CENTRAL RESEARCH LIBRARY DOCUMENT COLLECTION 2 .‘."\'”\ll' i | | R 0515 ORNL-4345 UC-70 — Waste Disposal and Processing TEMPERATURE PROFILES WITHIN CYLINDERS CONTAINING INTERNAL HEAT SOURCES AND MATERIALS OF TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITIES. DESCRIPTION OF FAST COMPUTER PROGRAMS AS APPLIED TO SOLIDIFIED RADIOACTIVE WASTES OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION Printed in the United Stotes of America. Available from Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards, inia 22151 Printed Copy $3.00; Microfiche $0.65 U.S. Deportment of Commerce, Spri Price: LEGAL NOTICE This report was prepared o5 an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Mokes any warranty or representation, expressed or implied, with respect o the accuracy, completeness, or usefulness of the information contained in this report, or that the use of formation, apparatus, method, or process disclosed in report may not infri privately owned rights; or B. Assumes any liabi any = with respect fo the use of, or for damages resulting from the use of formation, apparatus, method, or process disclosed in this report. As used in the above, “‘person octing on behalf of the Commission' includes any employee or contractor of the Commission, or employee of such contractor, fo the extent that such employes or contractor of the Commission, or employee of such contractor prepares, disseminate provides access to, any information pursuant to his employment or contract with the Commi or his employment with such contractor. ORNL-4345 Contract No. W-7405-eng-26 - CHEMICAL TECHNOLOGY DIVISION Chemical Development Section B TEMPERATURE PROFILES WITHIN CYLINDERS CONTAINING INTERNAL HEAT SOURCES AND MATERIALS OF TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITIES. DESCRIPTION OF FAST COMPUTER PROGRAMS AS APPLIED TO SOLIDIFIED RADIOACTIVE WASTES W. Davis, Jr. JANUARY 1969 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMISSION i W e iii CONTENTS Abstract . . . . . . L e e e 1. Introduction . . A 2. Methods of Solution . . . . .. .. .. L 3. Input Statements. . .. . ... .. .. 4. Execution Timesand Output ... ... ... ... ... .. ........ D, References . . . . v i i s e e e e e e e e e e e e e e e e e e e e e e e e TEMPERATURE PROFILES WITHIN CYLINDERS CONTAINING INTERNAL HEAT SOURCES AND MATERIALS OF TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITIES. DESCRIPTION OF FAST COMPUTER PROGRAMS AS APPLIED TO SOLIDIFIED RADIOACTIVE WASTES W. Davis, Jr. ABSTRACT The safety and economic aspects of producing and storing radio- active wastes as solids, usually in vessels having a cylindrical geometry, require that we know the maximum internal temperatures to be expected as a result of decay heat. Such information is mandatory for materials that have variable thermal conductivities under different storage con- ditions. ' This report presents a computer program (STORE), which was written to permit more rapid calculation of temperature profites within cylinders containing homogeneously distributed heat sources and materials whose thermal conductivities can be expressed as a tabular function of tem- perature. A simplified version of this program was prepared for the cases in which the thermal conductivity is constant or is a linear function of temperature. Both of these programs have short execution times, typi- cally from a few to 20 seconds on the IBM/360-75 as compared with the five or more minutes required for the more accurate finite-difference method. They are based on the assumption that the material density and, therefore, the power density of the heat source are independent of tem- perature; this assumption is, of course, contrary to physical reality. However, in a test example involving a hypothetical vessel of glass con- taining a large internal (fission product) heat source with a specific power density of 0.2 cal sec™! cm™3 (i.e., 80,910 Btu hr~! £+73), the temperature difference between the wall and the center of a 6-in.-diam by 6.25-ft-long cylinder was overestimated by 36°C (an error of only about 10%, as compared with the "exact"” value that is obtained by solving finite-difference equations and compensating for the reduction in the heat-source strength as the density decreases with increasing temperature). Within the uncertainties inherent in thermal conductivity, density, and heat capacity measurements of systems of interest in the storage of solidified radioactive process wastes, the method and the program presented in this report offer adequate accuracy and a large time savings as compared with the more exact calculations. Also, they are applicable to cylinders with any specified length/diameter ratio. 1. INTRODUCTION On the basis of safety and economic studies, it appears rather probable that high-]-4 and ini‘ermedicfe-level5 radioactive wastes which accumulate from the processing of nuclear reactor fuels will be converted to solids for permanent storage at some time — from 30 days to 30 years — after removal of the fuel from the reactor. Essentially all of the beta energy, and more than half of the gamma energy, from the fission products will usually be absorbed by the solid within which they are contained; therefore, the temperature in the interior will be raised to a level higher than that of the surface. The extent of this temperature elevation depends on the thermal conduc- tivity of the solid, the diameter of the storage vessel (which is usually considered to be a right circular cylinder), and the specific fission product power density. In cal- culations it is assumed that the radioactive materials are distributed isotropically throughout the cylinder; then, atlsfecdy state, the temperature, T{r, z), at any point (r, z) is given by the equation " l_a_.!.Kré.I.‘+iiK-al +A=0, (n rarL er azL z where K = temperafure-dependent thermal conductivity, cal cm-] sec °C , T = temperature, °C, r = radial variable, cm, z = vertical variable, cm, A = sum of (fission product) power densities (i.e., absorbed power density), -1 -3 cal sec cm The quantity A is actually a function of temperature; that is, it decreases as the temperature of the solid increases because the material specific volume increases (the density decreases). However, the definition of A (above) points out that it is the absorbed energy that is important. The fraction of the total gamma-ray energy that is absorbed is a function of the dimensions of the cylinder. 