ot V. 4 N 6. ¢ v - TR . é - “SEGRET: o . ORNL-2840 o . C-84 - Reactors-Special Features of Aircraft Reactors - AEC RESEARCH AND DEVELOPMENT REPORT M=3679 (23rd ed.) APPROVED FOR PUBLIC RELEASE & Name/Title: Leesa Laymance, ORNLTIO Date: December 21, 2015 SN AV RN H XX 8 2% I I e =4 @D e o £ O & & °E & =¥ By HE 2 %8 AIRCRAFT NUCLEAR PROPULSION PROJECT B8 A ah of £ 23 SEMIANNUAL PROGRESS REPORT =g 2 33 FOR PERIOD ENDING OCTOBER 31, 1959 e T g8 + 35 : ¢ ~ Ellfl e . ‘ _ . ’ Jy § &4 This document has been reviewed and is determined tobe ., g g ( P “) - = & e s if > b > [T ey = Lo, 2D '~\v "/ ;’) i.‘ [{» » i i S . 4 i {% 5 f}b SR N W N ‘f{: PMD w g j - \ / ":M‘ w57t o | ;-‘ ./é;:" . 1‘ ;‘} ’jfifit e _ S S\ OAK RIDGE NATIONAL LABORATORY ’ 2.4 ™ ~ %) Q‘ operated by 1_:'.: zfl' it o '\S\‘ . B = UNION CARBIDE CORPORATION 4. FS I E’B §D ‘% for the £ < : 5 | 3 I R U.S. ATOMIC ENERGY COMMISSION 2 - i ’ e ] | : | I ] &8 = 2 NS i : s 5 EE o : 5 5 5.3 OB ENY = ~ £ A i Pl Lt . o ' - = ,m"N’ = @t toringr Res fricted2Daid as define the A SEGRET &~ i« | BT s i L ‘ffl) i?_: ;a 4 ina b Lo hhi'l’zed person is prohf:fEd . S8 3 B o oo T ORNL~-2840 C=84 — Reactors—Special Features of Aircraft Reactors M=3679 (23rd ed.) This document consists of }?gfiages. Copy £ of 228 copies. Series A. Contract No. W=7405=eng=26 ATRCRAFT NUCLEAR PROPULSION PROJECT SEMIANNUAL PROGRESS REPORT for Period Ending October 31, 1959 Date Issued DEC £ 91359 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U. S. ATOMIC ENERGY COMMLSSION e sy LU e N 3 ke L 3 i A 4 1 < . ., i, . L .. \. Wy T I - N 4 ¥ ' Wy 4 ‘- - o1 4 o " - - “ . » “ . . . o u L3 L3 . . £ o L4 L o - - * L4 - # 3 . v @ L3 ’ - Kl o L3 L) Kl - w “ L3 w L Kl Ed El = . © - . - - L3 L3 Kl " L] * - . ~ bl - K * K L3 L L3 . » » » u L 3 " . N “ . P @ - » % . “ o, W o " ° L3 " @ » P P " “ . © . . P o o . W o . #* P @ Ll L] 3 . o # . - “ » . » " - - @ @ » v A o v . . - = u u P P P P 3 . . 2 P . B @ « . . . - G % o - o o * » » 5 P » . o . - P 3 . . P nl\ * “ @ ) @ o . . o, * a P o P Y . . . u » . ¥4 . . - 4 “ o “ p “ I p < . e " . 3 '3 a “ " K} * El . » k] " - " L] » @ —t-d - [ “ . Pag 3 o - + - D . - - o K2 K} o L o " 3 4 3 fotl # . p ; . \ 5 | 4 s 6 Pl a - . o 2 o u " & > > #* u 5 1 >3 3 - P P fomd p 4 1 . . . @ ) - - #* & o - - - i * 4 ] @» s = P o . ) 5 El - = - L2 & . @ * “ “ L] » * - [y * - #* P - . - e P - - « * o ° # * * » * w “ % fl v - @t P oy P p [ : B “ ; v & el P P ot . u - - * » L2 J - - “ &) * “* . # Fomd * (o 3 5z N [N - . o P L - o # ? “ ~ o K - g - . Prot P P e P g} ; : " P % P e, . . o » - £l @ £y w 0 “ - “.u » “ =3 % o % s, [ e i i) P P H » ! P . 21l . o . - 4y = - 3 - -2 “ - find - N “rd . ; “ pics : .. ¢ o P 7 P P 8] . # w . b E £ » “ “rei “ i 4 “ “ s i ‘ ¥ et -t « Ty . . » 1] [} o » * - i * 7 o e e . La . . . oD . d ol [ - posl i * \ S i e k] P p % .- @ o ,\ = [ " s B " - b # w » _\.M = [ d 4 . . Ly " i . » £ s % & - - famet . . . o~ I » . @ - = L - d B " » “ . P . P ” o < o, « “ - » o o @ * « L g . o d g ] . . 4 L3 L »\‘ * B L . > B » = . . P # i v % s - £ w * e Y . - “ o . \m “ - ‘. 169 . P i : - . e p -4 " o . 823 # " . L L] : » pr=d e =t 1 . L P AR B 5 - B3 i @ & ii2 !t e=d Crey - P = “ 23 ; . Is o o - =y : R == * bl L b . . . . oo - ' o * [y * - v R, e s ! e e T, . . LR “ s " oy e - * : oy - - . % s . L . . 3 - . * o ] [ [ b - < . PR o -4 y i s o : o 4 oyt ) et \ H . [ <7, - . - ' i { 1 I ot ’ 4 e - i = - - » 1 k] o . P ) Bomd . . 3 H - - b-3 o ) * - i P [ = g it 4 e i 1, @ 1 " i - - ] . « f-d i = 4 o . < o » ¢ ) [y pv] . ¥ o’ e . ) oo . ” oy L » “ nfi,. [ - ) (] . B e P . : ot o . =7 1 . L " H Ui H e | g e S ! gl Ly . LT ot i Pt} i g £ bt 4 A oy <, [ et e o T3 P .- - » “ . > M i - £ B p——— Aging of Columbium=Zirconium Alloy Specimens ..cieeseencssss 47 Effects of Thermal-Stress Cycling on Structural Materials .. 50 ENEINERBING LMD HEAT 'TRANSEFER STUDIHS . asscstscwmabbovasss L Molten Lithium Heat Transfer ....... paAAl DD AL AE aEEma -t 88 R . ) Thermal Properties of Columbium=Zirconium ALlOYS cevreees 5 s o Dynamic Seal Research (.vsvvesescvcsas & e ex Bt B AN Gk 62 CHREMECS RESHIRCE ; s6 e svonemni@ 885 » o o i arprarons oG B - grear TR § . 64 Preparation of Berylllium Oxide ...veveescsee T o T 64 Beryllium Oxide Calecining Studies ...... v 36 DIREEGE DGRl St E 65 Sthdice of the Sintewability OFf Bl cewes snassoen s T T 68 Effects of Process Variables on Density ..... o adase b 69 Vacuum Sintering ..... spongd haae I I 70 gbmger of Blabter#z .oaset ot sens inbad i § 585k bas i Al . i g s BeO—Cal Phase Studies ..iceveesteseann 5 Euai g 4@ ey A 5 & e Analyses of Beryllium Oxide ..... Snssemensandalid h @ ¥ & R RERTSp——— "V FRRMAETTON TEEETE .« x 05 m 6 «onveod 8 g 0 ase o ke W A B R s Fyqe 79 Irradiation of Moderator Materials in the ETR ......ccv0es . 7S Creep and Stress Rupture Tests Under Irradiation ...sesseuss o ADVANCED POWER PLANT STUDIES ....... iganslo D P LR HEGGHIOINE GD@ 4 87 Space Power Units .vevvenese sad el 4 bk ska kel @ DDA Q Gemimarad b 5 87 Vortiex Remchelr Expermenti® uoeess s i bommw T ymy LR AL, &7 PART 2. SHIEIDING SHIEILDING THEORY ... 5 S e @D @ @ Sees—— T e I % Monte Carlo Calculations of Response Function of Gamma- Ray Scintillation Detectors eesveesaees e 00 i GEEE P EENES BT O 97 Monte Carlo Calculations of Dose Rates Inside a Cylindrical Crew Compartment ....... b B btirsornd BAGDEE 66 awEDD i 104 A Monte Carlo Code for the Calculation of Deep Penetrations of Gamma Rays ..vcvvverecenans PR, —— 105 Prediction of Thermal=Neutron Fluxes in the Bulk Shielding Facility From Lid Tank Shielding Facility Data .. 106 LID TANK SHIEIDING FACTILITY .eeveccevnes PR PR TG 109 Effective Neutron Removal Cross Section for Zirconium ...... 109 Experimental Flux Depression and Other Corrections for Gold Folls Exposed in Water ..c.se.. & 1 o o @ 2 Sanhas § prommie 111 BULE. SHEREDRHE HADTLITY canwsootaab wo b BT BERELY 38 0na b ba iS=2 S‘tainleSS Ste@l-UOQ ReaCtOI‘ (BSR"‘II) 5 %0 ¢ 0 QA BTSS0I PGS SRR 112 Dewign CHEISED § o fdee o oimesssa sl L A T R R 112 Critica—l Experiments e 4 8 8 P9 S B ® & 8 52 8% 5 &0 & B " O 0SS PO PN B S Y E s ll3 Recent Reactivity Calculations ...... R BTOES S 40§ S bk . 114 SPEBT-I TeStS " 8 0 8 B 8 S S S S0 TS SN G T OO O N b s 0 8 8 P E 115 The Model IV Gamma~Ray Spectrometer ..... chasvannne dasosvess . A3 Investigation of the Nonproportionality of Response of a Sodium Iodide (Thallium~Activated) Scintillation Crystal -to Galmn-a- Rays .......... ® % ¢ &5 " % " 88 a0 ® 8 5 9 0 B " B S 5SS B O 9 B R D B O PP llr7 Energy Spectra of Gamma Rays Associated with the Thermal FiSSion OfU235 S & 9 & 8 9 0 " 6 ¢ 9 PP S ST B ® % 5 2 8 ¢ 8 8 8 & S F O S B B S B S = 119 Correction Factors for Foil-Activation Measurements of Neutron Fluxes in Water and Graphite ...... BE © 5 T 5T T Egaks s 123 TOWE:R SHEIDING FACILITY « & 9 &« 8 P8 B0 * 8 9 9 v 95 0 & 0 4 00 8 BT P e SO ® & 8 3 129 Pulse-Height Spectra of Thermal~Neutron Capture Gamms Rays in Various Materials .....ceceeess AR DB S PEE - AP 129 TSR~1II1 Experimental Shielding Program ....... v @ B asfat e d 136 Bea DiffrewenifiEl Bxpenimenis we:seb sosmendad tsssbbhice. L36 Skield Meekup EXperimerilos ou. oo 8% & 8§50 mmmeneiand buo & b b mne s ane 132 TOWER. S}HEIDINGREACTOR II " 688 6 00 RS2 B S EE OGP S OSSP S R s B 146 wsECH BR vii AP PROJECT SEMIANNUAL PROGRESS REPORT SUMMARY Part 1. Materials Research and Engineering 1 Materisls Preparation and Fabrication Research A correlation was found between hardness and oxygen content of co- lumbium. The data demonstrated that increased hardness is a good 1Indi- cation of increased oxygen content of columbium which does not contain other comtaminants. When specimens with various oxygen contents were heat treated together in a dynamic vacuum their various degrees of hard- ness were retained. When heat treated together in a sealed evacuated capsule they attained a uniform, intermediate hardness, probably as a result of equalization of thelr oxygen content,. The rate of oxygen absorption by columbium at pressures ranging from 3 X 10=° to 5 X 10™% mm Hg and temperatures of 850, 1000, and 1200°C were determined. At low oxygen pressures, the absorption resulted in internal oxidation. A slight increase in the reactlon rate was observed when the solubility limit of oxygen in columbium was approached. At the higher pressures, visible oxide films caused the reaction rate to change from linear to parabolic. The rate of contamination of columbium by air at an equivalent oxygen pressure was lower by an order of magnitude than that with pure oxygen, indicating that nitrogen msy significantly affect the contamination. Numerous columbium alloys were screened from the standpoint of melting, fabricabllity, and compatibility with lithium at 1500°F. Based upon the results, future alloy composition investigations will be con- cerned with the columbium-molybdenum and columbium-zirconium binary and columbium-molybdenum-zirconium ternary alloys, with the possible addition of a scavenging element for initial oxygen removal. Studies of a Cbo1% Zr alloy have indicated that the alloy responds to aging heat treatments. In the experiments conducted to date, aging viii PE— at 1500 and 1700°F has resulted in increased tensile strength and de- creased ductility. The decreased ductility was particularly evident in high-temperature tensile tests. Overaging phenomens were observed during 700°F heat treatments but not during 1500°F treatments for periods up to 750 hr. The increase in hardness of the alloy due to aging was in general agreement with the tensile data. Attempts to remove oxygen from yttrium by zone melting and solid- state electrolysis were unsuccessful. These purification methods did, however, remove fluorides. Operation of the yttrium metal pilot plant and related work on yttrium were discontinued in May 1959. 