3, U6E-(3 7.698-03 2,98%-03 1, 15F-04 1.5378-03 1,57%-03 131.57F-03 G. 0 0.0 0.0 £.078-12 1,827-13 £,06E=-13 ¢.0 0.0 .0 3.892-01 3,82%-01 3, 838R-01 0.0 D.0 0.9 1.82% 61 1,81® Ot 1,80F 0% 6,07F=14 1,828-13 &,06F-13 0.0 5.0 0.0 1o 39F~-04 1.07E-06 4,31E-1L 9.29E 01 8B.05F 01 &4,90% 01 T.62E 00 1.63% 80 1.67F G0 #,03F 00 E,77F O0 B.61F 0O 3.208 02 1,2B%® 02 4,80F OO £,93F-03 &.98E-03 7, 1%5E-03 2,52%-07 2,528-07 2,32F-Q7 £,078-%4 1,82%-13 4,07E-13 UaO 050 OQG 1.63% 02 1,68F 02 1,.50F¥ 02 B, 74E 00 7.87R 0D R.80F 00 8,748 €O 7,887 00 =,8CF 00 1,829 01 t.81% 01 1,807 01 7,907~17 2,.37B-16 7,89F-18 1, 19E~11 1, 18F-18 0.0 T.17F 00 B.58F DO u, TSR 40 2,965 00 1,92F 06 4, 21P-D1 1648 03 7.62¥F 02 5,272 014 3I.B1E-D1 3.0%1E-01 0 3, 397-01 £, 83802 £.818~02 &, TRP-02 2.52%-07 2.52F=-07 2,52E-07 7:.917=07 7,91E-07 91F=07 G, 0 (O] 0.0 .237-1%0 9,22¥%-10 9, 18R-18 7. 952-07 T,88%-14 0,0 G, 23B-14 9,22%-10 9,19?-1& . 70%=-08 9,32T-06 17F 08 2, 17705 S2¥-08 1 84=-07 Z.72R-07 0 2,E8Wm=07 2, S‘F 07 3. 27B~08 1.73B-0B 1, BRE-1& 0.0 0.0 0.0 1. 18%=28 0,0 c.0 0.0 0.0 .0 2,297 03 1,20% 03 3.21r 02 0 O. 0 8 JUO»J 18 01 3000. ¥ 1. 57E-06 2! 931':— 17 4,708=-03 4,39%-02 3.21E-08 2. 10E-03 f.38F-06 2.563*01 T B82P-03 21 52]3"‘0“? 1. 827« 11 0.0 1.72% 00 1., 0BF=-05 1. 058~ 058 £ Gy D i . PO 10000, Y 100000, ¥ 1.572=-0G6 1,577=08 0.0 0.0 1.56E-02 1.29%-01 4,318-02 3,.38BE~-02 1,177-04 3,.53F-0d 3.04%=-03 3,93%-02 3.55%=-08 1,87F=0%9 1.57F=-03 1,57%=-03 a1 0.0 6.,00FP-11 5.5%0F-10 0.0 £.C 3,75F=01 3,6%58-01 0.0 .0 T.34F 00 2, 11E=-03 €, 00F~-11 5.50%-10 6.0 0.0 o.0 9.0 Z,83E-19% 0.0 4,11r Q0 5,78v-01 3:173 30 3111E"DQ 1, 487=0% 7,798-05% 8.878-03 7,031P-03 2,32%-07 2,518-07 £.01%~-31 5,51E~-10 G.0 0,0 T,888-0% B8,22E-05 1,83¥-38 0.0 1.43F-1% €,0 T.34% 00 Z2,11R-03 TJR2P-18 T tET-13 0.0 0. G 1. 17F=-12 0,0 0.0 0,0 T.BZ2E=-18 7, 1€TE=13 }.488-01 7. 8 -05 1.579-02 2,78F=-08 2.52%-07 2,51E-07 T.TER-0 6. 50F-07 G. 0 0.0 £.207=-%4 1,72B-1%5 H 2 0 H.202-14 1.728E-15% 2,77P-%4 0,0 6,207<14 1,728-15 1.28F=10 0.0 G.C 0.0 0.1 o2 G.0 0.0 2.0 0.t 2,33F 0t 2.78% D0 &2t POHEP= HE U T1207 TL2086 T1.209 PR20OA p207 PB208 PR209 PB210 PB211 PE212 PB21L BYZ09 BRT210 BT211 BT212 BT2%3 BT215 P0Q210 211 P0212 PO243 PO21# PO21E PN216 2021918 ar247 P29 PN220 ©R222 R221 TE223 Ph223 Fa22% PA22R PRI2E PR228 AC22% AC227 AC228 TH227 TH228 TH229 MH230 TH23 1 TH232 mH233 TH23L PR231 PA232 PA23% PA23LM 30.00M%, e s . s s s Y Gl * & o o @ S OOOSOOOODD S DDA a o & = ® RO OO IO D D00 CHD D DD OO0 00O DO O GOOOODODOIS DD O HOGBNDODODDODIODIADOD IO D e & & B & 8 & & & & s & & = DO OO GO DD DISCRARGE 0.0 3.65%=09 1,928-05 1.25%-11 0.0 0.0 b, 018~ 11 3.557=-134 4.05%-09 3.28F-N6 u,86F=11 0.¢ 2.22E-12 L,72%=-08 3.978-05 2. 747=10 2.78E-3C 1. 828-11 t.651F- 10 170“’5“'-05 1.€97-09 9,09E-10 5.,398-08 9,352-05% 7.23E-10 1.86E-009 1.998-08 §.67E~05 5.50F=10 %, 30R=C9 b.zer=-14% b,24%-08 7.82E-05 2.29P-11 5,8Lp=10 2.988=-18 1.20%-09 €.557-10 2.06F-114 4,23E-08 '71‘15?‘05 1. 0FE~-09 5.82%7-07 1.35%7-05 7-68?‘13 000 1.12%-04 7.53E-07 8.867-00 4,598=-04 1.62E=-03 BUBNTOP= N THE WASTE ResuiTing Fra A MeTric Ton oF Uraniuv rarseD To A PR REFEPENCF PWR EQUIITBRIC® FURL CYCLF -- WASTE DECRY TIMES 33000, M¥D, FLUA= 2,92% 13IN/CM**2-3EC 1. ¥ 0.0 6.15E-09 1. 3LE=-05 10263'11 7.957-08 2.787-05 2. 16%~-10 B.G2F=10 3.75F~ 11 2.702-10 S U5TF-L5 %.7‘?’69 1.327=09 3. G4F~-08 6.56E-05 1. 05F=-09 1.478-09 8.26?-08 5.08F7-95 9. 51F~-10 1.« 31E-09 6.OBE-1% 1.092'08 5.49%8-0% 2, 31E-11 B8.17E~10 5.19E-186 1.21F=09 1,037=09 3,52%=-14 £.92E-08 5,237-03 1.06R~09 5.83E=-07 8.74FE~-08 7.708-13 g.0 5.62E=07 T.53E-07 0.0 §.60%-08 8.13E-C% ¢.0 0.0 0,0 b,127-11 1.63E-%3 1, 15¥=-08 1.18¥=-0% T AuF-10 0.0 1.03F-11 1, 34F~-07 1.80%~-05 2.2072-10 £.517-10 1.01B-10 4, 5TF-10 2.74%-0% 1. 74F-00 2.137-09 1.51F=-07 3. 30F=05 1.69F=-09 7.50E-09 1. 407-07 Z.067-05 1. 33F-0¢ 1. 13F~-1C 1.208B-027 2.76¥-05 2.35F-11 1.327-09 8,75E~- 16 1.23F-09 1.747-09 6.027-10 1 177-07 2.83F-0% 1.08BE-CY 5.85F-07 6.74F=08 7.738-13 0.0 5.,598-07 7.53%-07 0.0 4, 60%-04 8, 08®=-05 . k L= . 4 -8 3E-08 ar-06 S3%=-11 s e @ DO = = b D - 2o t,8BF=-11 B.OSF~-13 2,58E-08 2. 03F-C7 2,68F-10 0.0 5.13?‘1? 3.01g-07 2.458-08% 2.89E=-1% 1. 53r-09% 6. 1LE-D 1.027-09 u,79%-06 2.062-09 5. 008-09 3.388-07 S.78F-0¢ 3.98%-0% e 78?.“'09 3.137~07 C.36E-06 3.5BE-0% 1. 5RE=-)9 2.537-10 2.58F-07 u,83%-06 2,79F-191 3. 14E=-09 1.70€=-158 1, 467=-09 3.839=50 1,177-13 2.628-07 L.628-06 1, 28%-09 5. 9%2-07 £.7ER-08 7.857-13 g.C 5.5%%=07 7.53%-07 0.6 U, 6CE-00 8.08F-06 ¥ACLTIDE THFRMAL FIUWRR, T = M OF ERAYY MPTAI CHRRG®D TO FFACTOR 30, Y 0.9 i, 75E-08 6.60E-07 J.567=-11% 0.0 0.0 0.0 %, 1LE-190 Y,677-92 5.277-08 1., 137=-07 7.22%-10 0.0 2.967-10 £, 1!11:“-01 1.37%-06 E. CBE-10 a.13®-00 3.8%5%-09 2,09%-09 2,67E-05 L,B0F-0%° 1.35F-08 6.90%=-07 3.,227-06 i,077-0R 4, bF-09 6.33%-07 2.987=-06 9,56%=-00 3.88¥%=-00 5. 1RE=1C 5. UgE-07 2.h9F=06 5. 517=141 §,.398-09 2. 86%=15 3,39E-09 7.95F%=09 " o"OE- 13 5. 3833807 2.58%-06 2,997-09 6.38%-07 6,757=-08 g, i97~-13 0.0 5.59%7-07 7.54E-07 0.0 L,r2%-0L B, 0RE~-06 HATTS 100. ¥ 8r-98 TE-07 4r-10 3E=-10 1E-17 . 95E-0R 5.76E~08 2. 69FE~C9 0.0 1- 97?’;)9 G, 27707 €.977-07 L,50F-09 1.54F7-08 2. 367-08 3. 15%=-09 1, 35F=08 3.58F-08 S.04¥-08 1.0LBE-0% 1. 6UF-06 L,01E-08 3,07F=08 9, 8Ur-0" 1.52F-06 3. 607-308 2.737-08 T.80E-10 g.27F-07 1. 37F-06 4.828-10 3.131-08 30 OOE"‘i; 2,52F-08 1.20F-08 2.068-12 B.08®m-07 1.337-0€ 2.227-08 9, 44F=-07 f.76F~08 9, u0FE-143 0.0 %,593=07 7:57?’67 0.0 1.67E-0L 8. 08F-0F 0 % 3 6 0 0 0 u 1 0 3 2 D 0 0 8 3 7 300. ¥ 0.0 7.54F-08 4, 91F-08 2.27F-09 0.0 0.0 0.0 7.24F-009 8, 36F- 08 9; ?"\‘OF"O(:' 1. LEFP-08 0.0 e 327-08 Fu4rF-07 2. 397-07 2,317¥-07 2.64%-07 Y. D1F=09% 2. 22F=07 ql q’:’?"fi‘"‘ 2, 36¥-07 81 AOF- O—’ 2.00F-07 B, 147-09 1. 708-07 b,12r-15 2. 1RF=07 1. 261|'GB 2,BUF~13 B, LOF-0" 1.92F-07 1.90%7-07 2,5L8F-06 . 78F-CB 1.207-12 1000. ¥ 0.0 7.83%=-08 B 9tE~-11 2. 5NE-08 0-0 O'O 0.0 8.00F-08 2.6172-09 R.RGQF-DT8 S.01FE=- %1 1,53r7=07 000 1. 66E~07 1, 01708 1,227=190 b, 288-07 8.77P=-07 1.98%-0% 3,50%8=-09 2.397-1C 3.38°=-0¢8 2.872-08 1. IBE=06 2 HGR=D 2.2EE=-0F 2,927=-06 1. 