3 Because of the temperature dependence of A, an "exact" solution of Eq. (1) can be obtained only by use of finite-difference methods. However, in practical cases the thermal conductivity is affected much more strongly by temperature than the density is. For example, the effect of temperature on the thermal conductivity 6 °C-], while the coef- of materials of interest is on the order of (50 to 200) x 10~ ficient of volume expansior. is in the range (1 to 5) x 10_6 °C-I. Thus, to a first approximation, the quantity A may be assumed to be independent of temperature. This report presents a computer program (STORE) which was written to provide approximate solutions of Eq. (1) in terms of temperature as a function of spatial . location within a cylinder of arbitrary length/diameter ratio. Such a program can be very useful for evaluating the advantages, with respect to safety and economics, of storirig radicactive waste materials because it can be executed much faster than a program based on the more exact finite-difference method. Additional reports, which are now being written, will illustrate the application of this program, and the simpler programs.derived from it, to the calculation of internal temperatures in cylinders containing intermediate-level waste solids that are dispersed in an organic mairix (such as asphalt, polyethylene, or other plastics) or high-level waste, existing as calcine or as solids that are dissolved, or dispersed, in an inorganic matrix (such as a glass or a microcrystalline solid). 2. METHODS OF SOLUTION It is convenient to express Eq. (1) in terms of a dimensionless temperature, v, defined as v = (T - TO)/TO 7 (2) where To is a convenient reference temperature. In this report, To was chosen as temperature of the surface of the cylinder. By combining Egs. (1) and (2), we obtain a3l af avi, AL }--a-r—‘:Krsl-_-j""g-z-[K'—z'}"‘T;—o, (3) with the boundary conditions (4) v=0atz=0hfor0=<r=a v=0atr=afor0<z<h where a = radius of the cylinder, cm, h = length of the cylinder, cm. Using the notation of Carslaw and Joeger,7 we define \4 S O ) =g | Kdv, (5) | o O from which it follows that &R W % Kg (® On substituting the quantities of Eq. (6) into Eq. (3), we obtain 1 af @] 3fe@). A _ | F"a'r_{r'TJ‘JrE\:'EE]JFKOTO'O' | 7 Here, Ko i< the thermal conductivity of the material at temperature T.- The boundary conditions for ® are as follows: ®=0atz=0hfor0<r=a ~ (8) ®=0atr=afor 0£z<h Further, it is convenient to define x = r/a, Zéz/o, L=h/a. (9) With these definitions, the solution of Eq. (7) is given by7 Z(L - 2Z) 442 - I (@m - 1) mx/t] sin[(2m - )T Z/1] 2 1_r3 U(x,Z) = , (10 ol (2m - 12T [(2m - 1) /2] and a2 | ®=Aa U/KOTO. (11) After having calculated @, it is a straightforward process to calculate T. In particular we have, from Egs. (2) and (5), | T LLLE (12) T o 1 KoTo o 0= For the case in which thermal conductivity can be expressed as a tabular function of temperature, we first determine @ from Egs. (10) and (1 i) and then evaluate v and T from Egs. (5) and (12). To do this, we must perform the numerical integration indicated by Eq. (5) in order to calculate a fable of ® as a function of v. We then obtain v by quadratic interpolation in this table with the known value of ®. Calculations are performed by program STORE. There are two special cases of considerable importance in radioactive waste storage: the case in which thermal conductivity is a linear function of temperature and the case in which the thermal conductivity is constant. When thermal conductivity is a linear function of temperature, we require two thermal conductivities at two temperatures, (T], K‘) and (T2, K2), from which we obtain K=Ko[1+b(T-To)] , (13) . Ky Ty =T - Ky (T, -T) o (T2 - T\]) . Ky=-K b = 2 ] KO (T2 - T]) ] v v bTov2 | ®=-K-o- JoKdv= Jo (l+bTov)dv=v+ 5 (14) In this case, the value of ®is knownand vand T - T0 can be calculated from the relationships v=[/T+26T,8 - 11/bT, (15) T-T=L/1T25T;a-1]/b. (16) o By replacing v by (T - To)/To and using the definition of K as a linear function of temperature to eliminate b from Eq. (14), we obtain - K+ K _ alx, 7) = (T To) o} _KAT (17) ! T K 2 TK ' o o co o where the average thermal conductivity, K, at the two temperatures is _ K+ Ko K= 5 (18) and we have defined AT=T-T_. (19) On replacing ®(x, Z) on the left-hand side of Eq. (17) by its value from Eq. (11), we obtain A= . | (20) Equation (20) is quite similar to that for thermal diffusion in an infinite cylinder, namely, (21) This equation may be derived in a manner analogous to that described, for example, by McAdcms,S except that K would be a linear function of temperature rather than a constant. Equation (21), while strictly applicable only to an infinite cylinder, is frequently used and yiélds a rather accurate estimate of the specific power, A, as a function of AT, providing that the cylinder is long (i.e., a cylinder with a length/ diameter ratio in excess of about 3 or 4). Equations (20) and (21) imply that for an infinitely long cylinder we have =1/4. (22) The quantity U, calculated in program STORE, has values of 0.201, 0.245, 0.249, and 0.250 for cylinders of Iengfh/dicme’rer-rcfios of 1, 2, 2.5, and 5, respectively. Thus, as expected, Eq. (21) overestimates the AT for a given value of A, but to a significant extent only if the length/diameter ratio is less than 2. In connection with the mathematical reduction of Eq. (20) to Eq. (21), we note that, at the center of a cylinder, namely at x =0 and Z = 4/2, Eq. (10) reduces to N L 32 sin L(2m - 1) 1/2] - u(o, 4/2) = —8-1 -5 2 5 1 . (23) w f=l (2m - DT [(2m - 1) /] ] It can be shown that Lim i sin LZm - 1 /2] Lg—z [1 --2—‘£] . (24) m=1 (2m - 1) Io [(2m - 1) flc/h]J £ — @ (a/h— =) Thus, for a/h << 1, we would obtain Eq. (21) from Eq. (20). The simplest calculations involve a constant thermal conductivity. In this case, we solve for (T - To) by the procedure T-T o T o o 2 =@=Aa U/KoTo : (25) 3. INPUT STATEMENTS While program STORE properly accounts for the variation of thermal conductivity with temperature, it does not describe the variation of A [see Eq. (1)] with temperature. The power density decreases as the specific volume increases, that is, as the density of the material decreases. Use of this program (or programs for the simpler relation- ships between thermal condu;:fivi’ry and temperature) is advantageous because the - execution time is significantly shorter than that of a program based on the more ac- curate finite-difference equations. The first three READ statements are: READ 9001, NR, NZ, NOM READ 9011, (RT), I=1, NR) READ 9011, (Z(J), J=1, NZ) 9001 FORMAT (1615) 9011 FORMAT (16 F5.3) Here NR is the number of relative-radius units at which output data are to be printed. The program is set for NR = 17 and for the values described below. NZ is the number of vertical units at which output data are to be printed. A reasonable number is in the range 20 to 45. NOM is the number of terms to