2. Materials Compatibility Studies The tensile strength and ductility of columbium containing small amounts of oxygen were little effected by exposure of the metal to lithium for 100 hr at 1500°F. The exposure to lithium caused the predicted several mils of subsurface attack. When the oxygen concentration of the columbium specimen exceeded 1100 ppm, however, marked losses of strength and ductility accompanied the deep grain-boundary attack by lithium. Weld-specimens of columbium and a Cb—1% Zr alloy were prepared with the welding current varied from 125 to 55 amp, and the specimens were then exposed to lithium at 1500°F for 100 hr. Postexposure bend duc- tility, hardness, and corrosion resistance examinations indicated that these properties of the welds were not affected by varying the welding current. All the columbium welds were attacked by the lithium, but none of the Cb-1% Zr alloy welds were attacked. The columbium welds were ductile after the exposure to lithium, while, in contrast, the Cb—1% Zr alloy welds had impaired room-temperature bend ductility. Tests were run to determine the effect of the lithium-removal pro- cedure on the hydrogen content of the tube walls of experimental loops fabricated of columbium and a columbium-zirconium alloy in which lithium had been circulated. OSpecimens treated for lithium removal 1in water and in 10, 30, 50, and 100% alcohol were found to have increased a maximum of only 60 ppm in hydrogen content. s = & L Carbon and nitrogen have been observed to transfer from type 316 stainless steel to columbium in a three-component system consisting of columbium, sodium, and type 316 stainless steel when held at 1700°F for 1000 hr. The carbon and nitrogen formed brittle layers of CbC and CbsN on the columbium. These layers cracked on bending, but the cracks did not propagate through the base metal. When the temperature was decreased to 1600°F, the total thickness of the layers decreased from 0.8 to 0.5 mil. The type 316 stainless steel specimens were unaffected when the ratio of the stainless steel surface area to columbium surface area was large (10:1), but, when this ratio was small (0.1:1), columbium trans- ferred to the stainless steel surface and formed films containing Cb, CbN, CbC, and CbsCs. When a Cb—1% Zr alloy was substituted for columbium in the three-component system, similar results were observed. The tensile strengths at 1700°F of Cb—1% Zr alloy specimens that had been tested for 500 hr in a sodium—type 316 stainless steel system at 1700°F were higher than the tensile strengths of specimens heated in argon for the same time at the same temperature. The elongation observed for both sets of specimens was extremely small and indicative of an age- hardening effect. The effect of prior heat {treatment on the corrosion resistance of oxygen-contaminated Cb—1% Zr alloy was studied. When tested in an un~ homogeneized condition, the alloy was attacked by lithium at 1500°F when the oxygen concentration of the allcy was as low as 900 ppm. After having been heat treated in vacuum for 2 hr at 1300°C, no attack was cbserved, even when the alloy contained 2300 ppm oxygen. Weld specimens were not as sensitive to prior heat treatment as the bare material, and, at oxygen concentrations in excess of 900 ppm, the amount of corrosion in the weld material increased with increased oxygen concentration of the alloy. Screening tests have been run of various columbium alloys in static lithium. Binary alloys of columbium with minor additions (0.5 to 5 wt %) of cerium, lanthanum, hafnium, thorium, or Misch Metal showed no cor- rosion when subjected to lithium at 1500°F for 100 hr. Ternary columbium (e alloys containing rhenium as a strengthening element likewise showed no corrosion. Alloys in this category were Cb~Zr-Re and Cb-La-Re. In screening tests of brazing alloys, zirconlum-base alloys showed mass transfer of zirconium to the walls of the columbium test container during corrosion tests in static lithium at 1700°F for 500 hr. Several titanium-base alloys contalning iron and molybdenum cracked badly during similar tests in a titanium container. A 70% Ti~14% Fe—10% V alloy did not crack and showed no evidence of corrosion. In a search for electrical-~insulating materials for use in molten lithium systems, specimens of high-quality, hot-pressed BeO were ex@osed to lithium at 1500 and 1700°F in tests of 100 and 500 hr duration. The BeO specimens showed only limited corrosion resistance but were superior to materials tested previously. 3. Welding and Brazing Studies Fusion welding studies have been conducted on columbium and columbium- zirconium alloys with the use of the inert-gas-shielded, tungsten-arc process, Welds made on unalloyed columbium were found to exhibit ductile behavior in room-temperature bend tests both before and after vacuum aging at 1500°F for 100 hr. Negligible ductility was observed in room- temperature and 400°F bend tests on aged samples of columbium~-zirconium alloy welds. BSome of the alloy welds were ductile prior to aging and some were not. A welding procedure has been developed for welding l/fi-in.-thick unalloyed columbium plate which incorporates fusing the root of a beveled Joint with the inert-gas shielded, tungsten-~arc process and com- pleting the weld with the inert-gas-shielded, metal-arc process. A tube-to-tube sheet Jjoint has been designed for fabricating a stainless steel-clad columbium radilator for transferring heat from liquid metal to air. Materials are being prepared for feasibility studies. 4, Mechanilcal Properties Investigations Studies are being conducted to determine the effects of various gaseous enviromments on the mechanical properties of columbium and ouus 7 TR " columbium-zirconium alloys at elevated temperatures. Creep tests have been run in argon, nitrogen, hydrogen, and In environments containing small amounts of water vapor and oxygen. The creep rate is lowered by the presence of nitrogen compared with the creep rate in pure argon. Thin nitride films are formed 1n nitrogen which are quite brittle and may be a problem in fabrication. Although hydrogen and water wvapor do not decrease the high-temperature creep ductility, they do cause con- siderable loss in room~temperature ductility. Reproducibility experiments were performed with the high-frequency pulse-pump system in conclusion of the experimental study of the effect on Inconel of thermsl-stress cycling in a fused-salt environment. Re- sults of two out of three duplicate tests agreed reasonably well, and in view of the sensitivity of the data to small variations in thermal. stress amplitude, it 1s concluded that the results are within limits ex- pected for repetitive fatigue-type measurements. Maximum thermal stresses on the inside wall fibers have been recalculated using a more exact equation which gives stress values 40 to 60% greater than those previ- ously calculated. The data so corrected appear to fall in line with re- sults of mechanical stress-cycling fatigue studies for low stress levels. 5. Heat Transfer Studies and Seal Development Preliminary data on heat-transfer coefficients with molten lithium flowing turbulently through a heated tube at approximately 700°F were obtained. The data indicate reasonable agreement with the theoretical and emplricel equations describing liquid metal heat transfer. Measurements of the thermal conductivity of columbium-zirconium alloys (1% Zr, nominal) up to 1000°F have been made with the use of = longitudinal, comparison type of apparatus. The thermal conductivity of the alloy lies between two recent sets of measurements for pure columbium, but the precision of the measurements is not adequate to determine the effects of composltlon varilations or ingot fabrication techniques. Developmental work on a precision seal tester for use in dynamic seal research was continued. DProposals for fabrication of precision =) 48 s PR SRR . Bench Lests rap RO BN accuracy geveral micre i under . o e O R T v PV T LT T A Nt B R O s NN ST O LT :’."‘“ AL O WL LT St SNy L s S N A LA i S G ol LRI - = A, ) - . 34 O ] vty by w3 - At Sodatd o wWRL LD oL L R « e T Aadrl TR D ey YR [NER NN S T S ) wmacdo o T rmino AT e FE N G M O o N S T LRI S - Py T LG g - Ry R A a3V oIy N Yhvetagty YL TITO T 1 - oo, Lae A% s LY [ CAL LA O U R RN Ny FER N S [ A et LN RS o o ey N eyt o el Liay [ R A Lol L . - ~ - S8 Y e oY - R g AR A gm = o JE . S3ORT A ey, i K YO8 A < i g el wh pa} { ooy Pl i et [EUIGUUTIS W ) LA Ly Ol < Loepertir Sl s e NS AL NN a HI S L NN R SR Ao ) ol - Qi reraent e O o~ DR S S AN : TS NSy DOOIEOrated I O P L3 N HEE e VR I iy =273 S LN JC4PENL I N minor cracks. A second test that will provide a longer exposure to radiation and a greater number of thermal cycles is in progress. Additional data were obtained on the reduction in time to rupture of Inconel irradiated in the ORR. GSimilar experiments were performed on type 304 stainless steel, and some evidence of in~pile shortening of time to rupture was detectable. With INCR-8 no effect was apparent. An appa~ ratus is being developed for determining the effect of neutron irradi- ation on the creep and stress rupture properties of columbium alloys. 