058=-0¢ 2.67%=-1D 2.058B-06 2.597=0¢ B.R2E-190 a,.02%-07 2.098-10 L,58Rr=-08 1. 7T8E=-0F fi. 38 E~-1F 2.3%97-206 1. 31FE~-03 5. 75F-133 B, RIR=-07 2. 317=-10 2.107-0¢ 9,B4E-0F 6., 897=~08 2,62F=12 0.0 5.59F-07 7- 92?’-07 0.0 L, 9RF=-01 B,08F=-CE TALCULATIONS ARE BASED O aeMoving 99,57 oF U aND Pu FrOM THE SPENT FUEL AT 150 DAYS AFTER DISCHARGE, 3000. Y G.D 8.63R-08 2. u"F- ‘!2 2,17e-07 0.0 N.0 n.0 6- 95?"@-? 1, 98E-08 9.57%-08 L.23%-13 1. 16E-08 0.0 1. 26B-06 1. 128-06 5.128-12 3.727-06 £,88%-04 1. E0R=-05 3. 79R-09 1. 0NR=-11 2, 9Lv-05 2. 987-05% 1.258-04% 1. 29P- 91 1. 73E-0% 2- SBP‘GS ‘ic 16?"06 1,327 1.55F-05 2.257-05 9,39%-130 9, 95%-07 1.012-1% 3.988-07 1.358=-08 2- 27?-—-1“ 2.078-05 1., 445-08 9, 72%=-07 Y.656%~12 1. RRE-05 3.107-05 7.267-08 7.138-12 0.0 5.59F-07 8, 73%=-07 0.0 5.072-01 8.08%-06 TaeLE A-15, Isotopic TrervaL Power (W), AS A FimcrIon OF TiME AFTER PROCESSING, OF THE ACTINIDES AND TrEIR DAUGHTERS 10000, ¥ 1,727=-12 6, 81F=-0% n.n 7.35F-05 1,527 =06 2.087=-11 Jo04F-00 3.89%~05% £,798-05 5. 18R-09 4, CER-11% 2. 7CF-0L 1.27F =04 T. 737 =0¢F ulQfiF‘}i 1, 0P=-08 2.3237-01L J.5RP=-DE L,547-"%1 9,707=-065% 2., 07F=-0% $.28R-09 1,387 =06k h, 19T =11 3.68F-06 7,917-0% a,23F-14 1,917=04 1,977=-08 £,36F~-12 1.,337-04 3.92E-11% 1.68F-0L 1, 0%7=00 9.%1%r-08 2,807-1%1 Nn.0 5.59F~07 1.19F-0% 0.0 5.07F7-04 £.08F-06 100000, ¥ 0.0 8.95F7=-07 1.956F- 10 L, 65F-05 S22 DD O 1.U9%=-C1 9.16E-07 9.08F-07 2.57E-11 5.38F=-05 0.0 B, R1P=-08 $.052-05 3. 23E-10 T, 96F-0N 3.07E-0L 5.95F-00 3,587-08 £.31F=-190 f.29E-03 1.0%1E~-03 1. 1BE=-05% T AP0 7,99%7-04 5.U2F-03 1. 098-05 7.35F-10 M. 48E-CU 4,B81F-03 R.B67=N9 9,39F-N6 5. 36F-10 B,52%=05 6,25F=-01 1.438-132 t,o88-073 1. 35E-07 9,868E=-11 %, 17E-05 6.09F-1%0 3.91E-013 6.23R-0L 2.78R=-07 4,50E-10 0.0 5.59E-07 8.,257-08 0.0 4,93%-04 3.08E-05 0gl POWER= pa23t U232 U233 g23a U235 U236 u237 p238 p239 uzud ¥p236 XF237 ¥P238 ¥E239 yp240H ¥p2u0 TH236 U238 PUZ39 a1 d OV ji Ty2u2 TU243 pU2L4 rU24% rM281 L1H282H 242 anm2u3 AM20l AM2u5 cH2u2 TH243 cMz2oy BR24Y BR250 CF2u9 CF250 Cr281 CF252 CFP253 Cr2su F52%3 TOTAL TaaLe A-16 (conNTINUED) REFTERENCR PWP® EQUILIBHTUOM FUFL CYCLE -- WRSTE DECRAY TTIMES CHLPGE D.0 0.0 G.0 4,71E=02 1.96%=03 - - - - a - * - - . - - - - . wn I | D LF% » - DCDC)Oflflfi)O%DQDO(DC)Q<3C3OCDC)OIDEDCZO-3(7C>C’O(BCBC)OO(3C?CJC)OCJC}O\313<)C)&)O=D O ¢ a s & & @ t T2E-02 30,00MK, BURNUD= DISCHARCGE 2.86F=0¢ 1.20E~-06 6.,72F=~09 1, 09E-01 2,37p-08 3.917=08 8, 42E-06 3.978-0%5 CIC’ 2.103‘20 2.35E-55 9.99”'03 2. 40%-20 2.468-02 2.738‘17 3.0 5.898~05 L. E8E=-01 5.02F=02 7.3fl?-02 13r=-02 2.0LE-0D4 1e79R-12 6001?‘19 0.0 5.307 GO 2.608=-03 1.228-02 b.637=01 4.19%-20 7|012’11 5,278 02 1.35E-01 B, 41E 01 1.078=02 2.24E-03 7.93%-09 I.DOE‘O7 1F-1h 1 0”‘?- 6. 27”-07 8,25E-158 1, 46E-07 1.38E-65 9.81E=-09 3.27E-06 59273-12 2.03B=-10 3.35%58-09 7.18E 02 33000. MV, 1. ¥ 1.447~08 1.62F=06 5.37Fr=-08 1. 13E=-04 2. 37e=06 3.918-058 7.83r-06 30973‘05 0.0 7.618=18 4. 31V-05 2.68% 00O 3,028~-02 B.19E=02 2.04F¥-02 2,04E=00 3.58F=10 1.69E-16 0.0 5.317 00 2.5%E~-03 1e21¥~02 6., 63801 £.,90F~20 3,13F-11 1.33% 02 1.328-01 8.09f% 01 1.07E-02 2,24¥%~03 7.93E’09 1,008=07 3.028=-20 1.07%-13 2.8B0E-07 8:25E‘16 2.B0F=07 1.305~06 9.80E-09 2.513’06 3.533-18 3,10%=-12 2.53F=-11 2,23 02 BASTS 3. ¥ 1.43E-D8 2,1%E-06 1.83F=07 1.28E-04 2,37®=-08 3.9?2-05 « 12F=06 3 97e-0F - w 4 1 Py ~ 2 EC)DCDKJO o o ' < N ¢ a U1OLR&JN«#@Lflu}w&).n”(fla(fih}@ ° < o 358 080 2.57F-D3 1.20E-402 6.63E~01 1.76%8-19 65.2L0E-12 5.21F 00 1. 27701 7.508 01 1,078=-02 2.2”E'03 T.938=-09 10002“01 1-35?'32 1.078-13 5.E58E-08 B.2U4E-15 3,65%-07 1117E-05 9,7BE-09 1.49E~-06 1.588-30 7. 1BE-16 6.,62F<25 9,07F 01 FLUX= 2.92F 13N/CH*%2-SEC 300. ¥ 1. 43P-08 1. 83F-07 1. 30r=-05 1.117=-03 2. 3%9F-08 L,10%~058 5. 32E~-06 3,977~ 0% ¢,Q 2‘21F-15 0.0 1.04F=02 .0 2,397-02 13?5E_1u [ 1. 12F=38 5, 18P=-01 5.868=-02 2.67E-01 1. 3%F-05 2. 19E-0L 3.538%-10 5, 087=-10 6.0 3.65E 690 6.627-054 3,10%-03 6, 8ZF=-01 1. 76717 &, ¢ T,038-02 2,03F-08 8, 60F=-08 1. 0BE-02 2,15%-03 7.93F-09 1, 00F=-07 0,0 1. 05E=13 G.0 8315E“16 2, 16F-07 1.75F=-13 7. 7BE=(9 U1 T O - PP D . - ‘e * - 1000, ¥ 1.83%-08 2. 172=10 4b,u458-05 1,278=-03 2.L2F-06 b.55E-05 5101?‘09 3.978-0% 0.9 7, 58E~- 15 G. 0 1.08E-02 2.0 2, 20F-02 3.828=-14 o 0‘3 BQW’C? :378-02 d.LS? ¢1 1. 31E=-05 2.26R-01 3. 58F=-10C m~JQ<3 1. 688=-13 O!O 14 20F 20 2.728-05 1. 28E-04 6.66?‘&1 5.878~17 0,0 2. 898-03 5.28F-11 2, 23E-15 9,86F-03 1.90E-03 7. 938=-09 1.00E=07 0.0 1, 037-13 G.0 7,928~ 185 5.E3E=-08 3031E'15 4, 54r-09 6.0 0.0 0.0 0,3 2, 17 00 NOCLIDE THYRM2AI DOWRER, WATTS = MT OF HERAVY MTTRY CHA®GED TO PFACTOR 10. ¥ 30. ¥ 100, ¥ 1. 03808 1.83%¥-08 1,83%-08 2.807=06 2,URF-06 1, 25F=06 4.LQE~-0T7 1,20F-06 4,28F-06 1.82%-04 3,22%-04 46,80E-0L 2.378-06 2,378-06 2,3BE-06 3.91E~-05 3.92%¥-0% 3,9€E-0F 5, 11E-06 1,98%~-06 7,A5E~-08 3,97%-05 3,97%8-05 3,97%-05 g.0 8.0 Q.0 7.598=-17 2,28%¥-15 7,5BF-16 0.0 8.0 0.0 1.00%-02 1,00%=-02 1,01 0.0 0.0 Q‘O 2,458-02 2,058-02 2,437-02 3.83F-16 1,15%=-15 3,83F=15 0.0 G0 0.0 ,828-06 3,72E-08 1,80P-15 3,088 00 2,.87% 90 1,62% D 5. 06E-02 5,.07F-02 S, 18F-02 1. 38F=-0% 2.118=-D1 2 68F~01 1:33E°02 ga15E-D} ng‘fi& 2.058=00 2,067-0L 2, 11F-Qu 3.58%=-16 3,3RE-10 3, 58%-1D 1. 68%¥=-15 5,0%5%¥-15 1, 68BF-14 0.0 0,0 0.0 5,837 00 5,47% 00 5,02F Q0 2,498-03 2,27¥-03 1, 65F=-03 1, 17802 1.06¥-02 7.73F-~-03 s 63801 6.61E-01 €,57P~09 5.88%-19 1,76P-18 5,88%=18 2:21E=-14 2, 19%-2% §.0 2.688«01 2,41E-01 1, 75E-CH 1.09%-01 7,058-02 1,55E-02 5,738 01 2,66% 01 1,83F 00 1. 078=-02 1.07%-D2 1.06F-02 2, 24F-03 2,2372-03 2,21F-03 7.938-09 7,93E-09 7,93F-09 1.00E-07 1,00F=07 1,00F-07 Q.0 0.0 0,0 1.07E-13 1.487P-13 1. 0BE-13 1., 98B-10 1.982-17 0.0 8,24B=18 B,28Y-16 8,21F=16 3.818-07 2,67¥-07 3,208-07 B.098-07 2,.80%-0"7 £,87E-09 9,73%-09% 9,.58¥-09 ©,08E-DC 2.38E~-07 1. 26fi°09 1. 37817 0.6 0. 0.0 1.36F-28 Oufl 0.0 0.0 0.0 n,0 6.71E 01 3.61% 01 9,69F 00 30000 ¢ 1, 43F-08 9, L18B-19 1.372-04 1.26E-03 2. 56E~-0F 5.&65E-05 4,2tE-09 3. 97E-05 . ~2 tad < Lfl 1 i o —a b2 =2 O{Dafldfib—flCJM~9 - Oc}*twf)dtjmja m~ 02 B-13 m~4' 5, 0Uv=-13 G.0 5.75%=-02 2.978-G9 1.398R-08 5. 05E=01 T. 76818 D0 3. 