be used, instead of an infinite number, in evaluating U(x, 2), Eq. (10). We have used as many as 100 and as few as 5; in general, a value in the range 10 to 20 will be adequate. R() are the NR radial positions at which data are printed. Output formats carry headings of 0.0 (corresponding to the centerline of the cylinder), 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.7G, 0.80, 0.90, 0.95, and 1.0. Thus, the output tables will list temperatures, and other values, for the centerline and for distances of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 95, and 100% of the distance from the centerline to the wall. If these 17 values are not used, then certain format statements will have to be changed. Z(J) are the distances, in radius units, from the top or the bottom of the cylinder. Convenient values are 0.0, 0.005, 0.01, 0.02, etc., corresponding to locations on the top (or bottom) surface followed by distances of 0.005 radius, 0.01 radius, etc., into the cylinder from the top (or bottom). The last value of Z(J)), namely Z(NZ), is used as the cylinder height/radius ratio. Thus, if NZ = 25 and Z(25) = 25., then the length of the cylinder is 25 times that of the radius. Most of the values of Z(J) should correspond to relative heights of less than one-half the cylinder height. About the fourth from the last value of Z(J) should be the half-cylinder height [i.e., 12.5 in the above example . The sub#equent two values should be on the order of 0.9 times Z(NZ) and 0.95 times Z(NZ), respectively. These values are used to check for passage beyond the midplane of the cylinder; their judicial choice minimizes un- necessary duplication in the calculation of temperatures beyond the mid- plane. In the example above, it would be appropriate to use 30 or even 40 horizontal spacings for Z(J) < 12.5 followed by the four vcflues 12.5, 22.5, 24.0, and 25.0. | it should be noted that the above READ statements are entered only once, re- gcrdléss of how many calculational cases are to be performed. Thus, whether the radius of the cylinder is subsequently set to 0.1, 5.0, 25.0, or 100.0 cm, all the calculations will be performed at the centerline and, for example, 5%, 10%, efc., | out toward the surface. 10 Program STORE uses thermal conductivity as a tabular function of temperature. This table, which is read only once and is used for all cases to be calculated, is entered as follows: READ 9021, TP(NT), TK(NT) 9021 FORMAT (8E10.4) One t‘emperafure, TP(NT), and its thermal conductivity, TK{NT), are punched on a card, at 50°C intervals as the program is now written. DIMENSION allows a maximum of 99 such pairs of values. At the end of the table, any negative floating- point number, such as - 1.0, is entered in the TP(NT) field (columns 1 - 10) to indicate the end of the table. The temperature interval 50.0°C was chosen because it is cppropriofe’i& materials heated to temperatures in the range 0.0 to 3000°C or higher. This interval is specifically involved in the integration shown in Eq. (5) for evaluating @ as a function of v. Since it occurs in only a few statements, the program could be modified fairly easily. In addition to the READ statements already described, there is one READ state- ment required for each case to be calculated, namely, READ 2021, A, RAD, TINT, TO Here A is the internal (absorbed) power density in cal sec_] cm-3, as in Eq. (1). Values in the range 0.1 to 0.8 are significant in connection with high- level radioactive wastes from nuclear fuel processing. RAD is the cylinder radius, cm. TINT is the temperature interval at which temperature profiles are desired. For example, if the temperature difference (T - To) is expected to be on the order of 100°C, then TINT might be assumed to be 5. or 10., corresponding to the radial and vertical locations of temperatures spaced 5 or 10°C apart. 11 TO is the surface temperature, °C or °K, whichever is convenient. TKO is the thermal conductivity of the material at To’ cal cm-] sec °C 4. EXECUTION TIMES AND OUTPUT Each of the three programs (see Appendix A), namely, STORE, TKLIN (when K is a linear function of T), and TKCON (when K is constant), has been executed many times on the [BM/360-75 at ORNL to calculate temperature profiles in cylinders containing high- or intermediate-level radicactive wastes generated by the processing of nuclear fuels. Typically, the programs require 30 to 40 sec for compilation. De- pending primarily on the number of temperatures at which profile data are desired, TKCON and TKLIN require 1 to 10 sec per case. Program STORE has a longer execution time, again depending (but less strongly) on the. number of temperatures at which profile values are required; it generally requires 5 to 30 sec per case. For comparison, a more accurate evaluation of Eq. (1), based on the use of finite-difference equations, a grid of 30 radial divisions, 120 vertical divisions, and the near-minimum of 500 iterations, requires on the order of 5 min with FORTRAN 1V, level H execution under optimum timing. The time savings of TKCON, TKLIN, and STORE are thus rather significant, while the loss of accuracy is not very great, as described below. Output from STORE includes a table (Table 1) of NZ times NR values of U [Eq. (10)], a table (Table 2) of temperatures above the surface temperature, (T - To), and a table of ® values. Output also includes a table (Table 3) of distances, in radius units, measured from the bottom or the top of the cylinder, where heating above the surface temperature occurs by multiples of the quantity TINT. Finally, each program outputs a table of the number of iterations required to obtain each multiple of TINT at each radial location. The maximum number of such iterations in the studies reported here was 20; usually, however, this number did not exceed 2. In addition to the tables just mentioned, program STORE outputs a table of values for T, K, ® XTA, XTB, and XTC [where T, K, and ® have been defined previously and XTA, XTB, and XTC are the constants used to represent T as a quadratic function HETGHT (Z/A) 0.0 0.00% 0.010 0.015 0,020 0,025 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.120 0.140 0.160 0.180 0.200 0.250 0.300 0.350 0,400 ‘0.450 0.500 0550 0.600 0.700 0.800 0.900 1.000 1.250 1.500 1.750 2.000 2.250 2.500 3.000 4.000 5,000 Table 1. Example of Output of the Dimensionless Quantity U [Eq. (10)] ot Grid Points THC DIMENSIONLESS UlIesJ) FROM WHICH WE CALCULATE THETA(I.J)e VI(Is+J)+ AND THE BESSEL FUNCTION SUMMATION. VALUES OF THE RELATIVE DISTANCE {(R/A) FRUM THE CYLINDER AXIS ARE GIVEN 0.00 50 TERMS ARE USED IN 0.05 . 