8. Advanced Power Plant Studies Design studies of reactor—turbine generator systems for auxiliary power units in satellites have continued. Radiator studies have been expanded to encompass manifold designs and meteorite protection. Calcu- lations were done on the characteristics of epithermal Pbolling potassium reactors, and a design study was made of a power unit utilizing a potassium~-vapor cycle. Design work was started on equipment for studying burnout heat fluxes in a boiling-potassium system. Experiments on the effect of near-~laminar injection of gas into a vortex tube away from the boundary layer have shown that no appreciable increase in vortex strength occurs, as compared with turbulent injection. However, it was possible in the laminar case to utilize uniform wall bleed to reduce the exit mass flow by as much as a factor of 4 without serious loss in local vorticity. Experiments indicated that at conditions of practical interest the tangential Reynolds number mey be as high as 10° times the critical value, making it doubtful that conventional lami- narization techniques will be campletely effective. Part 2. Shielding 9. Shielding Theory A Monte Carlo code which can be used for IBM-704 calculations of the gamma~ray response functions of sodium icdide and xylene scintillation detectors has been completed, and several cases have been run. For these calculations the detector geometry can be either a right cylinder with = W conical end or a complete right cylinder; the source is restricted to a monoenergetic source of arbitrarily chosen energy in the range from 0,005 to 10.0 Mev. The treatment of the primary incident radiation takes into account Compton scattering, pair production, and the photoelectric effect; however, secondary Bremsstrahlung and annihilation radiation will not be considered until later. The particular Monte Carlo method uged is de- signed for minimum statistical error in the so-called "Compton tail" of the spectrum. The results of one calculation with this code are in agreement with the results of calculations by Berger and Doggett and by Miller et al.; however, as was expected because of the neglect of second- ary radiation, all three cases give photofractions higher than those ob- tained experimentally. Other calculations with this code have included investigations of the effect of crystal size and the effect of including exial wells of various depths in the crystal. The Monte Carlo code for calculations of fast-neutron dose rates inside a cylindrical crew compartment was completed, and preliminary calculations have been made. The code, called the ABCD Code (for Air- Borne Crew Dose), is designed to use as input the results from the Convair D~35 Code, which computes the neutron flux distribution in air from a unit point, monodirectional source. Preliminary calculations have been made for a shield simulating the cylindrical crew compartment used at the Tower Shielding Facility. Qualitative agreement between the calcu-~ lated results and experimental results is good. The so-called "conditional" Monte Carlo technique was investigated for possible application in a computing machine code to calculate deep penetrations of gamma rays, but the results of test cases flucturated badly about those of a moments-method calculation. It appears that more mathematical work will have to be done on the problem. The calculation to predict the thermal-neutron fluxes near the Bulk Shielding Reactor on the basis of Lid Tank Shielding Facility data has been reviewed, and the agreement between the predicted and meassured fluxes is better than was previously reported. The predicted flux is now a factor of 1.19 higher than the measured flux at a distance of 40 cm, and & - the predicted and measured fluxes are essentially in agreement at dis- tances beyond 95 cn. 10. Lid Tank Shielding Facility The effective removal cross section of zirconium has been determined to be 2.36 £ 0.12 barns on the basis of thermal-neutron flux measurements made beyond two slabs of zirconium (1.8 wt % hafnium), each 54 X 49 X 2 in. A mass attenuation coefficient (ZR/p) based upon the removal cross section and a measured density of 6.54 g/cm3 s (.56 £ 008 ] % ilg=~ em?/g. 11. Bulk Shielding Facility The fabrication of all components of the stainless steel-UO, core (BSR-II) for the Bulk Shielding Facility has been completed, and initial critical tests have been performed in the Pool Critical Assembly. The critical mass of the initial loading was about 5.84 kg of U23%, Machine calculations have been completed to determine the reactivity worth of the control rods, the effect of the stainless steel near the core, and the worth of the reactivity insertion device to be used in the tests at the SPERT--I Facility of the National Reactor Testing Station. The core and auxiliary equipment have now been assembled at the SPERT-I Facility, where static tests preliminary to dynamic excursion tests have begun. A1l components for the Model IV gamm-ray spectrometer have been assembled with the exception of mounting the crystal housing on the positioner. Testing of the housing for voids incurred during pouring and solidification of the lead-lithium alloy is almost complete, and no voids have been discovered. In the study to select a crystal for the spectrometer, a recently developed "composite" sodium iodide (thallium- activated) crystal, made by optically coupling two shorter crystals to- gether, has been tested. Although the composite crystal has not been completely evaluated, there was no evidence of the double peaks which were characteristic of the conically ended crystal previocusly tested. The experimental responses of the crystal are in good agreement with responses calculated by the recently developed Monte Carlo code (see Chap. 9). xvi onws NP TV en = . o HaTe - e ene R R 2 88 2% L. R . “he Y ey i v R o by g 3 RS GRS S5a 1 = A 3 AL ¥ S P | - s HE A L) PR [SCTC U U T N T S o e Ll ) . N S e £ o LRy AN - T .l o~ FH o ey - e -~ v L e 4y P TRl [N 2 CAAr ST A PR =% PR T A N K e N ane N N IR S e LY TAANI L R e S o S T ATORY K RIS ar envnes Tara 3o D Yool Y o s U e . CLLURAL R e UL Wy oY Y s LA R ¥ ERRES e Ty m e e oyt YT U . N ad NasadMhl sl S N PRI L gy ] 1 - s 4 [ESANEN r IR Ry o W e Gl AL Ll Gl R N R R | kS L I S HRER RS I8 LN el Sl LT A T 2 . N ate b RIS 43 s P & Sl Gl ladt (O SUR 0 A O S N were exposed to thermalized neutrons from a Po-Be source, and gamma-ray spectra were measured from the bare sample and a sample covered with boronated Plexiglas. The difference between the curves was attributed to thermal~neutron-capture gamma rays. Observed peaks are in agreement with published data. Concurrent with the construction of the Tower Shielding Reactor II (see Chap. 13) other equipment has been fabricated for use in the shield- ing program at the Tower Shielding Facility. A TSR-II beam shield and a detector collimator shield have been constructed for use in the "beam differential" experiments. The TSR-II beam shield consists of a lead- water shield containing a collimator opening through which a beam of radiation from the TSR-I1I can he emitted. The detector collimator shield is also a lead~water shield pierced by two collimator openings, either of which can be used. With these two shields the radiation received at the detector can be studied both as a function of the angle at which the reactor beam is emitted and as a function of the angle at which the radi- ation reaches the detector. For a second series of experiments, the TSR-1II will be encased in a specigl uranium—lithium hydride shield de-~ signed by Pratt & Whitney Aircraft. The uranium is included as a shadow shield which is removable. This shield has also been fabricated and will be used in conjunction with the compartmentalized cylindrical crew shield used in earlier experiments at the Tower Shielding Facility. 13. Tower Shielding Reactor II As a result of the discovery that the water-reflected fuel annulus of the TSR-II was subcritical, the spherical Internal reflector region was redesigned to include a considerable amount of aluminum which would increase the reactivity of the reactor. Part of this aluminum is in the form of a spherical aluminum shell within which the control rods move. The shell serves to restrict the water flow in this region sufficiently to preclude the formation of dangerous alr voids. When the redesigned control system was fabricated, a second set of critical experiments was performed with the full-core geometry. In these experiments it was b aml e 2 N8 A xS W N\ N 1y \\ \}\ R N S iy s " e ..:, g .x s , ] s.; V\T .» ¢, fl_. o f..\ s 5 P “ 3 -y \“.. ' Ag 1] = \ P (e Iy : i | ; .k x B ; | , K] > 1 Y : . A. : r\ / o | I - | ‘. b : .t fiJ ’ ?4_ : - ) .. o Ay s ; ‘\‘. - = i 4I. 4\ m \ . | -t fifl\& .:l\ ) | 3 ar-t - “x. i e M.A : ; g~ | > e 0427 /4-/ IMITIA Op CONTENT = (1120 % 100 200 300 40C TIME (min) OR Fig. 1.2. The Reaction Rate of Columbium with O, at 850°C and 7.5 X 10~° mm Hg. ) e Lob iy - i ¢ o OE [ R L “ N T e RSN PN rld L P (ke 1 W R pey L L o El 3 ey i ho= - e [ = [CCCEN -t N L S S ~Fy =\ A f % AV N O [ S R T A I Lo LI i P ™ LT LUl - i) R r e : L - ! ! o § HSTaTe R § N T H ; & 3 O [y f e s SRR ~ 1 = A < Ty b 3 byl it . o e " i ) | F, | o Ly ; _,..w - hed : . ol ko TN -y [V ~a e ANIPRREER Tl A ] i - F o i St o 5 ns. (v 4 Q o [l : v I S SRR “r emaameRR eSS ) . : : P | 59 | > | E v : ] i ; f = i | ] k, : o] .r. ? | : i H i : | i . : A 4 E 4 : H % > TRt i b AN i 4 % 4 o e R 3 1 % ' : i / : H " : N o - i un.w \ ! Ly P o e [OR] I p o 4 & e ¥ e o ] 1 s Pt i - i Bt sk, o 3 f — NUCILERS R ehe f - ey et e et 6 ) P! s e-d Ay (SR Lt e et b} vend D 1t = [} ot o P ; s} A1 P Ll N < e = { ~ S P 0 i - - v s ,.L = o3 ] A Fad e’ 9 e ;o I w 2P L T A \ ' h NS 22 n A G = Lk el NI 1S 2 lan O P Y Ly EON I . Yee H o g ey PN 12N = ool - > = Cin g =Y T em s eI SO Lal iy 4 [ QUERN e LA - i ¢t UNCLASSIFIED ORNL—LR—DWG 36807 4000 "N Py My M ™~ \ 'h... \ ™ AN SEN Sy X DENOTES MELTING POINT I —— ~ % g -~ \fi\\h’.