17w-07 9., 06%0=30 B, 26F= 1A 8.33%-03 1. 44%8-03 7.93E-09 G,88%-08 0,0 9, 47g- 10 0.0 ?0322‘16 1.06E‘09 3,0688=1% 9,738~-10 10000, ¥ 100000, ¢ 1.43%-0R 1,037=-08 0.0 0.0 b,55E-04 3, 75F-03 1,248=03 <,73E-04 3,23F=-0F 9.79F-08 8.24%=-05 1,08BR-04 2.357=-09 1,24F-12 3,.979-0% 3,97E-05 6.0 0.5 7.51F=-14 §/,88%=13 .0 0.9 1. 10F=02 1.07E-C2 0.0 .0 9,92%-03 2,BS5E=05 3,787-13 3,47F=-12 C".O 0.0 0.0 G.0 9,3RF-2% L. 1.28F=01 1.80%~-02 Q,87F-02 O,83FE-08 £, 1ur-08 3,23E-09 2,308 Z2,078-0u4 3.878-10 3,58F=10 1,87P=92 1,5838=-11% 0,0 .0 R,otw-(:3 2,74E-06 L,06%-23 0.0 1.80%-22 6,0 2, 68F=-01 7,708-05 R.82r=-16 5,337-1% fi.o 0.0 4,33P-2% 0.0 0.0 0.0 2. T3F=-15 2.51E=- 14 L.3F=-03 2.LL¥-04 5.15%8-0D4 2,13F=-10 7.93F-00 7,90E-D9 9,8%8-0N8 §,25F=-08 6,0 0.0 7. 16E=-%8 1, QQE—15 0.0 0. E.S4F-1486 1, 53fl-fl7 1.097-45 0,0 2.31P=15 B, 481E=17 4,u57=-12 0.0 0.0 .0 0,0 0.0 9.0 0.0 6.0 n.o 5.30F7=01 6,53F-02 1£1 TaaLe A-17, Swmary TABLE OF THE RetaATIVE INHALATION HAZARDS OF [SOTOPES OF THE ACTINICE ELEMENTS AND THEIR DAUGHTERS THE RELATIVE INHALATION HAZARD 1S DEFINED AS THE VOLLME OF AIR (M) REQUIRED TO DILUTE THE RADIGACTIVITY [N WASTE TO THE 12VELS GIVEN In TapiE 1T, Coiwmn 1, oF 10 TFR 20, NUCLIDES WHOSE HAZARD MEASURE IS LESS THAN I M3 OF AIR AT A TIME AFTER PROCESSING 0F 30 VEARS ARE EXCLULED, RFFERENCE PRP FQDIITRRIOM FUEL CYCLFY -~ HASTE DECAY TTNMFS POWEP= 30,00MW, BURNUP= 33000.K¥D, FLUX= 2.92F 13N/CH**2-SEC HUCLIDF IT¥HAIRTION HRAZRTD, M**3 OF RIR AT PCG BASIS = T OF HYAVY MFTAL CHARGEY TOD REACTOR CEAPGE TISCHAPGE 3. 1 30, ¥ 300, Y 3000, T100000, Y ac227 0.0 1.62% 07 4,31F 07 1.97E 8 3.%13E {8 3.58% 08 3,38F 09 TH227 0,0 1.23F 05 3.40® 05 1,557 C6 2,47E 06 2.82F 06 2,67% 07 TH228 (.0 7.58% 09 2,68% 09 2,627 08 1,95E 07 9.83%F 02 6,207 04 TH229 0.0 1.75% 06 1.79% 06 4,94% 0% 3.15%F 08 3.02F 10 6,47F 12 TH230 0,0 2.5BF 08 2,%9F 0B 2.82F 08 1.313F ¢9 1.37F 10 2,.75F 1% Pr2317 0,0 £.17E 08 6,17E OB 6, 18F 08 6.26F 08 7.756F (8 6§,76% 09 P2233 0.0 1708 07 1.70F% 07 1.T7T1® 07 4,77F 07 1,88% 07 1.83% 07 U233z 0.0 1.25% 07 2,278 07 2,55F 07 1.90% 05 9.787-06 0.0 0233 4.0 1. Y57 04 2,L6F 05 2,22F 06 2,237 D7 2,35F 08 §.4FE DG t23: 8,187 %0 1,R9% ©8 2.23F 0B 5.59F 22 1.93F 09 2,19E 3¢ 1.69% 09 U235 31,54F 0% &,2BF 06 4.29F 06 u4,28F (& u,30F 06 L.61F (6 ¥,76F 07 7235 €.0 T.291F 07 7,218 07 7.23% 07 7.%6F 07 1.08%% 0B 1,.98F 08 U238 1,077 1% 5,287 0B 5,24E 08 5,24F 08 5.2UF 08 5,247 DB 5,28F 0OF ¥F237 0.0 3.40F 12 3.40F 12 3,428 12 3.5u4% 12 3.75E 12 3.65% 12 ¥P239 0,0 £.DBEF DB 6.CF5F (B £,04F DB 5,897 08 L, 671F 0B 7,03F Ot PU236 0.0 2.53€ 09 1.27F 09 {.7BE 06 5.368-23 0.0 0.9 PU238 C.90 2.02F 14 %,38F 15 1, %15F 15 41.79E 14 2,98F 08 0,0 PU239 C.0 2.6GE 13 2,69% 13 2,728 13 2.93F 13 d4,B68F 13 9,837 12 PU24¢ 0.0 3. 98F 13 5,LF 13 1.,13F 18 3.43F s 4.08F 14 S5.18F @9 PU24%Y 0.0 T.79F 14 4, 89% 94 4,367 13 3, tiF 1t 8,.87FE 10 2,.60F 07 BPR2E2 0,0 .95 11 1.15E 11 1. 16F 11 1,288 11 3.30F 11 1. 17" 11 AMZHT 0D 7.93% Y4 3,0%F 10 8.20F 18 S5, 47F 48 R,62%7 12 L, 117 08 BW222% 0.0 4,578 13 4,%1® 13 3.99F% 13 1, 16E 13 5,237 07 0.9 AM242 0.0 9.14F 09 9.028 09 7,98F G9 2,337 09 1.05F Q04 0.0 ER2E3 D.0 9,088 13 9,08% 13 9,08F 13 8,84F 13 6,92F 13 1, 05F 10 cx2L2 0,90 4,25° 1% 4.2%E 13 1.63F 312 O0,77F 11 2.15F 06 0.0 cH243 0,0 1.84F 13 §.72F 33 9,59F 12 2,77F 10 1, 109F7-15 0.0 cH2uk N0 B.0%F 1% 7. 34E 1% 2,54F 15 §,20F 10 7.87F-02 2.39% 00 crK28S 0,0 1.73E 12 1.71% 12 1. 70F 12 V,65F 12 4,337 12 3,89% 08 cw2u8 0.0 ALE2F 11 ILL2R Y ILLOF 11 3,27F 3 20208 19 1.39% (5 £x247 0.0 1.,26% 06 1,267 06 1.26F 06 1,26F U6 1.26F 06 1,26% 06 TM248 0.0 3.95% 07 3,96F 97 3,96E 07 3,95F 07 3.93F 07 3,25% Q7 Cr2u49 0,0 T.80F 07 1.86F 08 1,86% 08 1,710F 08 S5.38% 05 0,0 CF250 0.0 1. 8UF 28 1.%57F 08 3.76F (7 2.38F 0% &, 70%-071 8.59F-03 CF2%% 0.0 £,57P Of u4,56% 06 t,LEF 0F 3,62F 6 4.53F 05 &.0 SUBTOT 1.,93FE 11 .37 16 9.75% 15 4, 84F 15 1.00F 18 2,38F i 2,02F 13 TOTALS 1.937 91 1,37E 16 9.75F 35 &, 8u4F 15 1.,00F 15 2,38F MW 2,.02F 913 Zel Tapie A-18, Suwvary Tasle oF THE ReLaTive IngesTion Hazarns ofF IsoTores oF THE ACTINIDE ELEMENTS AND ThEIR DAUGHTERS THE RELATIVE INGESTION HAZARD IS DEFINED AS THE VOLWME OF WATER (M3) REQUIRED TO DILUTE THE RADICACTIVITY IN THE WASTE TO THE LEVELS GIVEN IN TasLe I, CoLtmn 2, oF 10 CFR 20, NUCLIDES WHOSE HAZARD MEASURE 1S LESS THAN 1 MO OF WATER AT A TIME AFTER PROCESSING OF 3 YEARS ARE EXCLUDED, REFERENCE PWR FQUILIBRIOM FURYL CYCLE -~ YASTF DECAY TIMES POWEE= 30.00MW, BURNUP= 33000, H¥D, PLUX= 2.92F {13N/CM**2-5RC NUCLIDE INGESTION HRZARD, Mx%x3 CF WATER AT ©LG BRSTS = MT OF HEAVY METAL CHARGEDT TO RTACTOR CHAPGE DISCHARGE | 3. ¥ 30, ¥ 300. ¥ 3000. Y100000. Y NP237 0.0 1.13% 05 1,13E 05 1. 14E 05 1.18F 05 1.28F 0% 1.22% 05 ¥Pz39 0.0 1.82F 05 1.82% 05 1.81F 05 1,778 05 1,38E 0% 2,118 01 Pu238 0,0 Z.8B2E 06 1,98E 97 1.61F 07 2.50F {6 &,15% 00 €.0 Ey239 ¢.0 3,23F 05 3.23E 05 2,26%® 05 3,52F 05 5.57% 0% 1, 16® €5 puza80 0,0 4,77F 0% B,17% 05 1.35F 06 1,71T {6 1.30F 06 &, 22F% 01 P21 0.0 2,57 06 2,23% 06 £,20F D5 1,€67F 03 1,33F 03 3,90F-01 Anm241 0.0 3.97% 07 4.C19 07 4,10E D7 2.73% 07 4,31% 05 2,067 01 am2u2om 0.0 2,29E C& 2.26% 06 1.99F 06 5.82F 05 2,61E 00 0.0 RmM2L2 0.0 9. 14F O 9,02E O& 7,987 G4 2,33%F 0k 1,05F-01 0.0 EM2L3 0,0 L,54F 06 L,S4R 06 B,53F 06 4.42T% 06 3,86F 06 5,278 02 cw2e2 0,0 B,51F 08 8,428 06 3,27F 05 9,58F Q2 4,30FP-01 0.0 cM2t3 0.0 7.35E 05 6.89%9F 0§85 3,84% 05 1,11F (3 &,39F~-23 0.0 cHMz4t 0,90 3.43F 08 3,.06F 08 1,098 08 3,51F 03 3.37F-09 1,02E-07 cm2es 5.0 8.54F O B.S3E 04 B,52F 04 8,32F 04 6,647 (4 1,9LE 01 cMz2a8 0.0 1.71F 04 1,71 048 1.70F O 1,6BE 04 1,10F 04 6,95F-013 SUBTOT 0.0 1.25F 0% 3.8%E 08B Y., 76F (8 3,74% 07 6,09% 06 2,38F 05 TOTALS 6,50F 04 1,257 09 3.BSE 08 1.76F% 08 3.74F 07 6, 12F 06 1,86F 06 £el TaBLE A-19, SuvmaRy TASLE OF RADIOACTIVITY OF THE FIsSION PRODUCTS AS A FuMCTioN OF TiMe AFTER ProcESSING MuCLIDES WHOSE RADIOACTIVITY EXCEEDS 0,001 C1/METRIC TON OF U CHARGED TO THE REACTOR ARE INCLUDED. IT IS ASSUMED THAT, AT THE TIME OF PROCESSING, 1007 OF THE X& AND KR IN THE WASTE IS REMOVED, PEFTERFNCE P¥FR EQUITLIRBPIUM TOFLI CYCIE -~ WASTE DECRY M™THES PAVER= 30.00!