0.0 D+00} 0.205 0.N038 0.010 0.213 Q.016 0.021 0.025 0.030 0.035 0240 0.0644 0,049 0.0b57 0.066 Q074 0.081 0.089 0.1006 D121 0.135 0.147 0.15% 0.168 0.177 0.185 0.199 0.209 0.21R 0.225 0.236 D.242 04245 0.2647 0.248 J.2438 Ne247 D225 0.0 0.10 0.0 0.0U03"° 0.005 0,008 0.010 0.013 0.014 0.020 0.025 0.030 0.035 0.039 0.044 0.048 0.057 0.065 0.073 ND.081 0.088 0.135 0.120 0.134 0.146 0.158 0.167 0.176 0.184 N.197 0.208 0.216 0.223 0.234 0.240 0.243 0.245 0.246 0.246 0.245 0.223 0.0 0.15 0.0 0.003 0.20% 0.008 0.010 0.013 .0.015 0.020 0.025 0.030 0.035 0.039 0.044% 0.048 0.056 0.065 0.072 0.080 0,087 0.104 0.119 0.133 0.145 0.156 0.166 0.174 0.182 0.195 0.206 0.214 0.220 0.231 0.237 0.240 0.242 0.243 0.243 0.242 0.220 0.0 0.20 0.0 0.003 0.00% 0.008 0.010 0.013 0.015 0.020 0.025 0.030 0.034 0.039 04043 0.047 0.056 0.064% 0,072 0.079 0.086 L0.103 0.118 0.131 0.143 0.153 0.163 0.172 0.179 0.192 0.202 0.210 0.217 0.227 0.233 0.236 0.238 0.238 0.239 0.238 0.217 0.0 0.25 o.o 0.003 0.G05 0.008 0.010 0.013 0.015 0.020 0.02% 0.029 0.034 0.038 0.042 0.047 0.055 0.063 0.070 0.078 0.085 0.101 0.115 0.128 0.140 0.150 0.160 0.168 0.175 0.189 0.198 04206 0.212 0.222 0.227 0.231 0.232 0,233 0.233 0.232 0.212 0.0 0.30 0.C 0.003 0.005 0.007 0.010 0.012 0.015 0.919 0.02% 0.029 0.033 0.037 0.0642 0.046 0.054 0.061 0.069 0.076 0.083 0.099 0.113 0.125 0.137 0.147 0.156 0.164 0.171 0.183 0.192 0.200 0.206 0.216 0.221 0.224 0.225 0,226 0.226 0.225 0.206 0.0 0.35 0.0 0.002 0.005 0.007 0.010 0.012 0.014 0.019 0.023 0.028 0.032 0.036 0.040 0.045 0.052 0.060 0.067 0.074 0.081 0.096 0.109 0.122 0.133 0.142 0.151 0.159 0.165 0.177 0.186 0.193 0.199 0.208 0.213 0.216 0.217 0.218 0.218 0.217 0.199 0.0 0.40 0.0 0.002 0.005 0.007 0.009 0.012 0.014 0.018 0.023 0.027 0.031 0.035 0.039 0.043 0.051 0.058 0.065 0.072 0.078 0.093 0.106 0.117 0.128 0.137 0.145 0.153 0.159 0.170 0.178 0.185 0.190 0.199 0.204 0.207 0.208 0.209 0.209 0.208 0.190 0.0 0.45 0.0 0.002 0.005 0.007 0.009 0,011 0.013 0.018 0.022 0.026 0.030 0.034 0.038 0.042 0.049 0.056 0.063 0.069 D0.0T75 0.089 0.101 0.112 0.122 0.131 0.139 0.146 0.152 0.162 0.170 0.176 0.181 0.189 0.19% 0.196 0.198 0.198 0.198 0.198 D.181 0.0 IN THE 0.50 0.0 0.002 0.004 0.007 0.009 0.011 c.013 0.017 0.021 0.025 0.029 0.033 0.036 0.040 0.047 0.053 0.060 0.066 0.072 0.085 0.096 0.107 0.116 0.124 0.131 0.138 0.143 0.153 0.160 0.166 0.171 0.178 0.182 0.185 0.186 0.186 0.187 00111' 0.0 T(14J). FIRST R 0.60 0.0 0.002 0,004 0.006 0.008 0.010 0.012 0.015 0.019 0.022 0.026 0.029 0.032 0.036 0.042 0.048 0.053 0.058 0.063 0.075 0.085 0.093 0.101 0.108 O.114 0.119 0.124 0.132 0.138 0.143 0.146 0.153 0.156 0.158 0.159 0.159 0.159 0.159 0.146 0.0 OW OF 0.70 0.0 0.002 0.003 0,005 0.007 0.008 0.010 0.013 0.016 0.019 0.022 0.025 0.028 0,035 0.040 0.045 0. 049 0.053 0.062 0.070 0.077 0.083 0.088 0.093 0.097 0.100 0.106 0.111 O.114 0.117 0.122 0.124 0.126 0.126 0.127 0,127 0.126 0.117 0.0 THIS TABLE 0.80 0.90 0.0 0.0 0.001 0.001 0.003 0.002 0.004 0,003 0.005 0.003 0.007 0.004 0.008 0,005 0.010 0.006 0.013 0.008 0.015 0.009 0.017 0.010 0.019 0.011 0.021 0.013 0.023 0,014 0.027 0.016 0.030 0.018 0.034 0.019 0.037 0.021 0.039 0,022 0.046 0.026 0.051 0.028 0.056 0.031 0.060 04033 0.06&4 0,035 0.067 0.036 0.070 0.038 0.072 0.039 0.076 0.041 0.079 0,042 0.081 0,043 0,083 0.044 0.086 0.046 0.088 0.067 0.089 0.047 0.089 0.047 0.090 0.047 0.090 0,047 0.089 0,047 0.083 0.044 0.0 0.0 0.95 0.0 0.301 0.001 0,002 0.002 0.002 0.003 0,004 0.004 0.005 0.006 0.006 0.007 0.008 0.009 0.010 0.010 0.011 0.012 0.01% 0.015 0.016 0.017 0.018 0,019 0.019 0.020 0.021 0.022 0.022 0.023 N.023 0.024 0.024 0.024 0.024 0.02% 0.024% 0.023 0.0 ¢l HELIGNT IN RADIUS UNITS {z/4) 0.0 V.05 D.010 0.01% 0.020 0.025 Q0.830 Qe V&1 0.050 0,000 0.070 0,030 0.0939 0.1a0 D.120 0.140 0,160 0.1390 0.2N0 Ne2 5D 0,300 0.350 0.400 0.4%0 0.500 0550 Ne600 0.700 G.800 0.900 l.100 l.250 l.bOU 1. 750 24000 24250 2.500 3.0 4. G1)) SC.OL"\) Table 2. Example of Output of Temperatures Above the Surface Temperature at Grid Points 0.35 TEMPERATULS ABOVE THE SURFACE TEMPERATURE. THE CYLINDER ODIAMETER IS INTERNAL HFAT SUURCE IS 2.00E-01 CALORIES/CM&®3/SEC, 30910.6 BTU/FT*¢3/HR 15.2 CM. B8.37E-01 WATTS/CMEe] AND L .41E 02 MEVSLURIES/CM**3, Ja45 TAE STRENGTH 3F THE SOURCE STAENGTH IN UTHER UNITS 1S VHE TAEIMAL CONDUCTIVITY COEFFICIENT AT THE SURFACE TEMPERATURE OF VALUES OF THFE RclLATLIVE DESTANCE (R/ZA) FROM 0«N0 Ve G.10 ° 5,15 0.20 0?25 0.32 0.0 0,0 0.0 0.0 0.0 0.0 0.0 5.4 bk Sel 5.3 5.3 542 Sel 1.9 107 10.7 10.6 10.5 10.3 10.1 15.0 1640 15.9 15.3 15.6 15.4 15.1 21.2 21.1 21.0 20.9 20.6 20.3 20.0 263 2042 26.1 25.9 25.b6 25.2 24.8 3l.3 3147 Al.1 30.9 30.5 30.0 29.5 41.1 41 0 40.8 “0.5 40-0 39.4 38.7 505 50 .5 5042 49,43 49,3 48,5 47.6 $9.7 5948 5943 58,8 58.2 57.3 She? b8eb 63453 HHel 67.6 6648 65.R 64.6 T1.2 7.1 76.7 16.1 75.2 14.1 72.7 85.06 5.4 35,0 94,3 83.4 82.1 80.5 9347 93,5 3.1 2.3 9l.3 R9 .9 88.2 109.2 1049.9 193.5 107.6 106.4 104.T 102.7 123.8 123.6 123.0 122.0 120.6 118.7 116.4 137.7 137.4 136.3 135.6 134.,0 132.0 129.4 I50,3 150.95 14%.8 143.5% 146.8 144.5 1l4l.6 163.1 162.3 162.0 160.7 158.7 156.3 15%3,2 1912 1972.7 149.9 1A8.3 186.0 183.0 179.3 2[5-8 215.4 21“03 212.“ 209.8 206.4 20202 237.4 236.,9 235.7 233.6 230.7 226.8 222.1 2563 255.9 2%4.5 252.2 249.0 244.8 239.5 2729 2724 211.0 268.5 265.0 260.5 254.8 287.6 28T.1 235.5 282.9 279.1 274.3 263.3 300.6 3I00.0 2798.4 295.6 291.6 2B6.5 280.1 11240 3lle% 309.6 396,T 3092,6 297.2 290.5 331.0 330.3 328.4 325.3 320.8 315.0 307.8 345.3 345.1 333,1 339,7 335.0 328.8 321.2 35744 356.7 354.6 351.1 346.1 339.7 331.7 3665 365.7 363.6 359,9 3534,8 348.1 339.9 361.4 380,77 37B.4 3I74.5 369.1 362.1 353,4 L347.6 38:.8 336,44 382.4 376.9 3I69.6 360.7 3194,0 393,2 330.8 586.T 381.1 373.7 364.7 196.3% 395,.,5 373,101 399.0 393,33 375.9 366.8 3974 39646 394.2 390.1 334.4 376.9 367.9 3974 396.9 394.5 390.4 334,77 377.2 368.1 396.3 395.5 393,01 389.0 343.3 375.9 366.8 366e5 3I65.T 353.6 357.9 354.8 348.1 339.9 0.0 ) 0.0 0.0 0.0 0.0 0.0 0.50 200. 0.60 0.70 0.80 THE CYLINDER AXIS ARE GIVEN IN THE FIRST ROW OF THIS TABLE 0.90 18.3 0.95 QLN VM ANHWNE=O e & a2 & 9 & 4 & & DL OVN DO e~ 13.0 DEGREES C IS 5.63E-03 CAL/LM/SEC/DEG C. 1.03 4 5 & & 8 & 8 8 8 0 ¥ ODO0OCOO0OR20000RO0COOROODROO002000000D0QR0000 [=N=RoReleNoleNole oo oo NololeleloNoloNelo oo Yo oo No oo ool e R Re No o NNl e 4 & & 8 B ¢ 2 & & & 8 B 2 B £l TEMP DES Co 50. 100, 1504 20 250, 300 L] 350, DISTANCL Sy Table 3. Example of Temperature-Profile Table IN RANIUS UNITS, MEASURED FROM THE BOTTOM OR TOP OF THE CYLINDER, THE SURFAZE TEMPERATURE BY AMCUNTS SHOWN IN THE F1RST COLUMN. VALUES OF Tuc Je00 Q.049 J.108 VeLl79 0.38‘5 Jaebad D.933 0.05 0050 Jel03 O0.179 0.268 043834 Ue95)0 D.439 RELATIVE D1STANCE (R/A) FRUM 0.10 V.050 0.109 0.130 0.270 0.333 0.557 0.857 J.15 D.05D 0.110 0. 