‘ \\W\ \ il -~ ..4-"‘-"-,.___ h\ Py e \ 3000 ~ - ASS SRS h wu L2 | ,. o [ : : L YL \\. 9 o : p i ; e iy 5 ; o, X o ) - (591 . [ o 0ed It <. -t o . 58] 7y 2 i P i k . au. : \ | \ iy - : v =4 “ [ sy T - y i ) r : :. L 1 ; o, 4P 11 .\n\. S : : .c LS > Ll = : [ » _ ; — oy, - h s S L fl ) i 54 2 3 bt . ! . ) T ‘ j s Pt & ‘ : . 0 c - ] [ r i - v - - 5 gz L ' s 5 UNCLASSIFIED } ¥-31595 | Fig. 1.12. Specimen of Cb-0.4% Zr Alloy Aged 1000 hr at 1500°F. Etchant: 55% Hy,0-25% HF—10% H,S0,—10% HNOj. 004 L] 5?0 X T TR ? s z — \ - UNCLASSIFIED |~ // . B o Y-31594 * 5 -~ -%E ? = - : w ! ¥ . .-—'—'_'-—-""-“‘ ‘q l; ¥ v P L . 3 e g, &L ; "y y 003 " . 004 % & .‘ g 4 l‘. 7 - A ¥ ¥ = L - ) & g, w 8 - 4 zar“- i i . s o 298 * Is . » F a [4 rr' - : h = g [ ! b O - - 1 0 1 ’ ‘000 ) ; A = M T Fig. 1.13. Specimen of Cb—1.5% Zr Alloy Aged 1000 hr at 1500°F, Etchant: 55% Hy0—25% HF—10% H,S0,—10% HNO. 20 N, S Y ¥ 1 RS G sl PR A L W L + i 2 LN -4 i N N A N L = Sy [e bR 8 N Y U [t i R i T -4 v ROHRN - SR q s - R N Al P o 2 o [ 1y A ey LG Y ) LAY 3 i | 1 '] 4 I b noss bt ) e = 5 A AL ME ¥ v IS S w RSl e oy ) d s ) B R Py R Bl w s ) i [ i S Ll Y e IR R . 0 I ST R Patl e SR N SO ) v P YV TN YT YR LoD JSAR WS SIS hy < e 3 an Ll :i I S =) « -4 o o i " y i ) e 1 S i - i d L =t | - 4 "t ! 0 , ; et ) i P, =4 Y (€3] e ey g i ~ 4 - PR - o 4 O £ 3 4 1 H Lol 14 b i oy y RS . P o ) e ol broried ‘s ..u 5 o et o it 5 re ) S ps’ : ~ ek ! £ 0 & e g it it i | e} o G ; ¢ - Ll feds -+ - . ¥} oy e A iy} - il ) p 4 I 4 oq - ¢ o B o 9] - -3 e et el p— iy i % b ol - . i ] i =y ] o Lo < - it o - N 2 s j] ! =t i ‘ ; 0 ) 4 - . 3 i i L R . d - e T z 1 e 2] - s ; 4y 7 L 4 i Ty -4 % o ] . } L .t e as R ! 5 P et i » - ol o R ) 1 i LoL e [ oy A 5 LoNa L [ER Y by aald bl AN RN [N ] ; 4 7 4 v o iy SRS T oA . A Lol A e pe M Ll I o N LI - - - AT e bl o T kY { o 2 Y [ PR S o e SRS e LN L fat e A N IS TAE] 1l datdiat. N o2 A 2 PR -y oy v s 3 oo . w 3 } B Ll 1 - i 2 S N fnim v U ~ [ L w > ~ A [ N o b L/ N [ Y ~ H i RN, d 4 W ~ N LN e T (OLe fay ke & a ey ¥ RO Y o 4 _}:\ ¥ q ™ S —d ] o= Y EANC - - N e S - N Yo ok TN - v W b R 9O O e LA 2 TS I Lo el bl LAl ey a9 B L LT +in w il -« o - LR i - N £ T N atar=y BN I L R W -3 1 . cant e L L AR "y LN 5, 15 R GNIgEN i L £ AN e 2R N Y Ty A K9 1 FRSY cwy i W § N AR aieads ladac o © Fay Lo vy L saa ik vrey b S oy L Ll Lol o YT RS e &} . iR LAY . O L " i1 3 s AN . P 5 ey A SLEY . = g Py Ded el (et e [N e T FERTTIOY Y PRRLIS W - s b 3 HE S i/ L ot g [ERUR N Y ¢ Nar i “::i, > ; ~ { i ) ¢4 e iy 0 ) N\ ey ED Y JRuduety by ) i, ol e} | A “ 4 M ] - [S-JRPS RS s e b L4 N A | - SR SUR { PO o . d L T - y EE N 5 [ Wy FLNR U Y T ks - . L LAy AV R AL L TV Al A Nar o L2 ~ 3 Lol W ™ RREELw T H A o L L Pl - hae Ll AN T ¥ e RN I3 « 4 - g L Lo SN e L I TP LD 1Ty PURUIGIL N R 3 N - T P - — =y - e e N SR i § ) 1 Lo o NN W2 e Ty T BTEL NN S | i RN :, oy F-2d L e \ RN ':?\, x" N 1~ v L e CmrN T AN Va e s o o sy oy e 7, i Y { a.-.\.\ [eY] o] | [4¥] o P / #on ! [} P Al - S ¥ b . [49] -l 1 o = 1 o (o i : 4 £t et e rall - & . o Pen A2 ¥ S S I ¥ i H S - e o ey ot [y et M n\ i = P {3 1) e [— o [yae i S 3 3 Sld ] L ] Yo i , 45 o e ; R : oy £ 4 ey i R = 3 e oy [ oy o M Lotlead RN A 30 43 L LN L -~ 3 TN I e Ll ol Lodad kS T AN T Ao 0 -3 3 pl ~oakaaaa \s» o] s e pey S, ¥ abas Nt . L L AR S ey g ey KRR ke kt ot N o N ] LS W 5 I i Tl el L > R 1 -aild a3 fery ¢ H ‘ ey fael Nme LI & e Y £ YO LY e hed = & Fy ) T > = i = H L ! £ LN Y fe - o i) H 14 (Y o A R oy T4 . b ) s == i -y ~ T pre 254 a2 2 y 3 o i 1 ™ W 5 y ¥ ] i 4 Y = ey i tal [T - "5 LA ey YT LALELACT, R RSN RS @ 3t [t RL (N - Ey (8 ] o Lall e oF R Y e R N e ! < : AN R - - TLED 9 JR i P 3T LAl A e Sl el 7 0 LA e M gl > ey = ) Mz pRl £ [ 3 Tow my oy VA Io H wALL N %y - T iy T v o . e -1 i » 4 el ™ ' ALl - I TV L M -4 Loy e { by N P WP ) emy e £ ¢ LA ¥ - 2 U Y LS . . ey € NS % i LA S ALY - e 2. 7 O p- ST [ e &R A L1 TS LA o T VIR YRS Al U0 Mg e, ¥ el 23 oam PURN i N {, SO A R el ata LR T A A - ’ - H 3 el N "~ [ N IS R - ] < Fadi ] Nm Far ™ -+ - NN .5 Je o LS < \ T N LR WL RS YR DY IS D i Dy 5 { . W i 3 "ty [y i - ¥ TN o A e8] = M. . 3 s N3P SO SN NEL WO W { N [ e o it g s ik 20 PR SU N or ERY [ N m [ ) \ . 1} R - 4 L “l i AN it f . PR, K Lt Ll S 33 e PR Sl O N - 3 s N S Legyress N - ~ =it S 4 Y i v a1 LRSS aTatial K A A e Sy S .- o3 LC e 4o . o) ¥ ; el i Syt - et e R W el o YRS A N N NER NS -~ A 3 7 I e, #ey - . H [ H [ ‘ . ¥ chet ¥ T iy iy P w, i e 2y Pod red s Iy ol b £ x“n... i Ty “ faFa AN Ty e SUNIA N =T <& .2 Py Y e . P { } A " e & 1 : ok RN I8% Lol At 174 L2 Y e sl L TIIN S W 2 < 1 RN el o W ."\\ P A Ll A UNCLASSIFIED | ik PHOTO 46808 ! Fig. 3.1. Setup Used for Automatic Inert-Gas~Shielded Tungsten-Arc Welding. UNCLASSIFIED PHOTO 46B07 Fig. 3.2. Closeup View of Welding Torch and Traller Shield in Position Over Weld Sample. 39 i W in N A= H = s RS + - e fa L Pt + iy Iy, et o0 : . < , : =i , * - " ( Eamd , a0 ?w L \A 4 I3 fi.... L : : ¥t [ i e, o : Z E § oy : i) g apd i3 ) m o | T | Pt . P - y A | . v L | ,u.\ . ¢ Pt “r=1 ; A.. _ | | P 7 ~ Q : R s it = § ; Vfi\ S . 5 0 ", = : “ et H fl_ (48] ‘\ o ‘_ ;. o bEd .. ] ; 7. 4 .\M <; iy o a3 g} ,”; n\ .\ e L Py | - - ,xx.“ . e = . S ! 7 i PR b H 3 1 . o vig] 1. | 2 u o 3 P ,\.q e Lo : ] * b i , : 4 .» 4 ] ,..M : , P ‘:‘. ; i i._ ; o) » : o - i | ¢, : i g » 45 -t - o E: ¢ P , B 5 v - &y - [ A o ; o ».‘ | Sod 12 : rey 3 7 L iy 3 J & pi.\ 1 i -y A 0 - o-d gy . - - - s T o o P gt o “w >3 Lt g e A X i e LA i i 4 b 3 g 3 =39 4 Yoy o LT Ly e SRS i [9] Y S At YUy > W D O e N e O i LT 153 L NN Lt Vo i LA - & LSRN o~ RN s nor 10X h ReY - miem e \ } N oy tii 3 Ll O 3 IR KiSEe FYETYY =, N ) Ead Ny ‘ - 3 o N STV Sy Y LN -~ A W i o ) 1 + Fn 57 u \ L > o o vy D& £ iy Lk 2 s e~ I [ N Ay S, ~ X3 0 v Ly e N W e : - ¥ 1 ! 4 ar=Nal NN i - - - : SN - ) o e e Aoe T “»' J . Pt ‘] 1Y Ll g YWY S os TU R WO N 1 L ) g Ll i) EATREN: SNOW TV ey R e N e RRSAY UNCLASSIFIED ; Y -31456 ".I. ¥ e T m [T} p- X = [S) 4 002 Q03 - ; 004 ’ - & - a L] ” o 008 ¢ i : ’ P e " P & ¥ - . . . - * J A n 0 1 » = » « ol ¥, 4 - L £ < r 'S i o et B ~ > rr . 0 [ Yo & E $._ ‘1 ‘1 008 2 N . e R Bt Gl ‘P!‘ A .C. % o & ;' » '.l o * 'I-’*I".I:.!i i * - - 3 b s B, S J Y S £y x Fig. 4.1. Photomicrograph of Edge of Columbium Specimen 190 After Testing in Nitrogen at 3500 psi and 1850°F. Duration of test was 2321 hr. Etchant: HyO-HF-HNO3—~H,50,. 500X. UNCLASSIFIED Y -30665 e x o = ~ g 02 0.03 Fig. 4.2. Photomicrograph of Edge of Columbium Specimen 190 After Testing in Nitrogen at 3500 psi and 1850°F. Duration of test was 2321 hr. Etchant: H,O-HF—HNOs—H,S0,. 100X. L6 e 1 adel iy RN "N \ 2 Pl A Y J ] 1 [T oA g s 5. £ L %) \ s WL L 3 " PO VY LA L M 5 L LS N L =i L N { & - ¢ ¢ 4 oy y LND STy EN ¥R [ E B W -1 - { p " < pe sl LA T R a ] Lk S AN Oy Sl { ] b i T RS L FIS R W arary S vt vk WL ¢ LN o - . o) 3 \. o ) R B 42 b _— ren P il a4 ) 4 43 P T A @ . et i st i £ L ! oy ] ] 0 [ o P , ot e T it 4] oo = o I oy e S L7 ot g - o o2 . 7 % e + wl L o e b A } gt i [ . .- i 4w} i & . o, it ( - . IRl ,\ . ot [ - N ¢ =4 5 0y Cond ” : ol o Tt #8} 5 o bt i y 4y ! £y oy i 1 394 1 f ‘/ oy e - - g 7 .\.< o po " . e N f s 4] o5 o -t o A hoct — - ) i i ) = : "] [N 3 yoy 5 L L - . s -4 ) Ul 28] 4 P fl\“ joh , .m (Y N ) IR - s o ks o et . fotaf L - - e [ao) i ) i it it 1, 14 i i i L = iy “ N o et ) -y 4 . o il H Yo A S— H [ { oy, LR | W A, e S NIy 4 (s % Svwrerrereeserree v R . Pl Y e wWiltT LW o oo Yot s j oy o i i oe i T JONL O N L RS ~ 2 ; - ‘ - e 9 * iT o i Y - Lo R N e e b 3y T 33 p - 7 Taren o e e oy -y ¥ REE e Far LYY HRE £ : e 7 P Y Y YT 3 LRSS L GHR NS WL G S 56 SR W o S S L AT VL L lATT e i S 2 ® RN Y & il s . N : 4 T~ [N o ~ o b - ~ i - U T T e = O o T oy BRI AN B R s LA [R S Wl LA ST v RSN P} o A P T en e LR st P LI R e St . 4 PSR [T W T p . ) - o~ 3R e O SR SR R [ oooanlil oAl Laald Lt £ . 3 : s - 5 o2 . . »3ate e T T LEONYY oS T o ‘ s STV N LRy oyt ey ChL LA [ PR T O GO LIS WO L N W SO MO LS LS S I L L_LJ Sy A T o~ A ey N G I I R [ » el 5 TREL QLA LAW il Wile il RISV S ] s o 3 ~ - (SR N = A - ey TTon O AT A ey b AN T T Y o NSy SRS N YN I ey o Tty woledd WL WIlAas il LA RS S S 0 SO W W W T SRS L ) R LA e B S et S W v e vy e e Y e e ey A S [ g N N oo e Ny HRE L oo X ) t LD 3N % 1} H LS A caa R NSO R A R el N A aglts > 1y . ~ e ey 2y o Ty ey by o U8 Tes N WY AW LU D ? FE. R [ S oy He R AT DY Wi MY (RSN B 39 il R - R - o 5 A b i T e o e o Ty s W T LI S 0 > S U R RS S RN LGRS N et [ N L] UNCLASSIFIED 5 ORNL-LR-DWG 43300 i - W S 5 g A v - ‘& A W il - o [FT] o0 [T L] 2 P, J w2 03 L 1 < A o E A= -‘ 3 PROPORTIONAL LIMIT OF INCONEL AT 4400°F — a— W, = =] | 2 =z A (o] % = — W ¥ MEDIUM-GRAINED INCONEL TUBING THERMALLY = STRESS-CYCLED AT A FREQUENCY OF 0.t cps [12] i e MEDIUM-GRAINED INCONEL TUBING THERMALLY 3 STRESS-CYCLED AT A FREQUENCY OF 0.4 cps > Ao MEDIUM-GRAINED INCONEL TUBING THERMALLY = STRESS-CYCLED AT A FREQUENCY OF 1.0 cps 2 n COARSE-GRAINED INCONEL ROD MECHANICALLY STRESS-CYCLED AT A FREQUENCY OF 1.0 cps AT BATTELLE MEMORIAL INSTITUTE 403 { L 5x10% 10% 2 5 103 2 5 108 2 5 x 408 Fig. 4.6. Comparison of Thermal Stress-Cycling and Mechanical NUMBER OF CYCLES TQ FAILURE AT 4400°F Stress-Cycling Fatigue Data for Inconel. sl oo Lo ey el i 1 ¥ 1 -3 .7 ) wl i e Cond 'y s . S ' -, Z ] o e ! . i 7 L e -7 ' 1 ) p 5 } s - y g 4 N s Tt - R 2 i A ; h . . c e 4 5 g ) i ot J 4 ot )] >’ 4 5| P P [ . \:\. - jte . Y i i s foka e et} o - o} b - - [y e [} ris o - - g Lor =1 7y U b bea - rs o e o fod El } = ‘ fond e i e = , M\..m 4 # % , s T o o 1 ot b [ P Frod : ] ) bl 3] iy e et o P 1] I 4 ety ot = 1 [ M4 i [ el L} i o ) Fan = * B o e I} T 2 £~ i e ,\u fi« -~ =i e J et 4 1=t [ . e \ s . i ] k - - - M o T be 4 o . o e 