“, BURNG P= 33000.M¥D, FLUX= 2,92F% 13I/CH**2=SEC NUCLIDE RADIOACTIVITY, CUPTES Bi5TS = BT OF HERYY ¥ETAL CHARGEL TO PEALTOP CHBAFGE DISCHARGE 3. ¥ 30. Y 309, ¥ 2000, ¥Y100000. % g 3 0.C 5,917 02 5,84F 02 1.27F7 02 3.14%-05 0.0 0.0 SE 79 0.0 3.98B-01 3.987-01 3.98F-01 3,97%-01 3.867-0% 1,37%-01 sr 9C 0.0 7.687 04 7,13F 0L 3,667 O0U B,.A9F 0% S5,5ur-28 0.0 T 90 0.0 J.68E CL 7.%3F 04 3.66F 08 U4,69F 0% 5.54r-28 0.0 Z? 93 0.0 1.89E 00 1.89F 00 .3¢% 00 1.89% 00 11.B8F 060 1,80F 00 EB 93% 0.0 1.838-01 4,288-901 9,52% 00 1.89F O0 1.88BF 00 3,807 0O TC 99 0.0 1.437 01 9,437 01 1.83F 01 1,437 01 1,827 0% 9,037 01 D107 0.0 1 10F=01 1, 108-01 1.10F-01 1.107-0% 1,107-0% 1,NAP-014 Cptiim 0.0 1.037 071 8.86F 00 2.33F GO 3.64F-06 0.0 0.0 5BI25 0,0 7.89E 03 3,H5E 03 3,56F 00 0,9 0,0 G.0 TFI25M 0,0 3.%9E 03 3,5%F 03 1.487 90 0,9 2.0 .0 sS¥126 0.0 5.467-01 5, 4€E-01 5.46F-01 5.85E-01 5.3%E-0% 2,73E-01 Ssi126m 0.0 S5,48P=01 5, 86P-09 S5,L6P-01 5, 86F-01 5,35F-01% 2,73%-01 SB126 0.0 5,43E-01 5.449%~01% 5,8%8-01 S.LOE-09 S5.30F-01 2.70F-01 Ti29 0,0 3.747-02 3,78F~02 3,7LF-02 3,78E-02 3.74F-02 3,73F-02 csi3t 0.0 2.%2F 05 7,70% OU B.LCGF 00 0,0 n.0 0.0 €s125 0.0 2.867-01 2,85F~01 2.86¥%=-01 2.86E-07 2,B6F-01% 2.807-01 £8137 0.0 1.07F 05 9,98F CO4 5,347 04 %,04FR 02 8,37F-26 0.0 BR137M 0.0 9.38F 04 9,318 G4 4,997 OHU 9,75F D1 7,.B2R-28 0,0 PHILT 0,0 2.73F 04 4,uQ% €4 3,477 G171 0.0 0.0 0.0 5¥151 0.0 1.25F 03 t,22% 03 9,837 02 1.,14% 02 5.23%-08 0,0 U152 0.9 1.227 01 1,03E 01 2.18% D0 3,6LE-07 2.0 0.0 RUI5L 0.0 £.86% 03 6,02E 03 1.87% 03 1.55F-02 €.0C 0.0 ¥U1S5 0.0 £,33% 03 2,01E 03 6,u8F=-02 0.0 0.0 0.0 SgRTO™ 0.0 6,967 05 4.7%" 05 1,.BOF 0% 4.30F% 02 2,04% 01 1,537 01 TOT2LS 0.0 L 1AE OB 6,77F N5 1, 80F 05 4,308 02 2,04F 07 1.53F D4 FEL Taste A-20, Suwaary TapLe oF RewaTive InmaLarion Hazaros oF THE Fission PRODUCTS In THE WASTE RESULTING FROM A MeTric Ton oF Urantum CHARGED TO A PR RELATIVE INHALATION HAZARD 1S DEFINED AS THE VOLWE OF AIR (3) REQUIRED TO DILUTE THE RADICACTIVITY IN THE WASTE To THE LEVELS GIVEN IN TaBLE 11, Coui 1, oF 10 CFR 20, NUCLIDES WHOSE HAZARD MEASURE s BELOW 106 M3 oF AIR AT A TIME AFTER PROCESSING OF 30 YEARS ARE EXCLUDED., IT IS ASSWMED THAT, AT THE TIME OF processing, 100% oF THE KR AND XE IN THE WASTE [S REMOVED, REFPEFENCE PWE EQUILIBRIUM FUEL CYCLE -- WASTE D¥CRY ™IMESR POWER= 30.00MW, BURXUP= 33000, ¥WD, FLUX= 2,92% 13N/CH**2+-SEC WUHCLIDE INHRALRTION HRAZAF®D, WM¥%3 OF RTE BT PCG BASTE = BT OF HERVY METAL CHARGEL TC REACTOR CHAPGE DISCHARGY 3. ¥ 3¢, ¥ 300, ¥ 3000. Y100000. Y 8 3 0.0 3,86E 09 2,928 09 6.37F 08 1.57F (2 0.0 0.0 SFE 80 0.0 2,58¥% 15 2,38F 15 1,227 15 1,56F 12 1,8%E-17 0.0 Y ¢ 0.0 2.56% 13 2.38F 13 1,22F 13 Y, 56F 10 1,85%-19 0.0 ZR 93 0.0 4,727 08 L.72F 08 4,72F 08 4,727 08 4,71F 08 U, 50F 08 NB Q3% 0.0 4,578 67 1,067 08 3,79F 08 4.72F 08 4,.7%R 08 4,50F 08 TC 99 0.0 7.178 69 7,17% 09 7,17F 09 7.16E 0% 7.10F 09 5.17F 09 RUI0E Q.0 2.01t= 15 2,58F 14 2,.07F (6 0.0 0.6 0.0 SB125 0.0 B.77% 12 4,06F 12 3,967 09 0.0 .0 0.0 TE125M €.0 7.977 11 3.79F% 1% 3.69F 08 0.0 ¢.0 0.0 T129 0.0 1.87F 09 1,87F 0% 1.87F 0% 1,87F 09 1.B7E 09 1.826% 09 cs138 0.0 5.31F 186 1, 93F 18 2.10F 10 0.0 ¢.0 0.0 €8135 0.0 Q,55% 07 9,54F 07 9.54F 07 9.38F 07 9.353F 07 9,.32% 07 €5137 0.0 2.13F 14 1,99E 14 1.07F 14 2.068% 11 1,67E-16 (.0 PHTLT 0,0 4,878 13 2,20E 13 1.74F 10 0.0 0.0 .0 S¥ist 0.0 6,247 11 £.09F 11 4,91F 11 5,72E 10 2. 61F 01 0.0 EU152 6.0 3.06% 10 2.57E 10 5,40F 09 S.097 02 0.0 0.0 9154 0.0 £.86F 13 6,028 13 1,87F 13 1. 55E 08 0.0 8.0 FU155 0.0 2.11E 12 6.69E 11 2. 16% 07 0.0 0.0 0.0 SUBTOT 0.0 S.57E 15 3, 13E 15 1,36E 15 1.85E 12 1.00% 10 B, 03® 09 TOTRALS 0,0 1.01% 16 3,39% 15 1. 36F 1% 1.85F 12 1.00F 10 B.03F 09 Ggel TagLe A-21, Susary TABLE oF RELATIVE INGESTION HAZARDS OF THE F1SS10N PRODUCTS IN THE WASTE RESULTING FROM A VETrRIC Ton oF Uraniwm CHARSED TO A PWR RELATIVE INGESTION HAZARD 1S DEFINED AS THE VOLLME OF WATER (M3) REQUIRED TO DILUYE THE RADIOACTIVITY IN THE WASTE TO THE tEVELS GIVEN iN Tasie {i, oLty 2, oF 10 CFR 20, MNUCLIDES WHOSE HAZARD MEASURE 1S BELOW 1 MO oF WATER AT A TIME AFTER PROCESSING OF ) YEARS ARE EXCLUDED, [T 1S ASSWMED THAT, AT THE TIME OF PROCESSING, 1007 oF THE KR AND XE IN THE WASTE IS REMOVED. FEFERENCT PHE FQUTLIBRIUK FUORBY CYCLP == WASTP DFCAY TTHMERES POWER= 3C.00MW, BURNUP= 33000.94D, FLUI= 2,928 13N/CH**2-35FEC NUCLIDE INGESTTOK HAZAPD, M*%3 0OF HATER a™ ¥CG ERSTS = MT OF HEAYY MFTAL CHARGET ™0 PFACTOR CHAPGE DISCHARGE 3. v 30. ¥ 300. ¥ 3000. TIO00D0O0, Y H 3 2,0 -3CE 05 1,9E5F 05 BL,25F 4 1,05E-02 0.0 C. 0 SP 90 0.0 2,5€% 1% 2,38% 11 1.22% 11 1.56F 08 %.85F-21 0.0 Y 90 0.0 3.84F 09 3,57% €9 1,837 09 2,35F 06 2,77F-23 0.0 T™C 99 9.9 To17E 0L 7,377 0t 7.17F LU TL16F Q08 7, 30F 04 S, 17F 04 SBi125 0.0 7.89E 07 3.65% 07 3.36F 08 0.0 G. 0 0.0 TE125M 0,0 3,192 07 1.518 07 4.UBF 0 0.0 .0 0.0 T129 0.0 5.24F 05 6,2L7 DS €,28F 0% 6,24% 05 6,288 05 6.217 05 cs13s 0.0 2.36F 10 8,%56E 09 9.323% 0% 0.0 0.0 0.0 cs137 0,0 5.34F 09 4.98% 09 2,€7F 09 5.21F 06 4,1318E-21 0,0 BR137k¥ 0.0 9.,98F 04 3.21F 0L 4,997 Qu 9,75% {% 7.82F-26 0,0 PM1UT 0.0 L.87E 08 2.20E 08 1.74% {5 £.0 0.0 O, 38157 6.0 3.12F 06 3.C8E 06 2.U6F 06 2,867 €5 1,317=-04 D.G ED152 0.0 1.53F 05 1.,28E 05 2,70F Ob 4,552-C3 0,0 0.0 Ep154 0.0 3,437 08 3.0G18 08 9,38F 07 7.77F 02 0.0 0,0 sSyBTOT? 0.0 2,80F 31 2.55E 11 1.27F% 11 1,65FE 08 6.95F 0S5 6.73F 05 TOTRLS (.0 L.u9% 19 2,66F 11 1,277 11 1,65% 08 T7.05F OG5 6.83F 05 ?¢el THEAN (M7V) 3.00F-01 6.30E=01 Tagte A-22, Twewve-Enerey-Growp PHoTon SPECTRUM AS A FUNeTIoN oF TIME FOR FISSION PRODUCTS IN THE HASTE RESULTING FROM A METRIC ToM OF Uranium CHARGED TO A PWR [T IS ASSUMED THAT, AT THE TIME OF PROCESSING, 1007 oF THE KR AND XE IN THE WASTE IS REMOVED, REFERFNCE PWR EQUILIBRTUM FUFL CYCLE -- WASTY® DECAY TINES PORER= 30,00 #%, BURNUDP= 33000.M¥D, FLU¥= 2,928 13 N**2-357C TY¥FLVE GROUF PHOTCN EFELERSE RATFES, PHOTONS/SEC 1I1OE 1,558 1. 99F 2,38F 2.75% 3.25¥% 3,70F b,22¥% L.70E 5.25% 00 oe 00 00 o0 00 00 G0 oe 00 TOTAL MEV/SEC E¥EAN (MEY) 3- DOE- 6.308- 1. 108 1. 