182 0.273 0.394 04569 0.889 020 0.051 O.lL1 0.185 0279 0.403 0.588 0.942 0.25 0.052 0.113 0.189 0.286 O.216 0.614 1.026 THE CYLINDER AXIS ARE GIVEN IN 0.30 0.053 D.ll16 0. 194 0.29% 0.434 0.652 1.171 0.35 0.054 9.120 0,201 0+ 307 0.457 0.705 l.494 0.40 0.056 0.124 0.210 0.323 0.489 D.78T Ja65 7.058 J.129 0.220 D345 Te530 0.922 0.50 0.060 0.136 J.235 0.374 0.600 1.211 0.60 0.068 0.157 0.281 0.4T7 0.921 THE FIRST ROW OF 0.70 0,081 0.197 0,384 0.B812 THIS TABLE 0.80 0.90 0.111 0.242 0.308 0.877 AT WHICH OCCUR HEATING ABDVE 14! 15 of @ after Eq. (5) is integrated to evaluate ® as a function of T and K]. In one test example, the thermal conductivity of a hypothetical glass was assumed to be a linear function of temperature up to 1000°C (see Table 4). Other properties were as follows: power density, 0.2 cal sec-] cm-3; radius of the vessel, 7.6 ¢cm (6 in. in diameter); and length/radius ratio, 25. Program TKLIN gave a maximum centerline temperature of 599.5°C for this example when the surface temperature was maintained at 200°C; execution time was 5.0 sec. For comparison, the maximum centerline temperature was also calculated by using a program based on finite-difference equations; in this program, the aensify-VS-temperqture properties (Table 4) were those of an alkali borate glcss.9 As the temperature increased from 200 to 550°C, the density decreased and the specific power density decreased by about 3.6%. With the latter program, the maximum centerline temperature was found to be 564.0°C after either 1500 or 2000 iterations. After 500 and 1000 it- erofiofis the maximum calculated temperatures were 557.4°C and 563.9°C, respectively. Each 500 iterations consumed approximately 5 min of execution fime on the 1BM/360-75. As expected, TKLIN overestimates the temperature rise because it does not compensate for the reduction in fission product power density as the temperature increases. In the example described above the error is about 36°C-out of a "true" temperature elevation of 364°C (i.e., a 10% overestimation of the temperature rise). This error is small enough to be neglected in most instances, where the existence of only very crude specific heat data plus uncertainties in densities and thermal con- ductivities easily lead to larger errors. 16 Table 4. Physical and Thermal Properties of Hypothetical Glass Used to Obtain Estimates of Errors in Program TKLIN Due to Decrease in Density with | Increasing Temperature Thermal Conductivity . Specific Heat Density Temp ;' cal '" { cal / y (°C) \cmesecs®°C / ‘_g—-?él \'ems / 50 0.00443 0.2 - ©2.313 100 0.00483 0.2 ~ 2.305 150 0.00523 0.2 2.296 200 0.00563 0.2 2.288 250 0.00603 0.2 2.281 300 0.00643 0.2 2.275 350 0.00683 0.2 - 2.264 400 . 0.00723 0.2 2.253 450 0.00763 0.2 2.239 500 . 0.00803 0.2 2.225 550 0.00843 0.2 2.206 600 0.00883 0.2 2.188 650 0.00923 0.2 2.167 700 0.00963 0.2 2.146 750 0.01003 0.2 2.120 800 | 0.01043 02 2.095 850 0.01083 02 . 2.068 900 0.01123 0.2 2.042 950 " 0.01164 0.2 2.017 1000 0.01207 0.2 1.992 1050 ~0.01252 0.2 | 1.966 1100 0.01299 0.2 1.940 1150 0.01348 0.2 1.914 1200 0.01399 0.2 1.888 1250 0.01452 0.2 . | 1.862 1300 0.01507 0.2 1.836 17 5. REFERENCES R. L. Bradshaw, J. J. Perong, J. O. Blomeke, and W. J. Boegly, Jr., Evaluation of Ultimate Disposal Methods for Liquid and Solid Radicactive Wastes. VI. Disposal of Solid Wastes in Salt Formations, ORNL=3358 (May 1968). J. O. Blomeke, R. Salmon, J. T. Roberts, R. L. Bradshaw, and J. J. Perona, "Estimated Costs of High-Level Waste Management," pp. 830-843 in Proceedings of the Symposiumon the Solidification and Long-Term Storage of Highly Radioactive Wastes, February 14-18, 1966, Richland, Washington, USAEC, DTIE (CONF-6460208). M. N. Elliot, R. Gayler, J. R. Grover, and W. H. Hardwick, "Fixation of Radio- active Wastes in Glass. Part |. Pilot Plant Experience at Harwell," pp. 465-487 in Proceedings of the Symposium on Treatment and Storage of High-Level Radio- active Wastes, 8-12 October 1962, Vienna, International Atomic Energy Agency. W. E. Clark, J. C. Suddath, et al., Development of Processes for Solidification of High-Level Radicactive Waste: Summary for Pot Calcination and Rising Level Potglass Processes, ORNL-TM-1584 (Aug. 12, 1966).. H. W. Godbee, R. E. Blanco, et al., Laboratory Development of a Process for Incorporation of Radiocactive Waste Solutions and Slurries in Emulsified Asphalt, ORNL-4003 (July 1967). W. R. Dixon, "Self-Absorption Correction for Large Gamma=-Ray Sources, " Nucleonics 8, 68 (1951). H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2d ed., Clarendon Press, Oxford, 1959; see, particularly, p. 10 and problem XVII on p. 223. W. H. McAdams, Heat Transmission, 3d ed., pp.18, 19, McGrow-H.iII, New York, 1954, . G.W. Morey, The Properties of Glass, 2d ed., Reinhold, New York, 1954; see data for 10.6 wt % Li20/26.4 wt % N020/34.4 wt % KoO. 18 6. APPENDIX This appendix contains listings of program STORE, subroutine THERMY, and the two functions XINT and BIZERO. The subroutine is used to calculate the coefficients Ai' Bi' and Ci' which will permit the determination of a dependent variable Y when the value of the independent variable X is known. Thus, ) , Y=A B.X + C.X" . (A-1) For example, by use of Eq. (12) we obtain @ as a function of T. Since we wish to determine T as a function of 8 we use Eq. (A-1) to solve for the coefficients in the equation T= Ai + Bi®+ci®2 . FUNCTION XINT(Y, L, H) is used to obtain the integral of Eq. (12), while FUNCTION BIZERO(X) is used to evaluate the terms Io of Eq. (10). . & OOOOOOO0OO000O0O0 19 ®FTNyEWGyL S PROGRAM STORE R S s T R T I P T T TR T LS ek ererx THIS 1S PROGRAM STORE as¥sxkdxsk e g Ak e ke A gl ol g o g ot ol o Rl ek e el il THIS PROGRAM CALCULATES TEMPERATURE AS A FUNCTION OF POSITION 9001 9011 9021 9101 9111 FORMAT(BlIH THE 9121 FORMATI(83H 9131 FORMATI(46H 9141 FORMAT({74H IRGE FOR DIMENSIUN./42H 9151 FORMAT(32H 9201 WITHIN A CYLINDER OFf GLASS CONTAINING AN INTERNAL HEAT SOURCE, SUCH AS FISSION PRODUCTS. IS A TABULAR A CONSTANT, THE COEFFICIENT OF THERMAL CONDUCTIVITY THE SURFACE TEMPERATURE IS OF FUNCTION OF TEMPERATURE. . TO. THIS TEMPERATURE IS A MAJDR FACTOR IN CONTROL THE INTERNAL TEMPERATURE. THE PROGRAM WILL HANDLE MORE THAN ONE CASE AT A TIME, THE SAME VALUES OF NR, IN ONLY ONCE PER COMPUTER J4OB. READ DIMENSION DIMENSION DIMENSION DIMENSION DIMENSION DIMENSION DIMENSIGN DIMENSION DIMENSION DIMENSION DIMENSION DIMENSION DIMENSION DIMENSION ‘DIMENSION NZ, NOMy R(I)s AND 2(J). THESE ARE DZDT(20,50) IPRNT(50) LCOUNT(20+50) Q1(200),Q2(200),Q3(200),Q4(200),Q5(200),Q6(200) Q7(200,20}),Q8(50) R{50) SAVEZ(35) T(20450)yTCALC(20450) yTHETA(20450),THETAC(20,450),TT(50) TK(100),TP(100),VT(100)«THT(100) TNC(100), TKN(100) U(20,50) V{20,450)sVCALC(20,450) XT(100) 4XTA(100)+XTB(100) +XTC(100} Y{100} Z(50)42ZCALC(20,50) TYPE DOUBLE Q3+,Q4925+9Q69Q7+ARG1 yARG24PI,PI3,VIOL,VIO24BIZERD DATA (PI=3,14159265359),(PI3=31.0062766803) PI=3.1415927 PI*x%3=31,0062767 FORMAT(1615) FORMAT(16F5.3) FORMAT{8E10.4) FORMAT(81H THE NUMBER OF RADIAL POSITIONS EXCEEDS THAT FOR WHICH LTHIS PROGRAM WAS WRITTEN.