5 ~-i U 5ot B 52d Ias! {3 et by Ay o ! At S 9 L ] i I [ T > A o - 0 e ¢ 8 S b Ao A 9¢ UNCLASSIFIED PHOTO 34742 HEAT EXCHANGER Fig. 5.1. Molten Lithium Heat-Transfer System Shown Uninsulated and with Protective Atmosphere Box Open. ; b i R ~ ™ by - - - 3 S ] b . -l Ll i 1} e s AN e, o P rar, ', ' N -t I (494 (SRl es} w N P ~ i i I LN : P ' ] ; [ 5 % ' i [ P A 4 - [ A -y LA kol y P 4 pi RS Ll b3 4. N o . PRV 4 5 3 [N L L h AT + 7 e A N § L [ IS MR N T >, LS ¥ Ha M 2T T MYV ED YR HE SN - =T Ll e L e ATy Y553 JERE Cherd s P i 4 TR -1 0 Ci T Y ey ¥ ~ rek e 3y ORI 4 [y Y SORCRA e a0 ¥ S 60 UNCLASSIFIED ORNL-LR-DWG 43298 & T T T T T —— © BASED ON TEMPERATURE MEASUREMENTS ON THE OUTSIDE SURFACE OF TEST SECTION e BASED ON TEMPERATURE MEASUREMENTS 0.010 in. FROM INSIDE WALL OF TEST SECTION 20 | . ) | ] [%2] = - [ o} N, =7.0+0.025 N, 08 el = Nu 3 Pe Ll . \ K s ° U (9] [+] (%3] 'S 3 = R Z 8 - o e = ;_E e |G o £ [ w,=oexsn,° —a " oy [ I / g / 4 100 200 500 1000 2000 5000 Npg» PECLET MODULUS Fig. 5.2. ZExperimental Heat Transfer with Molten Lithium for Condition of Constant Wall Heat Flux. MAIN HEATER THERMOCOUPLE ARMCO IRCGN HEAT METER WELLS SAMPLE COPPER HEAT SINK COOLING WATER UNCLASSIFIED ORNL-.R-DWG 43475 TYPICAL GUARD HEATERS ARMCO |RON HEAT METER Fig. 5.3. Thermal Conductivity Appa- ratus. TEMPERATURE (°F) ture Profile Obtained in Study of Thermal UNCL ASSIFIED ORNL-LR-DWG 43476 100 [ 2 o ‘s, 1000 N 0\0/4 = 6760 Btu/hr-f+2 '\. \ kgrgep = 353 Biu/hr it °F ‘\ | 900 '\‘. s \+ N\ [} 800 \ @ /4 =6790 Btu/hrf12 —=Np \» ARMCO ARMCO IRON ™ SPECIMEN ~— T IRON &Q 700 ] | | 4 1 i | [ ) 0 2 6 8 10 12 14 16 AXIAL POSITION (in.) FPig. 5.4. Typical Longitudinal Tempera- Conductivity of Columbium-Zirconium Alloys. CONFIDENTIAL ORNL-LR-CWG 43299 Y o ., £ & ~ lg __——"";-//:’ i o n‘ A . Q ] E @ T} > — -___-- '_ —— 2 PN S FIELDHOUSE et af (ref 15) % 25 ‘ Q - 3 ® 048 wt% ZIRCONIUM T 20 A 062 wt% ZIRCONIUM E o Q.69 wt% ZIRCONIUM - [ 0 200 400 600 800 TEMPERATURE {°F) Fig. 5.5. Thermal Conductivities of Three Columbium-Zirconium Alloy Specimens. 61 smmmman i Comnds L e AN - rd 0 b T RS v s 0 g ey YT e 3 - Ea R s N VN T s A ML L AT e e A ey T P e N Ll - [ Ll R . v [ S 2 :\,u._, X e i 3 R +7 £ ‘ \l\A L ST \ 1 ar-d i [ oy I ] L _\\ Gt i -2 e oy \ L oy sils] 3 il b 5 =2 Pt} WYY [EACEEIEY N\ e ] i o o~ P} N, 5 4] dal L ( ERwE o s el _,\ 'y Y ¥t A R £ L AN ) L EEVN P - T s - { od i wgrd N SN B A% . ] LA O e Y ey Yy JEEEbE B S £ O Sl ] I3 :.1" -4 : § e 1 s 1 i) o i o SREET IR N L =y LN, ) ] B LD i ! & . Pl L 150 e LA ot 551 P e, Uk [ e oy haks St L 4 15 ar=d \ S S a . =y e -~ L4 ek w -1 i IS y L B £ g -4 ; b [ ' oL b £-4 ') et « x (Y D i te e =t o R e i3 ; G4 - (] A v 3 AN I IRA A ¥t . ,’i £ (R = iy 1 4 o S WA e - sk et ] ! o b w ‘s pres o Ay L] R i -~ [ 4 [t 1 2 ot “ oy o - = y o {12 et i P > [\ ! Vs ; i P it s iy iyl [AY] 3y b - LRl LI TN e oo i P re? o . ) 7 i) . -+ i B b] i 4 [} ¥ ' oy i o L L T LA L e - i oy > N B s P 1] _ z e - o £ O Chd il ;A oL - N ¢ R 1Y = o 43 .Aa_v 5] [ - O e . (o < - [ g P St ! > 2 LT LR s N AT N [N ¢ SCRNLE i e H Loy LI L Y 1 B - LS ; ail 2 RS Y \ L s ; ; s 7 L) Ll 3 2uda S L L i L R LYl i) 1L NOR A ¢ { s W Poar S P d g [ s el it e 1 P A ; 4] m e . i~ 1 - ¥ o _ - e =i P el L b s i el L L I ¥ I [ M - % > o i e Py v v bt ; J ’ A ' 1 - H o { A LERTY S e ey k. = ¥ AL I s e N erd A I “ s u . b 3 W ‘ . o] G - Z s IS 5 o ] 4 J T 0 00 L -1 o - O 4 j5s . Pt ) P o 4 pei et X -4 Kl [ i ' 5 5 [y ' ) o et < Sa — #d e & ! i [ s o oo , Vs e ] heal - Limd L] e 42 v S ) . r-4 o =3 L &= o -4 £ oW i o4 O s ; o wfl M{“ i I R 7 -~ W [T T 0 Wi B Pt 2yl 42 il £ O e 5 o LA & = U £y v Fne e K LR At < NN ~ me Al i . s [ty = 1 ™ - P .. ! o3 e S RN N ) 4 i o hat [ty TS PR UNCLASSIFIED PHOTO 3498% T IENP \\ / b 2 8 9 10 il 12 13 19 20 21 22 OXIDE NUMBER SURFACE AREA {m24) W Q Fig. 6.1. Variations in Surface Area of BeO Powders Obtained by Calcining Different Batches of Beryllium Oxalate under the same Conditions. UNCLASSIFIED PHOTO 34957 TEMPERATURE (°C) 200 400 600 800 | | 100 DIFFERENTIAL THERMAL ANALYSIS s WEIGHT CHANGE "—-..___.. -~ \ \ \ ~—— \ - _\—\N \ _ \ g ~100 5 \ s \ % \ SAMPLE WEIGHT =0,4458 g T o /‘ \ m \ = 200 V \ o \ = BeC204°3H20 \ — BeCZO4‘ Hzo \ \ J -300 ‘.\ \ MAXIMUM LOSS,354 BeCpO4 HyO—e~BeO —-.__._"_'T.__ e g — ~400 o} 15 30 45 60 75 90 TIME (min) Fig. 6.2. Differential Thermal Analysis and Weight Change Data for the Calcining of BeC,0,4-3H,0 in the Preparation of BeO. 2 ot vaa oy e T bl S D Lo s -l a0 R + Sy e h g ~ i i -t ng o~ oy A e o LTI T SR LR s () FE RS N - H T WL S LY ‘: [N £ [EeveRRrTPReRRe % o s~ T LS 5, e 1 NEeal RS WOREY - I N L . ) ¥ RN VYT S5 ) PAN i SN IS Y AT & e, o s A P ARt Sl T L ¥ EY s B gt A% 2 s "....fi""""&"w..""""." i LIS L WA e & S ey e i, e R LA, ..wmmw""". k% %suuuuuuuuuwu..; o Y i ¥ PR RTAT, et ya oot Ittt A 4 .".""""""""""""""""""""""""""""""""""""".""""""w.mm"""""""m 5 A A G A TR A A H A e - e e s e o el UNCLASSIFIED YE 6141 Fig. 6.5. BeO Powder made by Calcining BeSO,4-XH,0. 22,700X. UNCLASSIFIED YE 6305 Fig. 6.6. Brush Beryllium Company's Special High-Purity BeO Powder. 22,700X. 72 ; 7 2 2 . @ ° . ed ped s < Xy e et [y L — IS Lfil» o - 2zh S o ; - : T p T o iy 2 - o el [ 1 1 ; - { 2 et £ y ) ' 3 0 Lo e i [ o i Pand] [l e T} s e oA i e ol o K] {7 - L\r rd - . : . b [y} Tean” 4 i e ” 58] ) ; ¢ . ’ < - ety H - T ) e 4 i vl % JJ\\ e b= 7 o p 1 -1 oo ) 5 r-i { - ; ) a\. # s 4 4 Ul M»} .n»\ N o - bt faer} P N U {2 4 < c . ey s [ . . »l_.!i .n.c 4 - - - s 7~ H > 0 > g ot — 7 o = ¢ s ) kot A an G 4 4 ) \!.n i) @ s o @ it L ; 4y by i e . I R o ; 2 0 ; i o - - , . ! el hm? - s ; ] 1] ) ' + LSRR - N S 3 E4 o ol [y H o b [ / K a0 - J iy 4 i rd 1|‘ g i1 rd } TS 0 Pt - B b 2 ¥ . - it Y [ 4o UNCLASSIFIED PHOTO 34980 100 4 . = — = — = 1 ® OXIDE 18 PRESSED AT 20,000 psi 4 A OXIDE 18 PRESSED AT 10,000 psi a0 | ¢ OXIDE 14 PRESSED AT 20,000 psi m OXIDE {4 PRESSED AT 10,000 psi o o * . o =] Ll E : / | > E 2] = a ~ // / | 1 & ' — L —T / 50 . 1 1 ] -___————l_.__-—-""-# 40 e R.T. 1000 1200 1400 1650 1650 {UNFIRED) TEMPERATURE {°C) i-hr SOAK Fig. 6.7. Effect of Sintering Stages of Beryllium Oxide on Densification. the densities for the poorly sinterable pellets (oxide 14) come closer together but are still influenced by the forming pressure. After holding the oxides at temperature for 1 hr, the highly sinter= able oxide had almost attained its maximum density as it reached 1650°C, whereas the density of the poorly sinterable powder was increased con- siderably during the soak period. It maybe seen, however, that the final density of oxide 14 is still influenced by the forming pressure. This information is preliminary and must be enlarged upon by further heat- treatment experiments before conclusions or generalizations can be made. Th oy s . 4 C o w4 e’ Pt st P I3s f o s . N . . i i = b o s s - 2 i o L L IS - 1 : D ) L - [ 48] L . . p - pang 'S b y e Ly e oy 1y vy H ) ) y - [t LS i T ftn] I ra i il SN T b 1) R pmdd - . et o7 : i/ 19 Wl e H : - o Lt S . ! 7~ b < o ) - I A ! i [ b ; oy - ored [ - E et 7 - " o) F ¢ =5 ] [acet g Ay - o ! I3 i 47 : o 0 ) s &y L .y et L 0y L] - v - e i ~ i . ‘ s ot flx.“ a0 i v ) B K i s o y s - f L/ . J P i L S 52 ~ o S = 1 A Y o5 o o G o o . W W) i~ 4 , i Yy g ) U i i 4 i =4 [ + 4 s A -2 ~rod 03 ] A g =4 ot 3] () L7 " - iy -4 o ot & 14 L ey 53 s (6 o . el - frad g H [ ) ) h( L pid vy 5 i el : & 3 < o ol - =i o [ 4 o {2 o oo i = e e 5 . i oy L i [y il . e o ¢t irt et . S i ' - i e " 4 oo Pt [ v i L o Wi ] N 0 s, 02 e ] R =i Oy o ] b - 5 ¢ \ i : o e Ay i L s M L 1 a3 o e 5 o4 ~ 3 o [ ‘ ] o ; 4 - ¥ . o . = - S ; Ve et} v - [ bR - s, - flx“ * [ od - st - o 7 < L b 76 50 UNCLASSIFIED CRNL—-LR-DWG 41670A (@) 40 | o W/ BERYLLIUM OXIDE PLUS x PHASE x PHASE x PHASE PHASE [ x PHASE — I I x PH E | = ¥ PHASE l I = x PHASE I I == x PHASE » x PHASE x PHASE x PHASE = x PHASE x PHASE g L C L C = x PHASE x PHASE l | | | J CALCIUM OXIDE | | | BERYLLIUM OXIDE = BERYLLIUM OXIDE = BERYLLIUM OXIDE 2 CALCIUM OXIDE /A Fig. 6.8. 1500°C. (a) Mixture 1500°C. (b) Mixture 1500°C. (c¢) Mixture 1500°C. (d) Mixture from 1500°C. 8 34 30 of 65 mole of 55 mole of 60 mole of 60 mole 26 22 % Be0O-35 mole % BeO—45 mole % BeO—40 mole % BeO—40 mole 18 14 10 Phases Appearing in BeO—Ca0 Mixtures Heated to % Ca0 quenched from % Ca0 quenched from % Ca0 gquenched from % Ca0 slowly cooled i LA ) 1 V ] PR T Tl e 0 [ ] o, i 1Y LAl el AT o =) L3 e vy ey PRI NS i i W L. i s ! RES S 3 & T e [ASEE AT 2t Al SRR 4 [ 1w en =t e [ 2o NALe A T er e oy Py Lt “ . 4 - x B T e b = - s P, Y -3 i oy 237 o o Wil h Lo kS A N S W Lo Tl RN LAl et hoyryonus Todine anad Tiunrd . LA RN g RN W I S R ) R PUREE AP A S N 0 N S L s - o A TN Y DY 11T Y At [NER- AN NI I NS S N » L I g R, U Lo o a4 Ny S 7 AT VR o R 2 IR N RS LAl Al LiGel L Lorro o L { -3 4 T ] [ el { Lis b " s W H Poab i g NG SEL E S e L s =S ety LR AN T ¥ i £ eIy e -4 AL i % i i e B o A LR} H ‘ 4 Pk - A ] oY ¥ O T v Ldl rad t fog < o 1 ey [RRE L SN L a- . 2m ART AL < R et [EXS N, ISR G T 5 o Mo S e e N e i [NS L W N NN fas R ] RN et o T - ' L POy VY Y -f v L Y TN W Fig. 7.1. UNCLASSIFIED PHOTO 47864 ‘ e - - AN RIGGE NA*I"'CJA O L L LARORATORYR | L o Assembled Tube Burst Experiment for Irradiation in the ORR. At the extreme left is the top plate of the exposure can. The capillary pressure tubes from the specimens can be seen emerging from the furnaces. The specimen ends at the bottom of the photograph face the pool-side face of the reactor core when installed in the irradiation facility. 82 UNCLASSIFIED (X 133 ) Y 3 ORNL-LR-DWG 41955 . 7 \ \ \ - \\ 6 . \ | \‘ 4 5 N\ \\ % . 4 n S Y - = : 2] 4 -\v . \\ i . . o \ K = o UNIRRADIATED 1) Ny ¥ X MTR IRRADIATED . e U * ORR IRRADIATED ™ | o »= DID NOT RUPTURE 2 .