55% 1.99% 2.38E 2.75% 3,258 3,708 L, 228 4,70F 5.25% ToT GAMMR WATTS 01 01 oo 00 oe 00 00 00 00 00 0¢ 00 AL BASTS = #7 OF HERVY METAT CHARGED TO RERCTOT IRTTIAL 1. ¥ 3, Y 0. ¥ . ¥ 100, ¥ 300. ¥ 1000, ¥ 3000. Y 10000, Y 8.00F 15 3.U41F 15 8,312 14 1.70F 16 9,78% 13 1,727 13 1,48F 11 6.36F 09 BH.2%F D0 5,967 [¢ 6.20% 156 2. 14E 16 1.14% 16 3,87% 15 2,00 15 3,91E ¢ 3,90F% 12 7T,.51E 10 7,408 10 7,05% 10 1.507 15 8,.51F 1& 3.69E 1¢ 1,32F 18 5,267 13 2,97¢ 12 &,718 09 ©,u6F 05 2,98® 05 5,.22F 03 5,188 18 2,86% 1% A.10F 14 9.1%F 12 A.34® 11 1,10% 11 2,u43% 09 1,65F 0% 1,53% 0% 1.35F 00 2,66F 14 1.12F 14 2,037 13 Q.6%F W 1,848% 10 3,28F 09 2,38F 07 7T,u7P-01 2,79%-22 0.0 2,687 13 1.317 13 3,277 12 2.57F 1 2,60% 04 2,7€r-17 0.0 0.9 0.0 0.0 2,018 12 1,09% 12 2,%3F7 1% 2,02% 09 2,0%E 03 2.18°P-18 0.0 0.0 ¢.0 0.0 6.33F 10 3.17E 10 7.9%E 0% 6,398 07 6.50% 01 A.91E-20 0,0 0. Gu0 ¢.0 0.0 0.0 0.0 ¢.0 0.0 0.0 0.0 .0 0.0 0,0 0.0 .0 g.0 0.0 .0 0.0 0.0 0.0 0.0 0. ¢ 6.0 0.0 0.0 £.0 0.9 .0 0.0 B.C 0.0 0. C 0.0 6.0 0.0 0.0 0.0 g.0 0.0 0.0 .0 2.0 T7.83FE 16 2,61F 16 1.2BF 16 U, 188 15 2,1%8 15 L,11F 14 u,05®% 12 8,31F 10 8.1%% 10 7,807 10 4.58F 16 1.62F 16 8,09t 15 2.6%® 15 1,357 1% 2,55% 14 2,51F 12 5.18% 10 S.,10F 10 4,86F 10 TWELVYE GPQUP ENTRCY RELEASF RATES, MEV/WATT-SEC BRSYS = ®T OF HFRVY METAL CHARGED TO BRACTOR THNITTRL . ¥ 3, ¥ W. ¥ 30. Y 100, ¥ 300. Y 1600. Y 3000. ¥ 10000, Y 8,008 07 3.41E C7 B.S1E 06 1,70R 086 9,7UE §S 1,727 05 1,BLF 03 6,.36F 0t 6.25F CG1 5,.96F 0% 1.34% 09 a,50F 08B 2.L0E 08 8,128 07 &£,20% 07 B,21F 06 8,18% 0L 1,58F 03 1.36% 03 1, 48T 03 5.64% 07 3.12F 07 1.35FE 07 &.83r 06 1.938 06 1.09F (5 1,73F 02 3.4877-02 1,09P-02 1,927-0n 2.688 07 t.u48F 07 35.70F 06 2,752 0% 3,28F OU 5.6BF 03 1.26E 02 B8,52F 01 8,L0% 01 8.01F 01 1.77E 07 7.42F 06 1.35F 06 6.38E 03 1,228 03 2,.17F 02 1.57E 00 4,957-08B 1,8%5E-29 0.0 2.12E 06 1.0QUE €6 2,59 05 2.04%F 03 2,06%-03 2,19E-24 Q.0 0.0 0.0 0.0 1,847 05 9,22 O4 2,32E D4 1.,85% ¢2 1,8B%-00 2,00E-25 0.0 0.0 0.0 8.0 6,867 03 3.84F 03 8.65F 02 6,928 00 7.04%=-06 7,89%-27 0,0 0.0 ¢.0 0.0 .0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 .0 0.0 0.0 0.0 .0 0.0 0.0 0.0 0.0 0.0 G.0 0.0 0.0 4,0 .0 0.0 0,0 8.0 6.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 1.53% 09 S5.38F 08 2,70F 08B 8,82F 07 4,497 07 8,50F 06 8.,36F O 1.73F% 03 1.70F 03 1.627 D3 7.38F 03 2.59F 03 1.30® 03 4,24® 02 2.16% 02 4,09% 01 8,02r-01 8,3DE-03 B,18R-03 7,79F-03 100000, ¥ 3.272 09 3.78% 10 0.0 8,307 08 g.0 0.0 n.C 0.0 0.0 g.0 0,0 0.0 4,198 10 2,81%F 10 100000, ¥ 3.272 01 7,947 02 0.0 L,29% 01 0.0 O.D 0.0 8.0 0.0 0.0 0!0 0.0 B,5%E 02 8,18%=03 £E1 BIZ291% BT212 BT213 20210 PO211 PO242 0213 0295 20215 PO215 EO218 AT217 RE219 ?N220 FN222 ¥r221 r2223 PA224 RR226 12225 ac227 227 TH228 my229 TH230 TH232 PR231 U232 w233 7230 U235 G23fF U238 NP237 U235 FU233 Pr23¢ PU2u9d U249 U242 pu24at AMz2uy EM243 cM2i42 cM213 cM2Ll cM285 CH2LG CcCK247 CH248 BK249 Cr249 cT250 CF251 CF2582 CF253 cr254 P5253 TOTAL Tapte A-23, NEUTRON SOURCE. AS A FUNCTION OF TiMe AFTER PROCESSING, FOR [sOTOPES OF ACTINIDE ELEMENTS PRESENT IN T WaASTE ResuLting From A MeTric Ton ofF Uraniwv CHARGED 76 A PR [T IS ASSLMED THAT, AT THE TIME GF PROCESSING. 99,57 oF THE il AaD PU IN THE WASTE 1S REMOVED, INITIRL 4,318-03 a.Sl‘E‘E‘O.‘ 3.2uF-09 G Uer-07 2.057-05 1.61% 01 2. 95?'0‘4 1.,287=-04 6.64F-03 9.76F 00 SOUBF-OS ?.63E-Gfi 4,98%=-03 7.39% 00 I.TIE-05 ';u OE“E—GQ 2.858=-03 f.0N3% 00 2.22E-05 T.8LE-05 8- 32“" ‘32 2.797-03 4,337 00 b,86%-05 2.28E-02 1.997-08 3.61%-02 £§.,577-02 Z‘SHF'Ofl b.86% 00 8,85E-02 T.37F 00 1.96T GO u,33% 02 3737 09 Z.79F 0% 2.53F 03 3.77F 03 6.239-10 8,957 00 2.24E-b 3.22T% 05 5.12E {0 €,95% 07 1. 068 Ok 3.79% 085 5.54F 02 1,307 02 fio 1 1F—Oa 1.%3E-01 1.,327-12 1.38F=-02 1. 11E~-01 -,t 15F7=004 1.518 00 2.87F- 1L 4,578-04 3029E‘0fl 5.58E 07 1. ¢ 7.25%=03 1.0BE=01 3.26E-09 1.958~06 3. U58-05 1.13% 01 2.97F-08 T B3E-0L T.12E-02 6.85% 00 7\90T‘05 106“E'0u B8,378~03 5.91%E 00 5,37%~05 1.06F=04 4,79%7=-03 3.582 00 3.21E~05 7.%0E-0% 1.31E=11 L,E78~-03 3,028 Q0 8,087E=05 2.28F=-02 1.99F-08 3.67E-02 E,.668-02 2,27F=03 4,658 00 B.BRE-D2 1,37 00 1.%6E 00 L,33% 02 2,928 00 1.608 05 2.53F 03 a4,%%® 33 5.948-10 8.95% 40 6.297-12 3.23F 05 FL.11R 0L 1.08F 07 1.04% Ot 5.587™ 06 5.54% 02 1307 02 b, 19e-04 1.93=2-01 5.89F-13 2.63E-O2 1.06F=-01 7.98®=004 1.178 0D 1.92E-20 6.962-06 2.58E=-09 T.6ER 07 ARFFFRENCE PHP FQUILIEDTOM FO®L CYCIE -- ¥ASTE DECAY TIHNES RALPHA-¥ 3. ¥ 1.23¥%=02 5.43F=-02 3.33F-09 5.26%-06 SCBRE‘OS 5.67FE 20 3. 03E-0% 2. 9‘5?‘"-0& 1.89%-02 J.U8% 00 1.28F7-04 1.67TE-DU 1. 82E-02 2.63% 00 8' 70E-05 1. 0BF=-0u 8. HUE—O3 T, 797 00 5.20E=-0% 8,057=-05 2. 21E-11 7.‘?2?’03 1.52F 00 5.06F~0% 2.249¥%-02 2.30F=38 3.64%E~-02 1.208-01 5. OSE-@:S 3.27F QD B.85E-02 1.37E 00 1.16F 00 4,34F 92 1.80F 4D 1.9%¢% 05 2.53F 03 L.87F 03 5.80E+-1%0 8.96E 40 1.88F-11 3.25F 05 T.Y1E @b 4,977 05 9.9%F D3 5.317F 0% 5.54F 02 1.3CF €2 1.93E-01 1.17E-13 3.8L7-02 9.09%-02 7- 172"0“ 6,90F-01 B.62F-33 T, 61E=09 5.50F=20 5.24F 0% NFOTRON SOU=CE BASTS = 10. ¥ 2.752-02 9.51FE~03 3.,95F7-09 3.20%-~-05 1.318~04 9.93F-01 3.60?‘0h SQQSE"OH L,23%-02 £,03E-0% 3.017-05 1. 9BE-04 3.17E=Q2 L,57E=-0% 2, 047=-0% ?.38?'0& 1, BiF-02 3.18E-011 1.228=-0t 9.558=-05 L,QU4E-11 1, 73E-02 2,658=01 5,018-05 2.33%-02 2.038-08 3.E1E-N2 1e547-01 T RER-02 TL.LBE 00 R.BSE~{2 1,377 0D 1368 00 L, 3w 932 3.28%-01 1.832 05 2.54% 03 5.,99F 03 3,.87F-10 B.99% 00 6.27%=11 3.30F 05 RL1ME GO 2.08% Qu 8,557 03 3.95%7 05 E.58F% 02 .30 D2 4, 19v-08 1.93P-01 B,16F-16 3.59E~C2 €.558-02 T.138-04 T, 10P-01 0.0 3,05%=-22 0.0 4,56% 0% IN DISCHA®GED PNTFL, NFUTRONS/SRC W OF HFAYY MPTAL CHAPGED TO REFAUTOR 30, ¥ 5.607=02 51 2qE‘03 9. 19E~-0% 1. 55204 2.E7P-0h 5, 538=71 8. 37F=-04 1.877-03 8.63F-02 3. 36FE-0% 8, 11E-01 fl.61E-0u 6- u—'?’fiz 2.5472-01 5.51R=-34 2. 98E-0b 3.70%8-02 1.75F-01 3.307-08 2.22F-04 3. 01F=-10 3.53E~02 1.89F~C% 1. 40E~08 2,507-02 2, 122=08 3.828-02 1. 35E=-01 5.L6E~-02 1.32% 01 8,362-02 1.37E 00 1. 368 00 4,357 02 2,532-0% 1.59% 0% 2.58% 03 5.07% D4 i« 50E~- 10 9.067% 0D 1. 888~ 10 3,337 05 E.10F O 1,998 04 5.58% 03 1.RHEE 06 5.53% 02 1,308 02 b, 11R=-04 1.93%-01 i, 437-23 3.“53-02 2'27E_02 7. 02704 5. 