}) NUMBER OF HEIGHT POSITIONS EXCEEDS THAT FOR WHICH LTHIS PROGRAM WAS WRITTEN.) THE NUMBER OF TERMS IN THE BESSEL FUNCTION SUMMATION E LXCEEDS THAE OIMENSION OF QT7.) THE TEMPERATURE INTERVAL HAS BEEN SET TO 0.0) THE NUMBER OF TEMPERATURE PROFILES REQUESTED IS TOO LA THE VALUE OF TINT SHOULD BE INCREASED.) THE CALCULATED VALUE OF TIPRNT(yI2,59H) EXCEEDS 17, PGS 1SIBLY BECAUSE TINT HAS BEEN SET TOO SMALL.) FORMAT( 1RE. B83H1 HEIGHT THE CYLINDER DIAMETER -IS4F8.1, 2TRENGTH OF THE INTERNAL HEAT SOURCE IS+1PE9.2 3/SECy+ES.2 40THER UNITS IS,0PF9.14+18H BTU/FT*#%3/i4R S5CM%x%3,/81H TEMPERATURES ABOVE THE SURFACE TEMPERATU 4H CM./ 58H IN THE S 20H CALORIES/CM%%3 SOURCE STRENGTH IN AND,1PE9.2,18H MEV%CURIES/ THE THERMAL CONDUCTIVITY COEFFICIENT AT T y 12H WATTS/CM*%3/48H RADIUS UNITS 6HE SURFACE TEMPERATURE OF,0PF6.0, 13H DEGREES C ISs1PE9.2, 18H CAL T7/CM/SEC/DEG C./1HO) 9211 FORMAT(120H VALUES OF THE RELATIVE DISTANCE (R/A) FROM TH 1E CYLINOER AXIS ARE GIVEN IN THE FIRST ROW .OF THIS TABLE 2130HO (Z/A) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 O. 335 0.40 0.45 0.50 0. 60 0,70 0.80 0.930 0.95 1.00 4 /1HO} .9221 FORMAT(120H VALUES OF THE RELATIVE DISTANCE (R/A) FROM TH BUT ALL HAVE. 20 1E CYLINDER AXIS ARE GIVEN IN THE FIRST ROW OF THIS TABLE / 335 0.40 045 0.50 0.60 0.70 0.80 0.90 0.95 1.00 4 [1HO) 9231 FORMAT{F7.3,17F7.1) 9241 FORMAT(120H1 TEMP DISTANCES, IN RADIUS UNITS, MEASURED FRO 1M THE BOTTOM OR TOP OF THE CYLINDER, AT WHICH QCCUR HEATING ABQVE/ 2120H DEG C. THE SURFACE TEMPERATURE BY AMOUNTS SHOWN IN THE 3 FIRST COLUMN. /) ‘9251 -FORMAT(FH6.093Xy17FT.3) OO0 9261 FORMAT(TX,17(1542X)) 9271 FORMAT(1H1) 9281 FORMAT(37HOTHE EXECUTION TIME FOR THIS CASE WASsF7.1l, 8H SECONDS) 9291 FORMAT(315,5E15.5) 9301 FORMAT( 91HIHEIGHT THETA, A FUNCTION OF RELATIVE TEMP V,WHE IN THE SURFACE TEMPERATURE IS KEPT AT,F6.,0/ 58H IN THE S 2TRENGTH OF THE INTERNAL HEAT SOURCE ISyF8.5y 20H CALORIES/CM*#%3/SE 3CypF8.5y 12H WATTS/CM*®3/ 48H RADIUS SOURCE STRENGTH IN OTH 4ER UNITS I1SeF9.1, 18H BTU/FT#*¥3/HR ANDyF9.1, 18H MEV®CURIES/CM%*%3 5./ 54H UNITS THE THERMAL CONDUCTIVITY COEFFICIENT ATsF6.0¢ 6 13H DEGREES C 1S.F8.5, 18H CAL/CM/SEC/DEG C./1HD) 9311 FORMAT(FT7.342Xs17F7.3) 9321 FORMAT( 95HIHEIGHT THE DIMENSIONLESS U(1,J) FROM WHICH WE C LALCULATE THETA(I,J}y V(I4J)s AND T{I,J4}./15H 2 [3449H 2 TERMS ARE USED IN THE BESSEL FUNCTION SUMMATION.) 9331 FORMAT(8EL15.8) 9341 FORMAT(24H1TO HAS BEEN SET TOO LOW) 9351 FORMAT(45HLTO HAS NOT BEEN SET TO AN INTEGER TIMES 50.0) 9361 FORMAT(Fl0.04F10.6,F10.543E16.8) 9371 FORMAT{THLTHETA{,I241Hys12+2H}=4F6.3) 9381 FORMAT{1HO) 9391 FORMAT({15F6.0) 9401 FORMAT(FT.3,17F7.2) 9411 FORMAT(FT.3,17F7.3) READ 9001 yNRs NZ,»NOM RADIAL COORDINATE/RADIUS OF CYLINDER HEIGHT COORDINATE/RADIUS OF CYLINDER R(I) IS THE RELATIVE RADIUS Z(J) IS THE RELATIVE HEIGHT IF(NR-17)21,21,11 11 PRINT 9101 GO TO 4001 21 IFINZ-50)41l,41,31 31 PRINT 9111 GU TO 4001 41 TF(NOM=200)61+61451 51 PRINTY 9121 ‘GO TO 4001 61 READ 90114(R(1)yI=14NR) READ 9011+(Z{J)sJ=1eN2Z) BQ=0.0 DO 101 L=1,NOM 3Q=83+1.0 QliL)=2.0%3Q-1.90 QZ2(L)=Q1{L)*QLIL) QA3(LY=QLIL)I%*Q2(L) QalL)=QLIL)YRPI/Z({NZ) QS(L)=Q4(L)*R(NR) Q6lLY=8BIZERD(Q5{L)) 101 CONTINUE DO 111 J=1¢NZ Q8(J)=Z(JI*TZ(NZ)-Z(J}1#*0.5 111 121 131 141 151 161 171 181 201 211 221 231 241 251 301 311 341 361 371 381 391 401 2] CONTINUE CONL1=4.0%Z(NZ)*Z(NZ)/PI3 DO 121 I=1,AR Ull,41)=0.0 UlINZ})=0.0 CONTINUE NZ1=NZ-1 00 131 J=24N2Z1 : U{NR,yJ)}=0.0 CONTINUE NR1=NR-1 D0 221 J=24NZ1 00 211 I=14NR1 SuUM=0.0 DC 201 M=1,NOM ARG1=Q4(MI®R(]) ARG2=Q5(M) VIO2=Q6(#M) [F{ARG1)151,4141,151 VIOl=1.0 GO T0O 181 : IF{ARG1I-ARG2) 171,161,171 VIOl=vIOQZ2 GO TO 181 - Q7(M,I)=BIZERD(ARGL]) VIOLI=QT7(M,I) - SUM=SUM#VIOL*SINIQ4{MI*Z(J))}/Q3(M)/VIO?2 CONTINUE U{1+J)=Q8{J)I-CONL1%ESUM CONTINUE CONTINUE PRINT 9321,NOM PRINT 9211 DO 231 LK=14NZ PRINT 93114{ZALK)}+{U(JsLK)yJ=1,NR)) CONTINUE ' NT=0 NT=NT+1 READ 9021 TP{NT) TKINT) [F{ITP(NT))2514241,241 NT=NT-1 NTEMP=NT-1 READ 9021 4A4RAD,TINT,TO IF{AY4001,4001,311 INTIME=ICLOCKF{DUMMY) DIA=2 .0%RAD AO=A/TO JN=0 JN=JN+1 [F(TO-TP{JUN))361,401,341 IF{JUN=-1)371,371,381 PRINT 9341 GO TO 301 IF{JUN-NT) 341,341,391 PRINT 9351 GO TO 301 JO=JN TKO=TK{ J0O) CONZ2=A0%R AD#*RAD/TKO HUNIT 1=A%*4,185 HUNIT2=A%2 ,8317%3,6%3.,9685E04 HUNIT3=A%2611.6/3.7 411 421 431 451 461 471 481 491 501 561 571 581 601 611 621 631 641 651 661 671 681 691 701 711 22 JT=NT-J0+1 JTEMP=JT-1 JR=JT=-2 THT(1)=0.0 THT(2)=25.0*(TK(J0)+TK(J0+1))/TO/TKO Y{1)=TK(JQ) Y{2)=TK{JO+1) DO 411 II=3,JTEMP Y(II)=TK{I[+J0-1) THT(II)=XINT{Ys11,50.0)/TO/TKO CONTINUE DO 421 I[=JONT JK=1-J0+1 TN(JKI=TP(I)-TO TKN{JK)I=TK(I) CONTINUE CALL THERMY(THTyTN:XT1XTA,XTB,XTC1JT1JTEMPl1.011-01100) PRINT 9271 PRINT 9001440 DO 431 JK=1,JTEMP : PRINT 9361,TN(JK),TKN(JK),THT{JK),XTAlJK).XTB(JK),XTC(JK) CONTINUE DO 581 J=14NZ DO 571 I=1,NR THETA(I'J)=AO*RAD*#2*U([,J)/TKO MT=0 MT=MT+1 . IF(THETA(1:J)—THT(MT))461,561'451 [F{MT-1)4T14471,451 TEMP=THETA(I,J)-THTUMT) IF(TEMP+0.003)481'561;561 PRINT 9371,1,J,TEMP GO TO 301 [F(MT=JTEMP)5014571, 571 NIT=MT-1 TU1,J)=XTA(NIT) +THETALT 9 3) % (XTBINIT)#THETALL, J)#XTCINTT}) GO0 TO 571 T{T14J)=TN(MT) CONTINUE CONTINUE J=0 TMAX=04.0 J=d+l IF(J-NZ2)611,6114641 IF(TMAX=-T(14J))621+621,601 TMAX=T{1,yJ) GO TGO 601 IF{TMAX=10.0)651,6614661 IFMT=3 50 TO 691 IF{TMAX-100.0)671,:681,681 IFMT=2 - GO TQ 691 IFMT=1 CONTINUE PRINT 9201;D[A1A,HUNIT1§HUNIT21HUN1T31TO:TKD PRINT 9211 GO TO {701,721, 741),IFMT DO 711 LL=1,NZ PRINT 9231!(Z(LL)!