- I 1 - — 10 2 5 102 2 5 10° 2 5x 103 RUPTURE TIME (hr) Fig. 7.2. ©Stress vs Time to Rupture of Inconel (Heat No. 1) Tested in Air at 1500°F at the MIR and ORR and Out-of-pile. - K [ It S o = [ wdo s o I oy [ . pu o < Y gt s _.w \. [t o S5 Y 3 = - % ‘ it ) i : : i P, ? - &Y Ui 43 e W) o4 i 4 o [ L o r ot i o ! et faud rre . £ Y ‘ i ] [ bas ehot - et W, iyl y jam e - ! = 4. L 3 . or- e e at L 3 o, r £ o “ e 3 . PR YN i oA . < - - : EaTiral [ 153 LA vy e i ey LU N YA A, x P N ~ EDg L <1 e o K - h) RS T 3 vy ' I b 4 S 4 VN e e RGN e ey UNCLASSIFIED RMG 2715 Fig. 7.3. Transverse Sectlon in the Fracture Region of an Inconel Tube~Burst Specimen Tested at 1500°F in Air at the MIR. The stress was 5000 psi and the time to rupture was 94 hr. (100X) N "4 . ’ k UNCLASSIFIED R } v RMG 2716 & : 1 fi‘i * y L ] -, . . - . ks ’ v | b \x o b Y ’“ f' < : ™, / £ ¥ 4 < : . ( » \Mfi Fig. 7.4. Transverse Section in the Fracture Region of an Inconel Tube~-Burst Specimen Tested at 1500°F in Air at the MIR. The stress was 5000 psi and the time to rupture was 94 hr. (250X) Note the scalloped edges of many of the grains along the major separations. Also note the series of voids in the grain boundary above and to left of center prior to separation. 84 UNCLASSIFIED Fig. 7.5. Transverse Section in the Fracture Region of an Inconel Tube- Burst Specimen Tested at 1500°F in Air Out-of-Pile. The stress was 4000 psi and the time to rupture was 800 hr. (100X). & i . . i \ i - N ’ UNCLASSIFIED 4 : 9 “t f vV4 » l RMG 2718 Fig. 7.6. Burst Specimen Tested at 1500°F in Air Out-of~Pile. and the time to rupture was 800 hr. (250X) exhibited more ductility at the grain boundaries than the specimen shown in Fig. 8.5. Transverse Section in the Fraction Region of an Inconel Tube- The stress was 4000 psi Note that this control specimen g5 1 \ T eIt [SRGR. ™ a 1N LAy - o L aYars] 5 § A R T e i o e z & L lantd < Pty 3 il f opmet I I ‘. Wt - c, ! - o v LA I fnl RIS A W < ST ] B AV ‘.1_ e an L o 2 ; b 4y - b, R ap-a - = Ty SN L o~ f Nt o AT + i b T 4 ==t it 3 v 42 riv L L) b e g . O ey SO S S { = ds e e C T AT 31 Sid 5 e Leda A LA Lot Wil < Y WA 4 iy & O ] T pod 3 i e < IS Ll 12 2 - SN GRS LAl Lenidtl S L 3 ry 3 J ¥ 3 ¥ RN e A [ Y R oAt AL ] i i A = 1. wy14my & B3 - S _ A g ¥ S IS ! 2 . o3 =y ) 3 A ,@ L » Fo " ., 1431 - - I b ; - - 3 LAl o { - L. (SO Il vty ¥y b1 A ~ i N T i AVl JORRI O X 2 ey [V T { U eSS ~ pe RS A 1o el e gm i Ly e LT RN i~ Ry i d 3 AT g - b RNV N TRT S R - ) el i UNCLASSIFIED ORNL—LR—-DWG 36036A 0.002~in. TANGENTIAL SUT FOR GAS ENTRY, INSERT "A" (/ POROUS NICKEL A7} TUBE NO.4 {2 in. DIA) Fig. 8.1. Boundary-lLayer Injection Slit Configuration. UNCLASSIFIED ORNL—LR-—-DWG 40840A 0.002-in, SUT FOR GAS ENTRY, INSERT "B" POROUS NICKEL TUBE NO.4 (2in. DIA) Fig. 8.2. Alternate Injection Slit Configuration. 89 IR EN i . - .. pe b3 Ly faretral [N Eaa) Lidl - I Sl vy ™ iad RN TR o e 4 3y s H TLld - < o £ kg ReS ¥ - LA o L&y ey D ~ L 11 W + P e Ll A - B A ey ' N } [ e ™ + IO ‘.. 23] b SRRy [Ne N N . 5 Ll Wi Wil L. 5 g .Y AN k) Ll w o & ] ¢! 4 el Il opmd 13 o] il .“..\ i o o ek L - 28] - f - — 4 y : o ” ] oy e, : iy bt o e "] -t onrt ] gt T :':: = & =5 Mo L A A 3 ¢ L b, e N Ry o RE L N R s BN UNCLASSIFIED ORNL-LR-DWG 40726 i T T 1 I 8 0.6-in-DIA TUBES 38 AND 5 e {.0-in.-DIATUBE 3 A ' Ny GAS \\ 102P*=3.2 ib/sec - ft 0.5 = SEE ] \ P, =108 psia -y j\ " 0.4 t 10 # oy 5z . i [y . = i 4 " 4 o Cruwwreeoreeenneeed o, Hy i o T L " L_ . T " =i . ] Pty f -t ! s ; e [ v 2 2 e i ol -4 i o -5 : i A3 > oy T L3 - . ot rw\_ s i e " o - e} 5 v i I “ 5 o > [ e s by . . i -7 L 4 ¥ + 7 st T4 7 [t} S A bl PR e, i - P pand > ’ @ » ; " oy et i i o L L i 9] o7 ol f % - A, - ks = ] P = - b o % c " 4 T . e et . £ 0 4 et o' i o il ! I 74 [ -~ =t o I AW g bR )] I L L & - i 24 fi. e S & B Wt L b S e S iy : o P ; A i a3 e ‘. e Chy o - K )] o S ; i o) - o & 15 @ I ’ [t - A ” i L A [ 1 - e : ] - o WL ; ‘ o ) T Las ’ P 4= I s i 3 7 o v..\\ Cx&. o - L] s w - S i ) p [ . : - = T jop fat} - (O] oy s . s & _.f 145 at A \ = b o 4 - ‘ i N I ) £ . . & s - : LA ! ¢ e 3 - < - . i - - o @ e T 3 g { ) , / ) , [ (e - W 4 - Y 0 i & g L3 L < ey o o ¢ et fxy] g i o “ 2 o ) A% - [y} o = ky o i [ 75} ke 95 [ P Bl wIh i - ok N o B o by B ) d AT a4 N 1i i o o b2 ) i (X% - ; v o [ % 4 " 5 It [ 3 3 T o e d [PUCR W o P e WO . T en QRIS -4 4 ¥ H { { Yty FLLLG { L o SR o, Sl A H i . B o AR e et i O3 SRS Y e ey AU AL La 3 OF e o IV AR H B S AN s i) 3 f Lol s K 4 o Vo %, Y] [y, P b 3 h anaanoe 2 YA Ly 1 [ RN YD LN 2 Y WoLNT N g T e LN - i G R e s i N L LU S & oS ek Nl & L T 3y T W - AN o - B [} L YLD 1, - i AR EEAY e 3T I £ i M B3 A h. e i UNCLASSIFIED 2-0t-058-0—-470 0.55 v [ 0.50 —+ 045 sfedlee. | «-1 e—1.5 cm i : X T y-F\‘AYS ____"_ 040 B = + E"‘% 24 cm S 1 § [ ‘\" L___." t——25 cm 35 em 0.35 , o ‘ N > g 1 Mev & NO WELL 4 NO. 2 Q E .30 h—~—j~—fl~+ & ‘_ a 0.5 Mev =) NO WELL 2 NO. 1 w 025 f——— = = l_. - 2 o 2.0 Mev il i Ng V:‘;ELL 0.20 SR - ] ; = 1 0.15 [ - T b =ete o ' "J"“l 010 Y =L B~ 1.5 cm WELL — ‘ { I/ NQ. 5 4= ’-{_-‘ - -.l*-. Pl e i E= . 10 cm WELL - =f=s L . NO. 10} 0.08 5 I Lt _ - ! ‘H‘-- g — '——-—' [ r%-l{-hr—. L 1] - h'-""#--q-- 1 }'* - - b T - I T NOs L--fl 1 Mev _./Q* EC o £ 05 Mev | 10 cm WELL ! P : 10 cm WELL NO. 9 i 5 e l _— | __= 0 0.2 0.4 0.6 0.8 1.0 f.2 14 1.8 1.8 20 GAMMA-RAY ENERGY ABSORBED IN CRYSTAL {Mev} Fig. 9.1. Absorption of 0.5-, 1.0-, and 2.0-Mev Gamma Rays in a 24-cm-dia by 25-cm-long NaI(Tl) Crystal: Effect of Well on Pre- dicted Tall Spectra. 100 H |98} v H P [aae) T 4 o 4 » e N A : - H S T L . 1 H H | et i b 5 [ i T ‘i [t A "~ - 3 Yz i S eand Vo I trbrh 2 ", e, § o jer ! *, “otpsa i B “ -4 by i {2 I} 2 ey vt AL ISR OE 4 L ( i N T N N - 3 Y I oo SR oebe -k 3 - 4 . i i~ 2y N - i Tl oy Vi »)‘ . R h S ) “s 102 UNCLASSIFIED 2-01-0568-0-471 Q.20 [ T I l = T T T 35 om —ey o AW MOMENTS METHOD SOLUTIONS 0.18 25¢cm '—-— i —t A e rR_YS.'L . 0.14 I—*— 45cm e . FRACTION OF INCIDENT PARTICLES/Mev o o = * =4 L] — fi’ ® L L.—}_; 010 TH 11 1] 008 Fw( 1 25 cm LONG \ NO. 22 s S = 33 cm LONG g - ‘—r o . _Noo 3 @XZX AN 45 cm LONG * Z ’ rio. 18 0.02 L——-——% = .l 'i =1 - L [ j °¢ o2 o4 08 88 T8 12 14 16 8 2o GAMMA-RAY ENERGY ABSORBED IN CRYSTAL {Mev!} Fig. 9.2. Absorption of 2-Mev Gamma Rays in 24-cm-dia NaI(Tl) Crystals with 10~cm-deep Wells: Effect of Crystal Length of Predicted Tail Spectra. UNCLASSIFIED 2-01-058-0-472 ¥ -RAYS — 24cm7 0,40 |~ m—— i L 10em [ 5 o = L ~ N e 2 Vier 5] t2-cm DIA & NO. 2 g 0.24 I_J - z ] 2 0,20 ] o L :l : E I (' o = [eR]:} =3 l = o < « W 12 . . T _je2 Mev _{j—}— 24-cm DIA NC. 18 0.08 ——— T 8 [‘__] 2 Mev 30-cm DIA i X NQ. 30 0.04 =+ = ; L e — o] o] 0.2 0.4 (oX ] c.e 1.0 1.2 1.4 1.6 1.8 2.0 GAMMA-RAY ENERGY ABSOREBED IN CRYSTAL {Mev) Fig. 9.3. Absorption of 2-Mev Gamma. Rays in 45-cm-long NaI(T1l) Crystals With 10-cm-deep Wells: Effect of Crystal Diameter on Predicted Tail Spectra. oS 3 . i [ b <. P b i H s L e -t e i : - “ i o £y - Y .‘ s 5 2 [ o - - v os¥ it o : : o K] e “a = : L & P v © ; o 4 & . I L ' d ] o N : , N v = - i a0 s ] -7 - : ‘ v e . . et iy (! oo o . | ] 4 iy | - - ot ¥ b2 T - %) : . : b b % = : a0 Fes) e} 3. 0 g i/ i o ) ¢ .\. PEO = R @ L Ay L} o E ! ' e g e i) & H —d i e L : ) : 2 s | i 4 | bt m.. : _. P - . . (AR i u.aa : L | s : . , ] A - = [ o . ) e Y 3 i3 o e Wi o - = [y o] b i o, sk . a . - W £ o " 175 ; @ , . St o o .« [y ] o j :\ s S ] S g pond e = e ‘ | Tt ) | o it N ol o . - [ «! hJ ._ ~ - 34 P i ) L\.l ) . 28 s 5 / % e e ; i Py o h g a - o 2 4 9] ) o 5 b Y s s - e et - N 3% Jr- . o 1 - ) . - - e i - " - ~\., i) ¥ o | pa - . e . 4 by : - \J i o R - . 5 : . et =) . = e o 3 : 0 = I ! i hae) : -4 & y ] 1N ¢ ) - - d Fuy £ & o ; . g I - s by o 2 H y s 4 B’ N e 3 o ad oy ) b3 ) = : " - 0 i o b gt i - 43 = e P o i) " D ot Lo A L W £ . | - - : } " LA it : o 3 ) 3 4 ] h Pl & ) 3 I P ! 4 : . | ; » , 04 g K .lv ey % [t Q n..“ 5 5 Z i * : L o 4! 4t el S e : #* ! L % et b 3 :m. : u.\. o) e ] - + 5 ufl : : % = mu.ul. y.\.‘ . , ;\.il\. X bd ¢ @ 2 e A4 o : , . b, i “ \ . T o i o S it . . : . ; 2 - . . 4 ] : ‘ aot @ | . 2 4 ! 5 5 P b i H ) Py = - \.4 " oo’ & 3 : Cig A . : _ ] r= i & . i j £, sl I i3 =] - -l fl hof A - o ) &, 7 ) 2 o sy 2R G e - Y o B : N .t 2 & 3 o g .s - \ , o e, et \ o ; 4 ] Ay o . i w et : £ ) ; s f T - .‘ V / - 1 o , - S [ o : 7 2 - a T - . \m . Wit} vt £y ¥ s 1 » g o 3 S ¢ W o g o i 3 S " " £ TS ReAN e T LA H . R ~ S v ,, s 4 i o = e RN O LN - R f ey T A amy Y A I SeR b ) Y i L AN Ty WAL L ~ i B A N PR U PRI R =R RS S - i oy, S 3 3 -~ A T o~ ot i 2L Pt 2 ey e g s g Py e R R T S PETN Al A o3 LS [T o N Py [N R T PO & TS Ty o & b % . oy s Qb e ¥ -~ fa L R SENC S i A -i Ty ! H 3 VO pae v i [ b 0 iy 4 i’ EEER el Yoy [N, e o 3, 1S i i 4 o8} 3 i : y - §5] f] ; - o £y o= -3 431 ] oo S L L2 LA UNCLASSIFIED 2—-01{-058-0-479 > \ CALCULATED MEASURED — | | Tfl( THERMAL—NEUTRON FLUX (m/,m/wa'r'r) e 2 % 1 ® 25 35 45 55 65 75 85 95 105 {15 {25 DISTANCE FROM BSR (cm) Fig. 9.4. Comparison of Predicted and Measured Thermal-~Neutron Fluxes as a Function of Distance from the Bulk Shielding Reactor. 108 Y Apmy e ) 4 ¥ R O 4 e UNCLASSIFIED 103 2-01-057-0-469 02 H20 ~({ZIRCONIUM THERMAL-NEUTRON FLUX (7vy,/watt) ’ ”/ g 1] /’r’ 164 Aij 10 30 50 70 90 110 130 150 Zz, DISTANCE FROM SOURCE PLATE (cm) Fig. 10.1. Thermal-Neutron Flux Measurements in Weter Beyond 4 in. of Zirconium. 110 e b, ‘ L%, a4 ] AL T RN - i TR N W 1 e AL g L e . i3 N e v (] 4 7y Y EERIWRNEN e Y 6] PR o, - oy L H A P s o { a0y { S ™ PEEGURLINY FIIY (NS A RN - pe] 1 1.8 R R T s s e Yo R AT Y AAA L Lo H L ) L%, L8] Fay kgt Y CLAY Ll 2N ERL Pt h L B e et S L i Yy A pota S S R < (it Pl Sy [ B TR v L. LA Yerli DY OO NN SN -~ WL S H } A ~n 28 s 3 RN N - - 1 ad ey} S v [ T3 NFED R e R ANy e} o< ek bl . i \\1 i ] Ve e LA . S V h 3 RS T WY D REER A Y RO 0y 4 : >, s . e g RPN SLYE LYY IR S RS [ i L2 Vv E A0 LA - fi\;,_ ") IS 3 L2 e { A i o o o ] Al eI [ B kil AL s [ R Y NG Gy whide e ™M N RS LA el 9 L 1 P A S8 LR IRd Wk i A ; ] [ o - R S o ne - [ N R 23 34 e [ . 