84704 h2E 06 o O .0 .0 .0 - 0o, ¥ B,LTF~-02 2.707F=03 §,818~08 1,23%-03 i, N3E-D8 2,82%-01 §.202-03 7.00E-03 %.30R=-01 1. 7¥E-G1 3,03%-03 3,422-03 9,.77P-02 1.308-01 . 26%=03 2,.212-03 5.59E-02 R.9ZE=~02 3.237-03 1,65F=-03 te B3E- 10 5E.33F-02 7.618-02 1.7418-03 3,707=-02 2. U4E=-D3 3.63%-02 5, 88R-02 1.89%-01 2.807 O 8.B7E~02 1.39% 00 1. 167 30 4,40 D2 1.028-10 9.67% 0G4 2,51 03 Y. 3RF 04 %.207-12 9.27% 00 6.27%-10 3,08% 05 5.07% 04 1. 399 ou 1.22% 03 1,267 05 S.U3F 02 1.29E 02 4, 31%=08 1.93%-01 0.0 3.09E=-02 c.06R-04 f.65F-08 £.337-12 .0 i - , UD by & M D3O D .O .0 o3 300. ¥ £,897-02 3. 9LE-OU 5.858-07 E.22%-03 i, 23F~-04 4, 1%E-02 5.332-02 3.808-02 . 377~01 2. 508-02 1. SQE-OZ 2. QHE*OZ 1. 038-01 1.89%=-02 1, 128~-02 1. 90E-02 5.B6%-02 1. 3CE=-02 6. 68%8=-03 1. 82R=-02 1. 602-10 5.608-02 1. 11202 8,91F-03 ©.96%-02 3, 35E-08 3. 67E-02 1. 008-02 E.50E-01 4,557 01 8.90P-02 1. 407 00 1. 167 00 L.531F 02 7.61F-32 2.4078 0L 2.75% 03 . 35E 7% 4. OuF-13 .63% 00 1.88E-09 2,227 05 k,e82 ¢4 £.56% 03 1. 60F 07 5. 938 01 5.uCP 02 1.25% 02 4, 19F=-0L 1.93%-01 0.0 2,038-02 f.41F7-08 10000 Y 9, 2LF~02 RO7SE_O7 6. BE6F~D% 1.037-01 0, anr-oy 4, 96F~05 5.898-01% 3,83%-01 1.862P=-0% 3, G1E-05 1. T2E-0% 3, 24701 1, 07E-01 2.28F=05 1. STE=-01 2. 30E-07 6.30F=02 1. B7E=-05 7.00E-02 1.57F=-01 1. 66F=-10 5. 81F=-02 1. 34F=-05 9, 8uP-02 3.858-01% 6. B0%-08 3, 80°-02 1. I9E-05 1.588% DD 5.208 €19 9, QuUF-02 1.60% 00 1. 16¥ 00 4,707 02 0.0 u4,30F 02 323 93 . 267 (4 3.81¥-13 9, 93F 0C 6. 26F-09 7,287 0& 4,678 08 2.29f7 02 L, 15pP-06 $,BUF-10 5,09 02 1.137 02 4, 1IFP-04 1.93F-01 3000. Y 1,02%=-01 1,98%-08 5. 62%-05 7.83E-01 5, B5F-04 2.077-0% 5. 12F 00 3.028 00 1.5372-0% 1. 26F=D6 1.317 00 2. 82 00 1. 1B®E-01 9,54%7-07 B.FAF~-07 1. 82F 09 5.737-02 5.5%F-07 1.38F D0 1.83E-10 B UIE-N2Z 5.59%-07 R, 55R-01 1,218 00 1, RS E-07 8, 19F-952 5.16F=-1%4 ©.79¥% 46¢ £.197 01 9,53F7=-02 17,997 090 1. 18E 00 L.7BE 02 2.0 £,N9F-02 b.36F O3 1. 03% 0o 3.22%-13 1.018 Q1 1.88E~08 3.80F% 03 3.90F QU 2.512-02 6-33E'25 5-69?'11 4,31 02 8.39% 01 4. 34E-04 Te92%-01 0.0 9,95P-n% 2.47E-10 10oenn, Y 193QF'01 R, N6®~=08 5.16%-04 4, 58% 070 £, F18=-04 B, 42E-05 a,7ce 01 1.778 D 2.1 R=-01 L. 12FE=0% J7.65E 0D 2.5¢% Q1 1. F0E=-01 3.87%7-06 5,202 0D T« 67E 04 g, 1RR=-02 2.8567-06 3. %%% 00 7.25% 0% 2,50P-10 B. 75P-02 2.27r-06 7. B6™ 00 3.97® 00 7.581%8~-07 S.72%=-02 0.0 1,937 01 5.09% 0% te 218=01 2. 897 00 1, 16% 00 b, 78F 02 0.0 E,5GR~15 R.L2P 03 S.DRE 03 1., 79%= 133 1, 057 03 £,21F-08 3.00% G2 2.07® (¢t 3,4027=-1% 0.0 1. 887~ 10 2.39% 02 3.008 0% G, 11E=004 1.89%=01 n. 0 1. 028-10 1.878-10 3. 26E-07 100000, Y 9,61v-09 1,257-0¢6 1.20P=-02 3.62F7 01 u,58%7-03 1.31F-0C4 1.907 03 1,407 02 1,087 00 7.94F-0% f.0ur N1 £.037 02 1.19F 08 B. 01E=-05 b, 107 01 3.90nF 02 £.,357-01 L, 3$37-05 2.8 04 2.99F Q2 T. T3P=00 £, 05F=0¢ 3,827-0F 1.83% 02 2.0b% 04 1.167=-0% 3.987-017 n.“ 1.5¢F 02 g, Hor 01 3.682-01 3.73% 0O 1.16¥F 00 L,65F 02 0,3 0.3 9, 0Ly 02 4,99R-01 9,L3F-97 G,00% o0 CL.ROF-0T 1.67F=-81 5. 927 00 0.0 0.0 t.737-09 1.267-07 5.3%F-05 unOQF-Ou t.BRE-0O1 8¢Cl PUz38 PUZL0 TU242 PUZHL cu2i? CM284 cH2L6 CH248 CM250 CF2E0 CF252 CF25L TOTAL THITIAL 1,937 03 1.027 04 3.54F 03 2.87%=-09 1. 01 08 1.38F 08 2.0LT 06 8.11F 03 1,22F-03 3.87% 03 1.97E 05 2.65F% 01 L,42% 08 1. ¥ 1,117 04 1. 128 04 3.54% 03 B.06E=NT 2.14w 07 3.26F 08 2,08% 06 B, 127 03 1,22%-03 3.672 03 1.52% 08 u,03r=-01 3.89F 08 L A R AR D MR MR AT R A 0 4.97% 08 3.€67 08 Taple A-23 (CONTINUED) RFFEFPENCE PWR EQUILTBRTUM TUEL CYCLE -- WAST® DECAY TINWS SPONTANECUS PISSTON WEUTRON SNUECE I DISCHARGED FURL, NEUTROHS/SEC #7 OF HERVY METAL CHATGED TO RERCTOR 3. ¥ 1.33®% ¢t 1,327 04 3.54% 03 2.817=06 9.99% 05 3.02% 08 2.04E D€ 8., 12F 03 1&222‘03 3.30F 03 8.97F 08 9.34F~-05 3.05% 08 3,11® 08 BRETS = 10, Y 1,278 0Ot 1.83F 04 3.55E 03 E.OUE-GG 8,258 04 2,317 98 2,08 06 B, 128 03 1,22F-03 2,288 03 1.L3F 00 1,778-17 2.33% 08 2,37E 08 30, Y 1. 1GE 08 Z.89% 08 3.588 03 2,41p-05 3.8B8% 04 1.078 €8 2. DUE D6 B.12% 03 1.22F-03 7.89E 02 7.59F% 0% 0.0 1.09E 08 1, 12F 08 100. ¥ « 71F 03 3.67% OO 3.667 03 g8.00E~05 2.82F 08 7358 06 2. 01F 06 8, 12F 03 1-22?‘&3 7. 93E 01 8.2&3’07 0.0 9. 447 06 1.01% 07 0. ¥ . 7T1E 03 3. h6E DU 3.80% 03 2, W1E-CU 1, 13E 04 3.46F 03 1. 96F 06 g.11® 03 1.2718-03 n-913-04 8.0 0.0 2,028 086 2,347 06 1000, Y 3.06E 01 3, 1QF Qb 3.92r €3 B.03F-0b 4, 65E 02 8.98F-09 1.76E 06 8. 10E 03 1. 17E~03 9. 30E“06 0.0C 6.0 1. 818 268 1. 957 06 inge. Y 2'! 8”?"03 2. 77E 04 4,01r 03 2., 409-03 5. 10E-02 3.32E-0¢ 1.31F 0§ 8. 07E 83 1. 08F-03 8. SGE-QE 0.0 0.0 1. 35E 06 1.81F 06 10000, Y 100000, ¥ 3.887=17 1. 357 04 L, 148 03 7. 96E-03 £,9588-1% 1. 10E-08 4.89F 05 7.96% 03 8, 20%-04 6.50E~-06 5.28% 05 0.0 1.33F 00 3.5%9F 03 7.29E-02 0.0 t.01r-07 R.32E-D1 6. 67F 03 2.278-05 0.0 0.0 1.038 Ju R S M AT R SETY T R W Y T WD W = 3 e e R P D WD D P W MR DR M R S A e W R W A A L WS L e A e W TG L WL A D SR el e e ok Al e e W A e M L e kol Al s e W W 1.87F Qb 6€L Taae A-24, FLEMENTS PRESENT IN THE WASTE RESULTING FRoM A MeTrIC Ton oF Uranim CHARGED TO A PR [T 1S ASSUMED THAT, AT THE TIME OF PROCESSING, 99.5% oF THE U AND PU IS REMOVED FROM THE WASTE, RFFEFENCPY DWR FQUTLIEPTUM FUEL CYCLE -- POHFR= 30,00 M#, BURNUR= 33000, MWD, WLSTE DFCRY TINMES PIOT= 2.92F 13 ¥Rx2-S7C RCTYXTIDE PAOTOR TFLEASF RATES, PHOTOWS/SEC BASTS = MT OF HFAYY METAL CHARG®ED TO RFRCTOR EMEAR TTMFT AFTFP DISCHARGE {METY INTITIML 1. 1 3. ¥ . ¥ 30. ¥ 100. ¥ 300. Y 1000. ¥ 3.00E-02 1.73F 91 1.73F 41 1,.74F 31 1.7T7E 31 1.78F 11 1. 64 11 9.20F 71 LL.OBE 10 L.00P=-02 1.1%P 12 ©,20F 71 8.62%F 11 B8.5%0F 11 28,732 11 6.68F 11 4,157 11 2.39F 11 £.008=-02 2.77E 12 2.78F 12 2,79F 12 2,82F 12 2.84F 12 2.65F 12 2.06F 1z 1,08BF 12 1, 008-01 3.27F% 10 1.22F 10 7,007 09 S,4UF 09 5,848 0% 5,087 09 L4,38F 09 3.22F (¢ 1,508-01 3.237 91 3,127 19 3,09F %% 3,09F 11 3,08%® 1t 3.08% 9% 3,00® 1% 2,8B2F i1 2, 00P-01 T 56F 11 1.55F 11 11,547 ¢ 1.,51F 11 1,057 % 1.338 31y 1,287 11 1.20F 11 3.00E-01 1.17F 11 TL96F 1Y 1.%EF %% 40437 11 1,087 11 1.00F 11 9.66R 10 G.13F 10 £,308=-0% 6,5LF 11 5.65% ¥1 5,422 11 5,40F 11 5,398 §1 5,358 %1 5,257 Yy 4,537 %1 1, 10F 20 1.38% 11 9,38F 11 1.38F% 41 4,387 31 4.37E 1% 1. 