(T(JILL)!lefNR,, CONTINUE GO TO 761 121 731 741 751 761 811 821 831 841 851 861 871 1001 1011 1021 1031 1041 1051 1061 1071 1141 1151 1161 23 DO 731 LL=1,NZ ‘ PRINT 9401+ (Z(LL) »{(TlJyLL)sJ=1,NR)) CONTINUE GO TO 761 00 751 LL=1,NZ PRINT 9411, (Z(LL)s(T(JyLL)yJd=14NR)) CONTINUE CONTINUE PRINT 93010TO{AfHUNITlfHUNITZ,HUNIT3fTOiTKO PRINT 9211 DO 811 LL=1,4NZ PRINT 93110(Z(LL)'(THETA(JiLL,0J=loNR)) CONTINUE ' IF(TINT)831,821,831 PRINT 9131 GO TO 4001 DO 851 J=14NZ IF(T{1+4J)/TINT~50.0)851,85],841 PRINT 9141 GO TO 4001 CONTINUE DO 871 L=1,50 IPRNT(L)=0 D0 861 IR=1,20 LCOUNT(IR,L)=0 CONTINUE CONTINUE NL=0 20 2801 I=1,4NR L=l TCHECK=TINT J=0 J=J+1 IF(J-NZ+2)1011,1011,2801 TEMP=T(I,J)-TCHECK IF{A3S{TEMP)-0.05)1021,1021,1031 ZCALC(I, L)=Z(J) GU TD 17561 IF(TEMP}1001,1001,1041 KZ=J Kl=J-1 IF(T(IfKZ)—T(IiKl))280112801'1051 IF(T(IfK2+1)'T(IpKZ)’lO?lle?llebl J1=Kl1 J2=K2 J3=K2+]1 GA TO 1141 JI1=Ki1-1 J2=K1 J3=K2 TERM1=(T(IrJ3)-T(11J1))/(Z(J3)-Z(J1’) TERMZ=AT(I,J2)=-T{T1,J1))7(2(J2)-2(J1}) CONB=(Z(J3)=-Z(J2))/(TERMI-TERM2) CONA={Z(J3)+Z(J1)-CONB*TERM1)/2.0 A CUNC=T(IyJZ)‘(Z(JZ)—CDNA)*(Z(JZ)‘CDNA)/CUNB RODT=SQRT(CONB*{TCHECK-CONC)) IF(CONB)L161,1151,1151 DZDTUL,L)=CONB/2.0/R00T I T=CONA+ROOT GG TO 1171 DZDT(I4L)=-CONB/2.0/R00T IT=CONA=-RQOOQT 1171 1501 1511 1521 1531 1541 1551 1561 1571 1601 1651 1661 1681 1691 1701 1711 1721 1751 1761 1771 1781 1791 1801 2001 2011 2021 24 SAVEZ(1)=1T LCOUNT(I,L)=0 LCOUNT(I,L)=LCOUNT(I,L)+1 IF(LCOUNT(I'LI—1Q1151171511y2001 SUM=0.0 SUMD=Q.0 DO 1601 ™M=1,NOM ARGLI=Q&4(M)%R(I) ARGZ2=Q5(M) VID2=Q6(M) [F(ARG1)1531,1521,1531 VI0ol=1.0 30 TO 1561 [F{ARGL-ARG2Y1551,1541,1551 viol=vIOo2 GO TO 1561 VIO1=Q7{M, 1) ARG3=Q4 (M) *ZT lF(ABS(ARG3)—1.0E1511571,301,301 SUM=SUM+V101*SIN(ARG3)/Q3(M)IVIOZ SUMD=SUHD+VIOI*COS(ARGB)IQZ(M)IVIOZ CONTINUE THETAC(I,L)=CUN2*(ZT*(Z(NZ)—ZT)*O.S-CONl*SUM) MT=0 MT=MT+1 IFITHETAC(I,L)—THT(MT))1661,1701.1651 [F(MT-1)301,301,1681 IE(MT-JTEMP)1691,1781,1731 NIT=MT-1 TCALC(I'LI=XTA(NIT)+THETAC(I,L)*(XTB(NIT)+THETAC(I,L)* XTCINIT)) GO TO 1711 TCALC (I, L)}=TN(MT) TEMP=TCALC{I,L)}-TCHECK LFCABS(TEMP)-0.05)1751,1751,1721 ZT=ZT-TEMP*DZDT(I,L} KK=LCOUNT(L4L) SAVEZ(KK+1)=ZT GO TO 1501 2CALC{T,L)=2T TT(L) =L*TINT IPRNT(L)=IPRNT(L)+1 . lF(1PRNT(LI-17)178111781,1771 PRINT 9151,L GO TO 4001 TCHECK=TCHECK+TINT IF(L-NL)}1801,1801,1791 NL=L L=L+1 GG TO 1011 ZMIN=Z (K1) IMAX=2(K2) zI=0.5*(;MIN+zMAxl SUM':0.0 SUMD=0Q0.0 DO 2101 M=1,NOM ARG1=Q4 (M)*R(I) ARG2=Q5(M} VI02=Q6(M) IF(ARG1)2031,2021,2031 vI01=1.0 G0 TU 2061 2031 2041 2051 2061 2071 2101 2151 2161 2181 2191 2201 2211 2221 2231 2241 2301 2801 3021 3031 4001 25 IF{ARGL-ARG2)2051,2041,2051 vIi0ol=VIOZ2 GO TO 2061 VIO1=QT7(M, 1) ARG3=Q4 (M)*ZT IF(ABS(ARG3)-1.0E15)2071,301,301 SUM=SUM+VIOL1*SIN{ARG3)/Q3({M)/VIOZ CONTINUE THETAC(IsL)=CON2%(ZT%(Z(NZ)-ZT)*0.,5-CON1¥SUM) MT=0 MT=MT+1 IF(THETAC(I,L)-THT{MT))2161,2201,2151 IF(MT-1)301,301,2181 IF(MT-JTEMP)2191,1781,1781 NIT=MT-1 TCALC(IvL)*XTA(NIT)+THETAC(11Ll*(XTB(NIT)+THETAC(IvL)* XTC(NIT)) GO TO 2211 TCALC (I,L)=TN(MT) TEMP=TCALC(I,L}-TCHECK IF(ABS{TEMP)-0.05)1751,1751,2221 IF(TEMP)2241,223142231 IMAX=ZT GO TO 2301 IMIN=ZT LCOUNT(I,L)=LCOUNT(I,L)+1 [F(LCOUNT(1,1)-30)2011,2011,2801 CONTINUE PRINT 9241 PRINT 9221 DO 3021 LL=1,NL NA=IPRNTI(LL) PRINT 9251y (TT(LL),» (ZCALC(J4LL) 4J=1,NA)) CONTINUE PRINT 9271 DO 3031 LL=1,NL NA=IPRNT(LL) PRINT 9261y (LCOUNT(JsLL) yd=1,NA) CONTINUE DTIME=(ICLOCKF(DUMMY)~INTIME}*1.0/60.0 PRINT 9281,0TIME GO TO 301 CALL EXIT END 26 SUBROUTINE THERMY{X,YsWsAyByCoNT4NTEMP,X0,Y0,ID) DIMENSION A(ID)B(ID),C{ID) W{ID)X(ID),Y(ID) IF{Y0)101,101,301 | 101 IF(X0-X(1))121,131,141 121 PRINT 701 60 .T0 901 131 Y0=Y(1) G0 TO 301 141 I=1 151 I=I+1 IF(I-NT)171,171,161 161 PRINT 711 60 TO 901 - 171 IF(X0-X(1))191,181,151 181 YO=Y(I) GO TO 301 191 IF(I-NT)201,211,211 201 J1=1-1 J2=1 S J3=1+1 G0 TO 221 211 J1=1-2 J2=1-1 J3=1 221 TERML=X{J2) :X(J3)#X(J3)=X(J3)#X(J2) %X (J2) TERM2=X{J 1) %X (J3)EX(J3)=-X{I3)EX(J11%X (1) TERM3=X(J 1) %X (J2)%X(J2)=X(J2) ¥X (J1)%X(J1) DELTA=TERML-TERM2+TERM3 CA=(Y(J1)XTERMI-Y{J2)*TERM2+Y(J3)*TERM3)/DELTA CB={Y(J2)&X(J3)%X(J3)-Y(J3)*X{J2)*X(J2) 1 Y (J1) X (J3)EX1J3)+Y{J3) X {J1)*X(J1) 2 “Y(JL1) %X (J2) %X (J2)=-Y{J2)*X(JL)*X{J1))/DELTA CC=(Y(J3)%X(J2)=Y (J2)%X(J3)=Y(J3)=X{J1)+Y(J1)*X(J3) 1l +Y (J2)eX(J1)=-Y(JL)%X(J2))/DELTA YO=CA+X0®(CB+X0*CC) 301 DO 311 L=14NT W(L)=Y(L) /YO 311 CONTINUE DO 401 J=1,NTEMP IF(J-NTEMP) 331,341,341 331 11=J [2=J+1 [3=J+2 GO TO 351 341 [1=J-1 [2=3 I13=J+1 351 TERML=X(T2) %X (I3)%X(I3)-X{I3)%X(I12)%X(I[2) TERM2=X{T 132X (I3)*X{I3)—X(I3)xX(11)*X(I1) TERMI=X(IL1)EX{I2)%X(I12)-X(12) X (I1)*X(I1) DELTA=TERM1-TERM2+TERM3 A(J)={W(T1)*TERMI-W(I2)*TERM2+W(I3)%TERM3)/DELTA BIJI=(W{I2)#X(I3)%X(I3)—W(TI3}%X(12)%X(12) 1 —WlI LY EX (I3 XT3V +WlI3)EX{TIL)*X(1]) 2 FH I EX(I2)#X(I2)=WlI2)*X(T1)*X(11))/DELTA ClI)=(W(I3)eX(I2)=W(T2)*X(I3)-W(I3)*X(I1) 1 +W I EX(I3)+W(I2)X(IL)=W(IL)*X(12))/DELTA 401 CONTINUE 701 FORMAT{49H1 TO HAS BEEN SET TOO LOW FOR THE PRESENT PROGRAM) 711 FORMAT(50H1 TO HAS BEEN SET T0O HIGH FOR THE PRESENT PROGRAM) 27 RETURN 901 CALL EXIT END FUNCT FON XINT(YyLgH) DIMENSION Y{200) K=L KP=K/2%2 NDIFF=KP-K IFINDIFF)1,2 2 K=K-1 1 ODD=0.0 EVEN=0.0 KM2=K-2 DO60I =3 ,KM2,2 60 0DD=0DD+Y (1} KMl=K-1 DO621=24KM1,2 62 EVEN=EVEN+Y(]) XINT=H/3.0%(Y (1) +Y(K)+4, 0%EVEN+2.0%00D) IF(NDIFF) 3,4 4 XINT=XINT+ H *{Y{K)+Y(K+1))/2.0 3 RETURN END FUNCTION BIZERD(X) CALCULATES MODIFIED BESSEL FUNCTION OF THE FIRST KIND, I0(X), FOR (=3.759X4IN CALCULATES BY SERIES 9.8.1 AND 9.8.2 OF N.B.S. HD3K OF MATH FUNCNS (1964) TYPE DOUBLE S,TyXsY¥,BIZERD Y=X [IF(Y+3.75)99,3,3 3 IF(3.75-Y)844,44 C***"‘ _‘3. 75 u,LE. XCLE 03075 4 T=Y/3.75 T=T*T ‘ BIZERD=((({(T*.0045813+.0360768)%T+,2659732)%T+1,2067492)%T 1 +3.,0839424)%T+3,5156229) #T+1. RETURN Cx%%8 3,75.LT.X 8 T=3.75/Y S=CL00((T*,00392377-.01647633)%T+.02635537)1%T—.02057706)%T 1 +.00916281)}%T-.00157565)%T+#.00225319)%T+.01328592)%T+.39894228 BIZERO=DEXP(Y)*S/DSQRT(Y) RETURN C*%99 ARGUMENT OUT OF RANGE. RETURN ZERQD. 99 BILERD=0 RETURN END 29 INTERNAL DISTRIBUTION . Biology Library 1 2-4. Central Research Library 5-6. ORNL — Y-12 Technical Library Document Reference Section 7-26. Laboratory Records Department 27. Laboratory Records, ORNL R.C. 28. R. E. Blanco 29. J. 0. Blomeke 30. W. J. Boegly, Jr. 31. W. P. Bonner 32. R. L. Bradshaw 33. R. E. Brooksbank 34, F. N. Browder 35. K. B. Brown 36. H. C. Claiborne 37. W. E. Clark 38. K. E. Cowser 39, F. L. Culler, Jr. 40-44. W, Davis, Jr. 45. Wallace de Laguna 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 46. F. M. Empson 47. D. E. Ferguson 48, C. L. Fitzgerald 49. E. J. Frederick 50. H. W. Godbee 51. J. M. Googin 52. K. W. Haff 53. R. F. Hibbs 54. D. G. Jacobs 55. W. H. Jordan 56. H. Kubota 57. M. E. Lackey 58. C. E. Larson 59. J. M. Leitnaker EXTERNAL DISTRIBUTION 94, W. H. Regan, AEC, Washington 95. W. H. McVey, AEC, Washington 96. W. G. Belter, AEC, Washington 97. A. J. Pressesky, AEC, Washington 98. W. P. Gammill, AEC, Washington 99. I. C. Roberts, AEC, Washington 100. C. B. Bartlett, AEC, Washington 101. R. F. Reitemejier, AEC, Washington 102, R. D. Walton, Jr., AEC, Washington 103. J. N. Wolfe, AEC, Washington ORNL-4345 UC-70 — Waste Disposal and Processing . Lin . Liverman Lomenick Lowrie MacPherson MacPherson McClain R. Mixon Morgan Nestor Nichols Nicholson Perona Roberts Rupp Shappert Skinner Snider Struxness Suddath . Sundberg R. Tallackson suneo Tamura Unger Wantland Weinberg Weir Whatley Winsbro Emmett (consultant) Katz (consultant) Margrave (consultant) . Mason (consultant) Richards (consultant) @D ®®3GR POQE_CUWHHOUPEYEINSTONO WM T MGG RO DL HOGO R PP OGO RO WO @omIEHOXXHH 104, 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116, 117. 