4 . L ' ¥ & f At L = bt P @ £ fan ~~ e et ST L4 [T sleltiiel L Nl IR 2 el L - Lo ap- R TR ) LY L ] o iy . Al 4 7 .?u. .Lfil et k3% Ieb oy { ] LA A R - [ . o ] - — sed - 4 w -t - o, ] s ped et 3 N “it .4 b 3 B W [ res @ o s o Sy e e = ey e , i i Ak i e [ 50 (RN i Ll da e W H RN - i i - N Lore & ] - Y 0] A ~ 1 W S y s 7 by ‘\2 b SRR Ll & N 5 L Sl - XS pwu e £ T RN N Y + 0 Sy RO LS { - e e TN Y wadd Lt LTl o e Tt ,\.\ “\«\ s e, - . . d oy L - (7 et B et i e P o] 3 et m -y ‘7 g b e .. ] o By At [ . - . : 4.0 s i i1y : (el ' 3 I 3 ~ - i ., s - i - )} d o -y - o ! % b = s R s £ P A S A #2l w4 -t I3y B iq . - ) by e -4 5 [ 1 [P 1 i ht ! [t -t A4t -~ R} v r 14 Q ; " B ‘ it L ot o3 d i N - v s - it - - - L 4 Lf s ey s i ; 4 =R i .L\\l e N e S I (¥ . i) LA PORY i .. - o8] . b ;Y “it 4 o N - / 75 - i) - L, Yy ] had ; s s e e Lk et 4t i d @, " H = g S ) A 4 g 2t -t - 1 d 5y 1 oot o o (9 ) .- i - ] P i i o e ) b PE i (o (Y N - a3 : ol ~ ‘ % ] o ' Gy Py P ! “r iy . L 4 - LA a3 (s 5D g i . ] 5y} - . et ke - # herp ¢ i i ; L o IS V\ "y it - oL _iku -4 o = &5 «li- nn. o reei - 3 3 - o i 3 . - T P = - \ ] 1 S BT (} B o ’ e oy I SO . [ b sed i o v [RY} Ty 8 [ o Ry 5 skl i o sl ; a% ) ; -, i ; Ty [ % - it ! - ] 4 - (% . o pd [ 4 a1y == 15 Wt -t iy k% ] Pics 03 o - P o - e i et .. [ . . i bl e i s e fo, d e " [ v b o ar-d L E 3 = i 2 ] - > - i i o7 et ot o ! A4 I i I N —ed -y iy i . ] o~ 2 . L 0 w\..m 2y ) P L b L - : v e ] Lhad a7 T oy & 1 g - t - Ewy i et e 1 i (X9 i o -+ \ I d ai - i P (RO ; e D tad 7o et A 4 i I ” o e 2 o -1 i L - p () ol s U2 P o - [ ) 0% A4 7y i = H3 o i t . - L £ b 48] ] ] L i ' 4 I - . o ay o~ -+ i o O, 3 (o - 4 xS ! 58 4 5 ey ] - [5H] - «l 5 .“ * n.\“ s -y ‘o i i v s H s - S O £ e o ] A ‘ o] LW i S i 4 i [ Rt a ja e : e - €L et '] 9] Ul o o -t - IS It} y A -4 ki bl [ -t Ul fo - pet pemt 0% ; % st st " ps . L i - =g P s Ly b H o . - i e -5 @) o iy : A, i P e ; o Y] . [t 1] 1 o0 BRIV : e d ’ o] ) 4 “ @ il 1 ] ot h -, - ag- -, 1ot s, . 51 a3 i S P i b a5 b oy (9 WA AR R] Py < ! r b 4 % i - b [oh] it i gty 1Y . i - g i : o e 4 A4 ) ; iy Ao . ! i) ; - o3 - " S am 43 7 \H bes < fedath . l = e e oy F ' - o st o 3 I ‘ 4 1 e i ’ s -4 Pt " y : et i ] P = o i -, g iy oy 4 . ‘= o g} e it [ png i ] o ¥ att] ) i et e o P [P L A e Lrioey AN it wilsy ey (NS &) - DO AEAN XS N . > LAl e iz L= ¥ x4 B % e OO L N 1 £ { :w Wl P o i URE Y hE et ] b 4 red p 57 Wi o Ll ‘ry Lo < N v o s Iy Jrinal LS o] LA e [ ¥ LANAL L N (&3 et L I SRS = L e Pt G T LA LU S NN N T b R ¢ Sl £y t- - 2T L P Xy *y S AT N~ i T e oo AL A Ty > - ) AN < AV rd i o ) ; £y g8 e e TV ST T s LAV O L e LY P RIS T Oy FURE LN [yt s : SNANIT NP N N . L e s KT [t < A2 ' - T b 3 ¥i Y e H PN Y AN ek = Z 4 Y 240y Del ke 3 ST e LSO Tt LIt [elh vt I £ e i N 13 K3 LA e [t w W OTOY AT reey = WA R N o e 5y 3 L i o 7 el 28] o Ui o0 N wl a1 P b b ) aieed ; T o [t 3 s e P o e AT et D ) AV 0§ et s 5 U . - i Y ° ) foo 4o It ot - o 03 ey Zand U, 0 ' ot ] U i {7 et ] et el =i [y [} A 4 ] -t i s pesh i o peea s { SFe { T R L el 1 W) [ 5 7o = @ o ) - " e . Gy 4 9] A Yy T JRN A 2 Y 2 Al R “ pa] e i L o ot H L ! e, k et [ 7 = g ') [ _ o iy ‘ wmmene VI S e h WL - - -, : ~das . : -4 : p wd + G St . y L2 “ . ., 3 . . o o V! i b I vgad v , ' o . . - ¢, o 0 s Dt & . o A 4 z b st st & Bt [ & ; oed < \ e 5 Ay S ; ] § \ e - @ : i 0T 5 7 : : - . o - o i 1] G ;. « a\ ! ah z , : iy & : : ‘eis ) : | A»\ \ : ¢ P \q H ges o x | : g [l : . 1 ., 2 g .. u 1."!\ : : ] Py - ) = | « R ..\L... b : ; | 5 - : ,. o 5 . : | | £ : | o, _L!\m W3 f»\\ . . o] 7 S ; : - L et o : | . “ : , s . : L o i 7y 198} i o , ’ : iy . . ..\, : [ g -t : ,: - , j e : . . fee] : i 3 i : | ; . i % ) Y 1% : <. / ;m b 8 , i ; ) ot R 3 . o e { b, : . : : : : o G > 7 | | st - : Py . o » ; ey G ~f - - \ ; 53] 4 9 o X s b yatueat j 5 & { o - “ £ % ‘ e [ $-7 g 5 . 2 o - R B 5 red i | g \. o W ; " : Ry ., | ,V . o o 4 J § @ y @t b ey P i 5 5 i) o ’ e ; ® ; o ] Py R P - + i o . O 5 o , . : o - % 58 s , ; | : LR ) : 15 i - - : | : 7 LS S o r . s ) ...‘ : \k sL » - . | ,r i f o 1 e b = : - g - : : < : .\. h ; _ - vt y 4 ol T2y o e 4 % | : ) oY) = - jo ._ : § o o ol { | v o o o iy o] o 2 »ed et : : : e. eped @ N | e Y S ?“ : s . | ; .A jo £ : ; ¢ i - & , : P L ; g : : : (._ : i 7 o o : : i z ) i £l I L7 st v A : . - ‘ 4 ‘ L B = o P -4 u\, =t e i O i , F , Whas 4 - | : ». - gt A 2 : , P \ | : o Py / . ¥ o-d . 3 33 S ; , : i | ; J : 5 ; CEN B P i ) o 5 o P £ > 9 - : o pic! b Pt p o, i W - by ! o \ L e ) s #-4 ;. \ = [aat o, i s . pro 4 iy i 4 i N : : 4 i - A% 2 2 S i s D L v [l o v » | | -t e s - : _i , ; ] : o o a i - | : . 0 oy : ) M oy : ; - -1 .-»\ ; <% ] - : iy ol g ! ‘ 2 P o : W & : : | _ V ...IQ\ il - : g n 1!* s i ] N rr-ad »flIIL; . ...l.“ e - — it = L P-4 oad A y * i ¥ o (A UNCLASSIFIED 2 2-01-058-0-474 10 } = = o U%*® SPECTRUM FROM — | . \ . PRESENT EXPERIMENT N o BACKGROUND SPECTRUM | A\ K (U238 paTA) | - \ 235 = N x U235 SPECTRUM FROM MOTZ 2 2 3 SUMMATION OF PROMPT — e %8s FISSION AND FISSION-PRODUCT 5 10 - SPECTRA a N . Pt 5 s R C 5 = o & e 2 O e 2 ) By ) P Q(;E E SYh & i e I :b'n"h 2 i Py 5 ° ¥ = % 2 h 4 a $:0 1 . 5 2 IR 0 ¥ + 8 IJJ1O—1 3 5 = \ I \ = X 3 N\ & TN T 1 -2 10 ) 1 > 3 4 5 6 7 £,,GAMMA-RAY ENERGY (Mev) Fig. 11.1, Preliminary Spectrum of Gamma Rays of Energies from 10 to 800 kev Emitted Within 10-7 sec after Fission of U235, Previ- ously obtained higher energy data also shown. UNCLASSIFIED 2-04-058-0-469R! 3x 10 2 A o g ’ om | o o B AR LSS o 10 . ™ ’ g \ R 5 R b 2 2 . ~ o SINGLE-CRYSTAL SPECTROMETER *s o WITH TIME-OF-FLIGHT TO EX- E CLUDE FISSION NEUTRONS—EFFI- - CIENCY ESTIMATED . . v 2 CRECTROMETER 2 * COMPTON SFECTROMETER| prom picG - - Y s & PAIR SPECTROMETER | PBTO(1958) S v 2 PRELIMINARY DATA ANALYSIS - 5 L ’ 2 . ] 10° ’ ¥ 5 4 “ 3x10° - S; A 0005 001 002 005 Of 02 05 § 2 5 10 GAMMA-RAY ENERGY (Mev) Fig. 11.2. Energy Spectra for Gamma Rays from the Interaction of Thermal Neutrons and U%3°, All data normalized to give the best over-all fit. S NN AN LA { 3 T REEEES) Y N P ) Ea T R D& JS sy L oy L At 3 JRRE e Lah] - I o T [N ANCE Y A 1 TN SN = RN 4 W Y 1 e METIT S PERA N A W] £2 - Y Lind =} L e A = - =2y AL BSRN oy o o e HER G S IR Ny LI 2 ) et AL i i 4 A . N 2 NN e -+ = TR T i e L [x i - Au | ) L A - -3 i ol i3 - [ P ALK > a2 o b { U e o, W o 89 - S H 4 5= "y Y, ) ey ue e o i~ o -4 L3 £ b L P [=3 o= £ 4 AT Ly LN 2. 2 : SEN , iy B o ") op-d o { e £ o { { s BURSE VL N s e “\1‘. - { e Ll L AT 4 L St S o e e T W i AS R o O ' QoY DA R ] e o p R Lt O D L ] - i1 ¥ A Ay ERPRS s ALy o~ "oy, A e WX b § LT WA s PR 2 [ o (BT § bbb et 1 - My 3T 13 Ahad NJ LA K Ao o a2 oY bEA] - B . “ h P T T — . T 3 ;o it . . o : s - o7 . o it B 42 - r 13 j LAl 3 - o oo o o] o . b} oo e =t N A ) Y ' 5 d . i) [ - ) - - - S ] v -, i I - ] o P RN ; " sy 491 Fee L [ () P ‘ M L 3 1 L A 4 [4¥] vy ) 5 s g/ o rrt [y} o g s A% 4t [ - 2 O W ] o T o e ) o) 53] J [ . pemtrereererserrs, P 7 4 3 3 - - g wr B "y b bt f o - oo - I o a - S L L. -t .1\, ' red L § T rin et . [ i (L] (28 e . . e 5% b e o M o . 1 ] " P P M I LSOPRIIIIIIFIII VYT ] by i I I I Iy s i .\.. ! UNCLASSIFIED 2—01—-059-40C8 INDIUM THICKNESS { mg /em?) 0.50 0.75 1.00 1.25 1.50 175 b e - yY4-in.~dia INDIUM FOILS ; 30-mil CADMIUM COVERS. Ro-Be NEUTRONS IN GRAPHITE. EXPERIMENTAL ® 13,6 cm FROM SOURCE & 23 .8 cm FROM SOURCE THEORETICAL {r) 10 mils Smils 140 160 180 200 f 40 60 80 100 120 INDIUM THICKNESS (mg /cm?) I'ig. 11.3. Comparison of Experimental Values with Theoretical Calcu- lations of the Self-Shielding Factor, f(T), as a Function of Indium Foil Thickness for Both Isotropic Neutron Distribution and Collimated Beam. 126 UNCLASSIFIED 2-01-059-410 8 7& // / y -—-_--_._ /g_________ 2 s [ 3 o) S 4 5 EXPONENTIAL FIT BY LEAST SQUARES cl ® 0.0369-mil INDIUM 0 A 0.069-mil INDIUM = 3 © 5.2-mil INDIUM X O b — = o L = s 2 ~ > e = ’_ (&) « & & h\o/ll----_.______' 1 0 10 20 30 40 50 60 70 THICKNESS OF CADMIUM COVER (mils) Fig. 11.4. Indium Activation as a Function of Cadmium Cover Thickness for Various Thicknesses of 1 1/4~in.-dia Indium Foil: Ra-Be Neutrons at 13.6 cm in Graphite. 127 3 N O ey e [ ety 3 Ty e o o ) ” oW % o st 4 P . iy [ -~ N » sy ) ey b > 1 1\1 H 7 3 4 N greneseesssotostess P e, [ H e LS [ “, - e H k) ke (A H o=t ot N 1 acd w»xw RO [ it v / L/ 4= yedt ot i s 43 H P y omd : wi 1 = bt . » . -+ o, ' he £ H ey i 4 o L It poe) s , L &3 “ ) [ 14 " A e e Bl H H i N 2 2t o s S 4 4 : I - -t i i i3 P it it i " il i i - . ‘ d 1o o) o e 14, . Ut Ny 3 e “ % P g o ot 4 - Y s L1 B [ oy P ¥ P et SNV NP { 4 i Y A Y WD (% { i ey TR S 3 DG & LAY e Y R CERLR i il i 3 Ay i i, T o NETT N e 2 v - 3 . g o8 . O3 ¥ e LT LY g P Y o LD i N s T LALLM 1 § i - ~ Py 3 S AL Ll UNCLASSIFIED 2-01-056—27-829 Naol CRYSTAL (R TLET YRS e LT ".‘ o Sy 'f . n 'u l el kg LUCITE HOLDER "‘:l ey (A (IRITINESSS \ U ‘l "l,' . ’%ii ;‘}3-:;‘.-‘- fo o Fig. 12.1. Experimental Arrangement for Measurements of Spectra of Capture Gamma Rays from Various Materials. 130 TR bk £ ® EES F ] i [ [ el ] - & Wo\..\.\..m o P8 e = o o] o] b1 or Ay T Ty i % ¢ 2 3] N v ~n 2F =ty oY & N 4 T L =Yk T 1 LS « o oA et s - 4 - o p . P p3 J ; , i i ) P . e ) : - - * Qu. . ey : _ : o a , . w .“ &, & !J_ P e T S - o = -t P i 0 2 ol o ‘P e ) ' 1y 5 g rd i i - p o 4 ed 1 e : i 4 .r\\ d ; i [oF i o a_ - ] [ o i - (R / - e “ e | o et 1] I “ : L @ b ; PN : 2 - = ey : . il o) i at el A 4 . P ATk T 5 > i . ’ 5 N o7 .»M .w 5 : L ..l. “ .