37F 31 1,38F 17 1, 26F 1 1.55% o 2,006F 08 1.88F 08 1.37F 03 1,0F 0% 4 ,B9M Q7 L,2%% 06 9,367 05 3,687 06 1,995 0¢ 1.07¢ 08 &.338 €7 7,22F 07 5.50® 07 2,588 07 2.2%2 06 4,558 05 4,98F OF 2.38% 00 5,32F 07 4.40F 07 3,597 07 2,74F 07 1,292 07 1.10E 05 2.3RF 0S5 3.75F 05 2.75% 00 5.37% 7 3.987 D7 2,70FE 07 4,08E H7 7,00F 06 1,02F 06 3.7BE NS5 Q,61%F 44 3.25% 00 1.54% 07 1,20F 07 1,04 07 T7,98% 05 3,737 086 3,17F 05 6,478 0L 5,82F 0% 3,70% 00 9.89% 06 7.70F OF B,683F D€ 5,107 06 Z, 400F U6 2.04F D5 4,11% 0% 3,68F N4 G.22F 90 E.Z4E 06 L.BEE 08 £,.227 06 3.227 05 1.51% 06 1.29% G5 2.59F 04 2,32F 04 U,707 00 2.957 0% 2.30F 06 2.D0F D6 t,52F 06 7,158 05 £.09E Ok 3,23% 04 1.10FE O 5.25% 00 9.86F 086 1.L5F 06 1.26R 06 9.%58% 05 &,.50® 05 3.83F 04 7,727 03 6.99F 03 TOTAL 5.5CF 12 5.47F 12 5.09% 12 S.94F 12 S5.07% 12 4.66F 12 3. RIE 12 2.07F 32 MEV/SEC 9.00F 1% 8.31F 11 B.,14F 11 8.142F 11 A.37% 11 7.83%3F 11 7,28F 11 6.19% 119 ACTTNTDY THERGY PELFRSE RATRS, ¥PY/WRATT-SFC BASTS = AT OF HERVY METAL CHARPGED TO PRACTOT FMERY Tr AFIF® DTSCHAPGE {HEW INITIRL t. ¥ 3. ¥ 0. 7 30, Y 100. ¥ 300, ¥ 1000. Y 3.00E-02 1.73F 02 1.73F 02 1.,74¥ 02 1,77FE 02 1,78% 02 1.84F 02 1.20F% 02 4,087 01 4,002-02 1.,52F 03 1.238 03 1,158 03 1,73% ¢3 1,.0BE 02 S,91F 02 5,53F 02 3,%8F 02 8.008~02 5.54% 03 S.56F N3 5K.5BF €3 S5.62PF 03 5,672 03 65,297 03 4,187 03 2,967 02 1,00E-01 1.09% 02 4.07F 0% 2,33% 0% 2.95F 01 1,957 01 1.4%F €% 1.,45% 0% 1.07F% 01 1.508=~01 1.612 03 1.56F 03 1.5%% 03 1,50F 03 1,58% 03 1.%3% 03 1.50F 03 1. 01% O3 2.C0FR-01 1,04® 93 4,048% 03 1,637 03 1,061F 03 ¢.%7% 02 B.8S5F 02 8.51% 02 7,987 CZ I.O0F«5Y 1,977 03 9.96F N3 1,.16E 03 f,13% 03 1,08% 03 1.00% 03 9,66 02 S.713F D2 6.30E~01 1.37F 04 10197 0% 1, 14F oL 1, 43P U6 1,33% 0% 4, 12F 98 1,10F 00 1,0UF 08 1.90F 00 5.07% 03 S5.06F 03 S,C6¥ 03 E,052 €03 E5.04% 03 E.0%F 03 4.92F 03 0.61F 03 1.%5F 00 1.05E 01 8.15F 00 7.08% 00 S.38%7 00 2,53% 00 2.37E-0%1 L.BYF-D2 H.ABT-{2 3.99% 00 7.11F 00 S5.%3% OC 4,79 OO 3.65FE 00 1.71F 00 1.47E-01 3.022-02 Z,30P-02 2,388 00 u4,22% 00 3,208 00 2.85% ¢C 2.18F 00 1,02%7 00 B.73E~02 1.89¢-02 2.977-02 2,75F 00 4.92F 0D 3.63% 0D 2,478 00 9.34F 00 €,.Uu4F-0% 9,358-02 1,63E-02 B.BIF-03 3,258 00 1.67% 00 $.30F 00 1,%3P 00 B,61F-07 0,08P=01 3,80E-02 £.94F-03 6,.307-03 3.707 06 1.22F 00 9.80F-01 B,24P-01 6£.29F7=01 2.958-01 2.51E~02 5.079-03 &,84F-03 4,22% 90 B,78®-071 6.83F-01 S,93w-01 4,53F-01 2.13%-01 1.8%E~02 3,6%W-ND3 3,26F-03 4,708 N0 L.63F-01 3,&CF=-01 3,13w-0% 2,39F-0% 1,.128-09 9,54F~03 1.92F-G3 1.72F-03 5,258 A 3,25E-01 2.53F-D% 2,29®-09 3,682-0% 7,87F-02 6,70P~03 4,.35®-03 1,21%-03 TOTAY 3.00F 0L 2.77F 04 2,7%E Qu 2,7%F DL 2,69F O0x 2.60F 05 2,39F 04 2.06F OU GAM®MA WATTS ToBLF=01 %,33F=01 1,30F-0% 1,30%~01 1.29%-071 1,258-01 1.%6%=01 9,9%927-02 3000, ¥ 4,297 09 1.92F 113 5,278 1% 2.58% 09 2.35% 11 9.c9r 10 7.76% 10 L,971F 11 T.05F 11 T.65% 06 1,067 D6 1,097 06 9,817 04 B.9&r D4 2.75F 04 T.74% QU 8.22% 03 5.17 03 T.65F %2 h,e37 11 3000, Y L, 28% 0D 2,56% 02 1,08% 03 8. 60F 00 I.18% 03 6,667 02 7,797 N2 B,88F 03 3,.83® 0% 3,957=01 7, 06E~02 1y 187=01 8.998-03 5. 37E"03 3.80m=03 2 BUE=03 1.298-03 9,.05F-0t t.H54F 04 7.908=-02 C IGHTEEN-CNERGY-GROUP PHOTON SPECTRUM, AS A FuNCTION OF TiME AFTER PROCESSING, FOR iSOTOPES OF ACTINIIE 10000. Y 2.55% 09 907 ¢ 2. 21% 0¢ 1. 257 1% 5.3%% 10 2,437 10 7. 187 11 5.5%7F 10 . 337 07 0.5%9F D& 7.919% 0OF 1. 96F 05 5.458% 08 1. 01F DU 6.3RF 03 3,017 03 1, B9F 03 g, 7T1F 11 2.52% 11 10000, ¥ 2.55% 00 1,327 02 B, 83F 02 7. 35F 00 5. 2uF 02 3, 54% 02 houzs D2 b, 59% D3 2.08% 03 2,247 o0 3- OSE‘OT 6.277-01 1, 797-N2 5. 93F-03 1, 247=073 8., 95%¥-0u a4, 72F-04 3.317-01 ., 727 03 B.20®-02 100000. ¥ 2.33% 09 2.9%8 09 3.06E 00 2,95F 09 1.757 09 1.66F 09 7.30F 09 5,03% 09 2.72% U8R b.,11% 08 3.54F 07 B,207 07 1.387 06 3.08% 05 2,117 02 1.33F 02 5.30% 01 3,92 01 2.66F 10 7,09F D¢ 100000, ¥ 2.332 00 3.,9a% 00 6£.13% 00 9.62% 00 8.72% 00 1. 11F 01 7,108 04 8,L7F 01 2,978 00 2,12F 071 2,35% 00 1,928 00 1.2LE-0% 3,352-02 2.508-05 1.,877-05% 9.878-05% £.947-0¢% 2.3¢6% 02 ort 141 ORNT.-L628 UC-32 — Mathematics and Computers INTERNAL DISTRIBUTION 1. R. G, Affel 59. L. C, Cakes 2. 8. I. Auerbach 60, J. J. Perona 3. J. A, Auxier 6l. A. M. Perry 4-6. H, Barnert-Wiemer 62. R. F. Plemens 7. S. E. Beall 63. R. R. Rickard 8. M. Bender 6h, T, H. Row 9. J. E. Bigelow 65. R. Salmon 10. F. T. Binford 66, A, H, Snell 11. R. E. Blanco 67. J. W. Snider 12. J. O. Blomeke 68. W. S. Snyder 13. C, J. Borkowski 69. H, F. Soard 1k, R, E. Brooksbank 70. E. G. Struxness 15. €, V, Chester 7L. D, B. Trauger 16. R, D. Cheverton 72. D. K. Trubey 17. H., C, Claiborne 73. W. E. Unger 18. W, B, Cottrell Th. A. M, Weinberg 19. K. E. Cowser ™. dJd. C, White 20, 0. L. Culberson 76. J. T. White 2l. F. L. Culler 7. R. G. Wymer 22, V. A. DeCarlo 78. 0. 0. Yarbro 23. D. E. Perguson 79. J. C. Frye (consultant) 2k, J. L. Fowler 80. C. H. Ice (consultant) 25. J. H, Frye, Jr. 8l. J. J. Katz (consultant) 26. W. R. Gambill 62, E. A, Mason (consultant) 27. J. H. Gillette 83. Peter Murray (consultant) 286. D. J. Horen 84, R. B, Richards (consultant) 29. D. 8. Joy 85-104, Radiation Shielding Inf. Center 30. S. V, Kaye 105, Biology Library 31-50. C. W. Kee 106-108, Central Research Library 5i. M., K. LaVerne 1Q9. ORNL ~ Y-12 Technical Library 52. R. E. Leuze Document Reference Section 53. K. H. Lin 110-129. Laboratory Records 5k, R. S. Lowrie 130. Taboratory Records-RC 55. F. C, Maienschein 131. ORNL Patent Office 56, L, &. McNeese 132. Patent Office, AEC~CRO 57. D. J. Nelson 133. QResearch and Tech. Support 58. J. P. Nichols Div., ORO i EXTERNAL DISTRIBUTION USAEC, RDT Site Office (ORNL) 134. D. F. Cope USAEC, ORO 135, H. N. Culver 136. R. Egli 137. J. A. Lenhard 138, B. M, Robinson USAEC, Washington, D.C. 20545 1h2 139. C. B. Rartlett 151, W. H. McVey 140-14L, M. J. Bell 152. R, H. Odegaarten 145, W, G. Belter 153. A. I'. Perge 146, M. B. Biles 150, F. K. Pittman 147, W, A, Burns 155, R. W. Ramsey, Jr. 148, G, H. Daly 156, M. Shaw 149, 0. P. Gormley 157, H. F. Scule 150. HNorton iaberman 158, T. W. Workinger 159. K. K. Kennedy, USAFC-IDO, P.0. Box 2108, Idaho Falls, Tdaho 834CL, 160. J. A. Buckham, Allied Chemical Corporation, P.0. Box 220k, Tdaho Falls, Tdaho 83LC1. 