118. 119. 120. 121. 122, 123. 124. 125. 126. 127. 128 129, 130. 131. 132, 133. 134, 135. 136. 137. 138. 139. 140. 141. 142. 143. 144, 145. 146. 30 . C. S. Shoup, AEC, ORO K. K. Kennedy, AEC, Idaho J. A. Buckham, Idaho Nuclear Corp., Idaho Falls, Idaho C. M. Slansky, Idaho Nuclear Corp., Idaho Falls, Idaho C. W. Christenson, Los Alamos Scientific Laboratory R. I. Newman, Allied Chemical Corp., General Chemical Divisionm, P.O. Box 405, Morristown, New Jersey : R. G. Barnes, General Electric Co., 283 Brokaw Road, Santa Clara, California ' Selman, Nuclear Materials and Equipment Corp., Apollo, Pennsylvania C. Frye, State Geological Survey Division, Urbana, Illinois . P, Hatch, Brookhaven National Laboratory . Lawroski, Argonne National Laboratory Lombard, Lawrence Radiation Laboratory . Reno, State Health Department, Topeka, Kansas Lewis, Nuclear Fuel Services, West Valley, New York Cooley, Pacific Northwest Laboratory, Richland, Washington Platt, Pacific Northwest Laboratory, Richland, Washington Meyer, E. I. duPont, Savannah River Laboratory Ice, E. I. duPont, Savannah River Laboratory Patterson, E. I. duPont, Savannah River Laboratory Sheldon, E. I. duPont, Savannah River Laboratory . Thayer, E. I. duPont, Wilmington : Nace, USGS, Washington, D.C. Straub, Env1ronmental Health Research and Training Center, Room 1108, Mayo Building, School of Public Health, University of Minnesota Dade Moeller,. USPHS, Winchester, Massachusetts Director, Division of Naval Reactors, AEC, Washington, Attn: R. S. Brodsky Theodore Rockwell III, Chairman, AIF Safety Task Force, MPR Associates, Inc. 815 Connecticut Ave. NW, Washington, D.C. W. J. Lacy, Office of Civil Defense, Washington, D.C. J. E. Crawford, U.S. Bureau of Mines, Washington, D.C. J. W. Watkins, U.S. Bureau of Mines, Washington, D.C. P. A. Krenkel, Vanderbilt University, Nashville, Tennessee F. L. Parker, Vanderbilt University, Nashville, Tennessee E. R. Gloyna, University of Texas, Austin, Texas W. J H. A. A. S P. B oW <amOoOOC- oz nont X MHrR@wRao@DERETDODGWH . Kaufman, University of California, Berkeley, Callfornla Thomas, Jr., Harvard Unlver51ty, Cambridge, Mass. chneider, Allied Chemical Corp., Industrial Chemicals Division, 0. Box 405, Morristown, N.J. . L. Schmalz, AEC, P.0. Box 2108, Idaho Falls, Idaho John Geyer, Johns Hopkins University, Baltimore Maryland W. A. Patrick, Johns Hopkins University, Baltimore, Maryland Abel Wolman, Johns Hopkins University, Baltimore, Maryland H. C. Thomas, University of North Carolina, Chapel Hill, N.C. W. H. Reas, General Electric Co., Vallecitos Laboratory, Pleasanton, California : Fred Herbert-Oettgen, Touramerica Division, The E. F. MacDonald Company, New York John Woolston, AECL, Chalk River, Canada 147, 148. 149, 150, 151.. 152. 153, 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164, 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. E. D. Nogueira, Seccion de Combustibles Irradiados, Junta de Energia Nuclear, Ciudad Universitaria, Madrid-3, Spain L. C. Watson, AECL, Chalk River, Canada AECL, Chalk River, Canada, Attn: C. A, Mawson, I. L. Ophel Librarian, AAEC, Res. Estb., Private Mail Bag, Sutherland, N.S.W., Australia, Attn: R. C. Cairns, L. Keher AERE, Harwell, England, Attn: H. J. Dunster AERE, Harwell, England, Attn: J. R. Grover AERE, Harwell, England, Chemical Englneerlng Library, Attn: R. H. Burns, K. D. B. Johnson W. H. Hardwick AERE, Harwell, England, Library (Dlrectorate) AERE, Harwell, England, Chemistry Library, Attn: W. Wild Yehuda Feige, Minister of Defense, AEC, Rehovoth, Israel K. M. Chandra, Atomic Energy Establishment, Trombay (Bombay), India K. T. Thomas, Atomic Energy Establishment, Trombay (Bombay), India Jitender D. Sehgel, Bombay, India Michio Ichikawa, Tokai Refinery, Atomic Fuel Corp., Tokai-Mura, Ibraki-Ken, Japan Atou Shimozato, Nucl. Reactor Des. Sect., Nuclear Power Plant Dept., Hitachi, Ltd., Hitachi Works, Hitachi-Shi Ibaraki-Ken, Japan Federico de Lora Soria, Grupo de Combustibles Irradiados, Junta de Energia Nucl., Div. de Mat., Ciudad University, Madrid-3, Spain Baldomero Lopez Perez, Centro de Energia Nucl., Juan Vigon, Ciudad University, Madrid-3, Spain CEA, Saclay, Paris, France, Attn: A. Menoux, C. Gailledreau F. Laude, Commissariat a L'Energie Atomique, Centra D'Etudes Nucleaires de Fontenay-aux-Roses, Boite Postale No. 6, Fontenay-aux-Roses, France R. A. Bonniaud, Commissariat a L'Energie Atomique, Centra D'Etudes Nucleaires de Fontenay-aux-Roses, Boite Postale No. 6, Fontenay-aux- Roses, France P. J. Regnaut, CEN, Fontenay-aux-Roses, Paris, France C. J. Jouannaud, Fuel Reprocessing Plant, CEN, B. P. No. 106, 30- Bagrwls/ceze, Marcoule, France Eurochemic, Mol, Belgium, Attn: Eurochemic Library Centre d'Etudes Nucleaire, Mol, Belgium, Attn: L. Baetsle Euratom, Casella Postale No. 1, Ispra, Italia, Attn: M. Lindner F. Dumahel, CEA, 29-33 rue de la Federa, Paris 15, France George Straimer, Radiation Protection Dept., Luisenstrasse 46, Bad Godesberg, West Germany Hubertus M. Holtzem, Radiation Protection Dept., Luisenstrasse 46, Bad Godesberg, West Germany Gerard M. K. Klinke, Const. Dept., Min. of Fed. Property, Bad Godesberg, West Germany Helmut Krause, Decontamination Dept., Karlsruhe Nucl. Res. Center, /5 Karlsruhe, Weberstr 5, Siemensallee 83, West Germany Harold F. Ramdohr, Waste Storage Dept. Karlsruhe Nucl. Res. Center, Leopoldshafen/Bd., Max-Planck-Str. 12, Karlsruhe, West Germany Herman F. A. Borchert, Petrology, Mineralogy, and Economic Geology Dept., Mining Academy Clausthal, Seimensallee, Karlsruhe, West Germany H. 0. G. Witte, KFA, Juelich, Germany E. J. Tuthill, Brookhaven National Laboratory 181. . 182, 183. 184. 185. 186. 187. 188. 189. 190. 191. 192, 193. 194-386. 32 S. Rottay, Director of Waste Treatment, KFA, Juelich, Germany S. Freeman, Mound Laboratory, Bldg. A, Room 155, Miamisburg, Ohio J. J. Goldin, Mound Laboratory, Bldg. A, Room 155, Miamisburg, Ohio D. L. Ziegler, Dow Chemical Company, Rocky Flats Ray Garde, Los Alamos Scientific Laboratory R. M. Girdler, E. I. duPont, Savannah River Laboratory E. A. Coppinger, Pacific Northwest Laboratory, Richland J. J. Shefcik, General Dynamics, San Diego, California Philip Fineman, Argonne National Laboratory, East Area EBR-2, National Reactor Testing Station, Scoville, Idaho D. E. Bloomfield, Pacific Northwest Laboratory, Richland Jacob Tadmor, Israel Atomic Energy Commission, Soreq Nuclear Research Center, Yavne, Israel ‘ ’ J. A. Swartout, Union Carbide Corporation, New York Laboratory and University Division, AEC, ORO Given distribution as shown in TID-4500 under Waste Disposal and Processing category (25 copies — CFSTI)