161. A. L. Ayres, Allied-Gulf Wuclear Services, P.0, Box 847, Barawell, South Carolina 298172, 162, D. S. Webster, Argonne National Laboratory, 9700 south Cass Ave., Argonne, I[llinois 60439, 163, M, J. Szulinski, Atlantic Richfield HanfTord Company, Attention: Document Control, P.0O. Box 250, Richland, Washinglton 99352, 164, A, M. Platt, Babttelle Pacific Northwest Taboratory, P.O. Box 999, Richland, Washington 99352, 165, H., L. Hull, ®, L. du Pont de Nemours & Company, Savannah River Laboratory, Aiken, South Carolina 2980C1. 166, R. W. Rex, Institute of Geophysics, University of California, Riverside, California 92502, 167, S. J. Beard, Ixxon Nuclear Co., Inc., c¢/c Bechtel Corp., £.0. Box 3G65, San irancisco, Califcrnia 94119, 168, FE. L. Christensen, Los Alamos Scientific Iaboratory, P.0O. Box 1663, Los Alamos, New Mexico 87544, 169, E. N. Cramer, Southern California Fdison Company, P.C. Bax 800, Rosemead, California 91770, 170. C, R. Cooley, Westinghouse Klectric, HEDL, P.0O. Box 1970, Richland, Washington 99352, 171. R. G. Barnes, General Electric Co., 175 Curtner Ave. (M/C 160), San Jose, California 95125, 172. E. F. Gloyna, Dean of Engineering, Taylor Hall, Room 167, University of Texas, Austin, Texas 7T8712. 173. W. W. Hambleton. Director, The State Geological SBurvey, University of Kansag, Lawrence, Kansas 6HCLL, 17%. George Kennedy, University of California Los Angeles, Tnstitute of Geophysics and Planetary Physics, Los Angeles, California 90024, 175. Cyrus Klingsberg, NAS-NRC, 2101 Constitution Ave., Washington, D.C. 20418, 176. K. XK. Tandes, 1005 Berkshire Road, Ann Arbor, Michigan h810k, 177. F. L. Parker, Vanderbilt University, Nashville, Tennessee 37203, 178, J. F. Proctor, E. T. du Pont de Wemours & Co., Atomic Energy Division, 10th and Market Streets, Wilmington, Delaware 19898, 179. W. A. Rodger, Nuclear Safety Associates, 1055-R Rockville Pize, Rockville, Maryland zZ0852. 180. D. J. Rose, Dept. of Nuclear Engineering, Massachusetts Tnstitute of Technology, Cambridge, Massachusetts 0Z139. 181. 182, 183. 184, 185, 186. 187. 188. 189. 190, 191, 192, 193. 194, 195. 196, 197. 198, 199, 200, 201, 1h3 L. R. Sitney, The Aerospace Corporation, P.0, Box 925085, Los Angeles, California 900L5, J, A, Swartout, Union Carbide Corporation, New York, N,Y. 1COL7. Giacomo Calleri, Comitato Nazionale per 1'Energia Nucleare, Programms RUREX, Saluggia (Ve), Italy. T. Ishihara, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-XKen, Japan. D. G. Jaccobs, TARA, P.0O. Box 645, A-1011, Vienna, Austria, Hans W, Levi, Hahn~Meitner Institut fur Kernforschung, Glienicker Strasse 100, 1 Berlin 39, Germany. H. Krause, Geuellsch@ft fur Kernforschung M.B.H., Postfach 3640, 75 Karlsruhe 1., West Germany. Carlo Polvani, Divisione Protezicne Saintaria e Controlli, CNEN, Viale Regina Margherita 125, 00193, Roma, Ttaly. M. Y. Sousselier, Commissariabt, l-Inergie Atomique, Chatillon-sous- Ragneux, ['rance, K. T. Thomas, Atomic Energy Lgtabjzuhmgnt Trombay, Bombay 85, India. E. Wallauschek, OECD-ENEA, 2 Rue Andre Pascal, Paris 16%, France. H., O, G, Witte, Nukem, éh) Hanau Postfach 809, West Germany. Philip Garrett, Dept. of Chemistry, University of California at Los Angeles, Los Angeles, Californis 9002k, Juris A. Balodis, NL Industries, Inc., Nuclear Division, Foot of West Street, Wilmington, Delaware 198C1. Virgil E. Schrock, Dept. of Nuclear Engineering, University of California, Berkeley, California 94720 Robert W. McKee, Battelle Northwest Lab01a+0V1es, Battelle Boulevard, Richland, Washington 9935z, Joe Fouguets, Boeing Computer Service, 36801 South Cliver, Wichita, Kansas 67210. William Morgan, Linde Division, Union Carbide Corp., N.F.R.C.C, (Bldg. 11), P.0. Box 4k, Tonawanda, New York 1h150. John R. Fisher, Nuclear Associates International Corp., 12601 Twin- brook Parkway, Rockville, Maryland 20852, D. C. Keeton, Supervisor, Nuclear Section, Tennessee Valley Authority, Chattanocoza, Tennessee 37HOL. Peter Kirkegaard, Research FEstablishment RISO, DK-L0CO Roskilde, Denmark, A. Whittaker, UKAEA, Windscale and Calder Works, Sellafield, Seascale, Cumberland, fngland. Miss Dorothy Trend, ATCOR, Inc., 5 Westchester Plaza, Elmsford, New York 10523, Simcha Golan, Atomices International, P.0. Box 309, Canoga Park, California 91305, Manson Benedict, Dept. of NWuclear Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139. Migs Carol Grote, Thermal Systems Division, Battelle Columbus Laboratories, 505 King Ave., Columbus, Chio 43201, E. T. Merrill, Battelle Pacific Northwest Laboratorlies, P.0, Box 999, Richland, Washington G935Z. James W, Thiesing, Senior Ingineer - Nuclear Products, Boelng Compuler Services, Inc,, 3801 South Oliver, Wichita, Kansas 67210, 1hh 209, H. R. Brooks, OR Section, BNFL, Windscale Works, Cumberland, FEngland. 210, J. Saidl, Gesellschaft fiir Kernforschung M.B.H., 75 Karlsruhe 1, Postfach 36L0, Karlsruhe, Germany. 211. J. D. Rollins, Nuclear Fuel Services, Inc., Wheaton Plaza Bldg., Suite 906, Wheaton, Maryland 20902, 212. (. Lanzsno, Ufficio Di Rappresentanza, C.N,E.N., 818 18th Street N.W., Suite 500, Washington, D.C. 20006, 213, G. M. Gasparini, C.N.E.N, -~ C.S.N., Casaccia, Lab. Chimica Industriale, 5.P. Anguillarese km, T + 300, Roma, Ltaly. 214, Ralph Best, Nuclear Fuels Services, Inc., 6000 Executive Blvd., Suite 600, Rockville, Maryland 20852, 215, TIng. Andres Gandellini, AGIP Nucleare S.P.A., Corso di Porta Romana, 68, 20122 Milanco, Iltaly. 216. J. F. Strahl, NUS Corp., 4 Research Place, Rockville, Maryland 20850. 217. Raymond Sund, Gulf Energy and Fnvironmental Systems, P.0. Box 608, San Diego, California 92112, 218, Tal Fngland, Group T2, Los Alamos Scientific Taboratory, P.O. Box 1663, Los Alamos, New Mexico 8754k, 219, Capt. Joseph A. Angelo, Jr., 1035 USAF FI.D Acty Gp (Ig. Comd.), Patrick Air Force Base, Florida 32925. 220-425, Given distribution as shown in TLD-4500 under Mathematics and Computers category (25 copies -~ NTIS).