\J . i : : 4 : - b s . £ , e 4y [ o : i L et ; i . e i ) N /.h as - i o st ! v . b P 45} fonir} ” g o g & ol o A ) I : e ; ., a o L4 N i L5 S - . 2 'S - 40 o i - i C 74 15 i LT ' I : q . ; ; o oA ? ; d o s e} L] Od ” 3 | B : m. - L L ot q - _ "y : : .. ‘ [94] ] e & # - . - ’ ,‘n.f ) 5 . I i " - et o VZ 2 - 'S ,. P = P i 3 L 12 ey £ -’ y k7 : [y 3 ; * o) J , . W A4 G - 1 : A ] =4 : . . e % : | o #=d - b= - L & , e - . x5} L} g 2 : o . il W ot 3 o R {2 3 S . 4 ) . o : - 0 5] i -t Y - H . : : 3 i apnd i i o i o1 - i red L ] fi s | . Faa] e - . \ , . b (58] ot , p - P o, = o - = = P - ¥ ! I 9, ’ .. . L L2 32 o % Z Z & 5 e s o : . ey s G4 o & % : o] o 68} St 5 K - & red pied T g . : " o9 ! [ i g 0 o pe . £ o o Ty I ey i i - - . v ha hit 4= ] i ‘ ‘ : ; w : 5 -t ey K p : ; . . e A . . e s [ P P i @ 28] 9y . Sualal) ) i } > = ey Ly ft] / e % " z . S " e b - c ; o fi d e #ed 5 / h 1 ¥ i % o - { e e ] 1] iy P PPN L 1 ; 1 A £ ] a3 p ey . g i e -4 % ’ o o o £ I# 1 f P .2 g = ) & ” & ¢ e 3 ot X i Ty bt e s *, b 5 o8 o (&) 132 (5%103) - 103 counts/min o™ (2x107% ! 0 Fig. 12.2. 20 40 UNCLASSIFIED 2—-01—-056-27-0-824 B LEAD PLUG PLUS TRON [.aTs 4 LEAD PLUG PLUS TRON PLATE PLUS &R0 PLEXIGLAS ® DIFFERENCE &0 80 100 120 140 160 180 20C CHANNEL NUMBER Pulse-Height Spectra of Capture Gamms Rays from Iron. - * pt o, T o, - [ M - 4 i Y e G OB - e . [Ny d R W ie ) by [ e A & g 5] Yad 3 Py , [ . ~ ! oy L L i P o] ’ P e o .y '3 H LAEE; 3 ' L LLAr . - " )] ) < I T “y P e o - oo ¥ I i (8 bA G ..._. ] * l,\_ . LA {d S e I o3V Y Y Jam [ #- 4o a B 3 51 @ o o4 o il 25 o - i o3 - . T, [ L il WLt o . ¢ - T ¢ o E Py o~ L e [ P Pt - ! T d s it X 1. [ e UNCLASSIFIED 4 2-01-056— 27-0—827 {(2x10M) | [T T T | l ‘ ® LEAD PLUG PLUS 25 ALUMINUM il 4 LEAD PLUG PLUS 2S ALUMINUM PLUS BORON PLEXIGLAS @ DIFFERENCE M 10° L] (&) (— —— = == (4.43 Mev counts/min r T.74 Mev o an :; 20 40 60 80 100 20 140 160 180 200 CHANNEL NUMBER Fig. 12.3. DPulse-Height Spectra of Capture Gamma Rays from Aluminum, 134 UNCLASSIFIED A 103 2-0i~056-27-0-825 2 r 10° » LEAD PLUG PLUS LEAD PLATE 5 « LEAD PLUG PLUS LEAD PLATE PLUS BORON PLEXIGLAS 2 s DIFFERENCE 102 & 443 Mev N 5 * £ E » [72] € : e 10 Y 77.39 Mev 5 1 l IA!- 2 W i LI L 1k 5 A, 2 | . | 0 20 40 60 80 100 120 140 160 180 200 CHANNEL NUMBER Fig. 12.4. Pulse-Height Spectra of Capture Gamma Rays from Iead. 135 oA 5 e L0 Ll \\4. le San™h L s N Wl sy p e RS Py LN el 197 L 3 N Y i Ty N v 1L h S A oy iR [ fert e I Wa - M ' e b C o i [ 4 o -4 53] jax] i [} » “ & 38 B8 oy 'S i £ . g - <) s 4 o i or-d 4 el . g & L o »l IS P i : 4 iy . o, = o »] - § d o e 5 T N ¥ ‘ -~ ” i R ! oy 1 I s S ! Fame -4 4oq 1) ) V 54 1 -4 o b ] P e e 3 - a o oy {2 L W e 4 et pes] Foy il ! 4 i il b it o 23] ; o i (4 Ty s iy R : i iy 3 o - e G ot 1 P 4 " i e H TR H Lo i 3 i g ¥ X \\\\\\\\\\\\\\\\\\\m e i H 4 3 i P ............ o i 4 S a Py ) = L P . s an PO ........... - e : g e T e ’ - e b O L] ._ ! Vi 4 1 4 L 4 e i} I} “y ¢ N i { i I L o4 L ety il e — . ] . i1 ] i [ ] i B L ] [ i L % - - a0 -t e ’ ud pe . = P =4 - L v » 98] P et i [T 3 ot a3 - 3 £ . . ] w Lat] i B ] o o v 3 o i [y H AN o ¥ rod Vv I’ o s o3 o 2 ih) ] -y ) P} il o B ! i | =3 2 1 T«u T < Y] ) o - : s i s “ PEEETRR e et ~ ’ ot =g ¥ N . W . * O [ -4 . el w A e, o 1 1 4 e T e ] Y T . B o o ul i G o 0 = . ' i s LA " ey - 43 5 [ 48] =y 0 12 4 Fral 2K ! —d e o 4 £l W2 & o s 3 e el e ] ot o ; s i M u it 4 fas o i e 0y ) IS o, (3 . o £ i ‘ ! Pt 3 ! e ¢ P p— et e [ o0 is » i i 7S -l .\I& v tt i} Ty . £ [ oY) ooy @ o s i tear - 1y 9 5! = W o o i f\. WA 1 §od ] Ao JL» =) i ) . i : K U { - o o) } d - Doy e e pos} ; - (] d ;..\ “um o : > o [t o .1,»\ ot h i e R ! [ i £ = = ol ; L ) o 3 - 5 ot R 2y H ; - = - o ps g 8 pag -4 ol Sw,k -~ o =1 1] jxs} . i ! : . . i |L- - «\\ \ [oTH Y ) -~ T iyl s : i Ui et bt s s Al ~ ~ 3 x| Lol o 3 N = A faTe Aaka LA . i b - TR S ddn L - 2 PN L SN -3 + o CoeTing:s A e o 8 b et RS - kS N 1 Lands . Gy N I [59] < o e SRR 4 ees P i oot Ty 5] et ol ot ~ fad - O o 7y b, alf - LJ e TR b RENY I heada N 4 24 & { oo Ny ¥ g X ey Rk et LT [ g O =20 Al N - ot U Sy Lo 3 . 3y DL NR s PR ENRLEE SN Ny o 1) e 13 Lad Ay 4 S v - UNCLASSIFIED PHOTO 48462 Fig. 12.6. Completely Assembled Pratt & Whitney Shield. 140 UNCLASSIFIED PHOTO 34485 Fig. 12.7. Inner Section of Pratt & Whitney Shield Showing Depleted Uranium Shadow Shield Bolted on the Outside. 141 UNCLASSIFIED PHOTO 34488 b Fig. 12.8. One of the Large Outer Sections of Pratt & Whitney Shield. 142 evt Fig. 12.9. One of the Large Outer Sections of Pratt & Whitney Shield. UNCLASSIFIED] B PHOTO 34486/ W UNCLASSIFIED " PHOTC 34548 Fig. 12.10. Outer Section of Prat t & Whitney Shield Showing layers of Lithium Hydride Blocks. 144 rade & N A ; e vyt Lpul SR Wi} ; z = ol S ] oL i -3 2 i -~ o o & Fa kTl 1 i ered ! o b 3 Y] e R LN 3 S Ll oy LA S N Faiyn] hee i EoN S o a A ‘\_,\ H L AW A Y { L sl e - - . fe, C P - 7 iy (o) 3 21 TR e R Ly g ' 4 { e Vi RESNRR - N - N ™ A L 3R 5 LS - ey 3 Li ey AL T L § v AR DN e [ T VR En Aol NT oy oy .. o ni?«!: VR =2 ~l- ~ k) 21 N Y é i 1 it £33 < LSELN SN A e LN Fue ) [ { ey R [ ( H 1.7 .T: AL fin N '{q el by 4 5 -~ - ?11 L }. LR a Y REAER S N L7t UNCLASSIFIED 2-01-060-75 NOTE: THE ALUMINUM FRAMEWORK FROM WHICH THE ALUMINUM SPHERE IS SUSPENDED AND WHICH WITH COVERS ATTACHED COMPLETES THE CON- TROL SPHERE, HAS BEEN OMITTED FOR CLARITY. CONTRQOL PLATE QPERATING MECHANISM 8,C -FILLED REGULATING PLATE (FINE CONTROL) SIDE COVER B4C-FILLED SHIM-SAFETY PLATE (SiDE) ALUMINUM SPHERE {CONTROL MECHANISM SUPPORT) REMOVABLE ALUMINUM PLUGS B,C-FILLED FILLER PLUG . =4 Fig. 13.1. TSR~IT Control Mechanism and Housing. Censdl = 4ert ~ e L.Ll i mne Ly TOn - P M PRy e Y 4 MY TINS [ $ Sin N PR L Y e WO - o JURS LRI i O e i e 3Ly o g o £y EY 5 Il ) I H e L -+ i, ¥ B TS e NAARD s - oo} 3 { EN RN .- AL ERNR NN i S [ o i IR TV S e Mo e b pe 2301 e T AT oy ST aN k- e Iyl S Fonie e Il N W al Ko )] . Sl 4 = 3 - L i -t S - ) ; Ionn] o wrt - I ' L - - v 1 o5 ey s s - ! () d 1 i i [@14] ot L g < ) [ i e e o " i i 2 i - 4 I 2 . ; L & i 3 -~ § S ) = ORI [ 1 T b _ s "y > 58 g P - 23] R s, . )\ ooa s ! hed pet B = . » #-i N b, y Oy o 0Ty WY i ] I {1 oo ' ! "y [ Lot o P _— L ] 4 / y 1 s} t i [oid st . ” ” i vry F e A5 ) 48] 48] Ay Gl 3y ! e Y s . : ] - L2 i ¥ i o 4 4 B B 1 o =2 [ & * iy 0 e, - ; - ot O . P g L i i P e iy A Pusl) bad ] o A i ; : P ved 2 a1 58] s e 0 s [ 4 - 35 P tome 2 5 - A ¢4 o y g (O o P i Lt 4 3 b o a e . ; - - s i - o ; ! y ey 5 v, 3% o IS e v [ ; HAy - s 4 ot s po. h X P = Il % e-d -t ’ = g 4 i ! 0 ‘., o = el : A i . Pt € - . , & 0 , 2 ! st * o e ) . = e, 55 - o] 95 L ! o oy ! e : . - P H > . i o i =) - et -y yO v Pt Yy : ' By = b4 -1 £ ) < had \..\4 _ / v . .\)\,\ ] A .H W (49 o [ i 0 fi.l § St ey Feed - e i j2y] b LN AN + i [any Ay e 2y LY VT NS 1 TR . . S0 o A SN I D N N SR S8 TN R RN N 84, 85-88. 89-90. i 92 | 93-95. 26-97. 98. 99-100. 101-102. 103. 104-106. 107 . 108. 1@%« 110-111. Bl2. 1.3 114=119. 120. 121 . 122-124. 125, 126 200 128« 129+ 130. 131. T2k RECc™ 134-135. 1364 139, 138. 139 140~147. 148-150. 1 5m. 122k A-5E: 152 T EXTERNAL DISTRIBUTION AiResearch Manufacturing Company Air Force Ballistic Missile Division AFFR, Boeing, Seattle AFPR, Boeing, Wichita AFPR, Douglas, Long Beach AFPR, Douglas, Santa Monica AFPR, Lockheed, Marietta AFPR, North American, Downey Air Force Special Weapons Center Air Research and Development Command (RDZN) Air Technical Intelligence Center ANP Project Office, Convair, Fort Worth Albuquerque Operations Office Argonne National Laboratory Armed Forces Special Weapons Project, Washington Army Ballistic Missile Agency Army Rocket and Guided Missile Agency Assistant Secretary of the Air Force, R&D Atomic Energy Commission, Washington Atomies International Battelle Memorial Institute Bettis Plant (WAPD) Brookhaven National Laboratory Bureau of Aeronautics Bureau of Aeronautics General Representative BAR, Aerojet~General, Azusa BAR, Chance Vought, Dallas BAR, Convair, San Diego BAR, Grummsn Aircraft, Bethpage BAR, Martin, Baltimore Bureau of Yards and Docks Chicago Operations Office Chicago Patent Group Director of Naval Intelligence duPont Company, Aiken Engineer Research and Development Laboratories General Electric Company (ANPD) General Electric Company, Richland General Nuclear Engineering Corporation Hartford Aircraft Reactors Area Office Idaho Test Division (LARQO) 2t ) W 154~155. Knolls Atomic Power Laboratory 156. Lockland Aircraft Reactors Operations Office 157. Los Alamos Scientific Laboratory 158. Marquardt Aircraft Company 159, Martin Company 160. National Aeronautics and Space Administration, Cleveland 16l. National Aeronautics and Space Administration, Washington 162. National Bureau of Standards 163. Naval Air Development Center 164. Naval Air Material Center 165. Naval Air Turbine Test Station 166. Naval Research Laboratory 167. New York Operations Office 168. Nuclear Metals, Inc. 169. Oak Ridge Operations Office 170. Office of Naval Research 171. Office of the Chief of Naval Operations 172. Patent Branch, Washington 173-174. Phillips Petroleum Company (NRTS) 175=178. Pratt & Whitney Aircraft Division 179. Sandia Corporation 180~181l. School of Aviation Medicine 182. Sylvania-~Corning Nuclear Corporation 183. Technical Research Group 184. Thompson Products, Inc. 185. USAF Headquarters 186. USAF Project RAND 187. U. S. Naval Postgraduate School 188. U, S. Naval Radiological Defense Laboratory 189-190. University of California, Livermore 191-202. Wright Air Development Center 203=227. Technical Information Service Extension 228. Division of Research and Development, AEC, ORO 153 ORNL-528 ORNL=629 ORNL-768 ORNL-858 ORNL-919 ANP-60 ANP-65 ORNL-1154 ORNL~1170 ORNL-1227 ORNL-129 ORNL-1375 ORNT.~1439 ORNL-1515 ORNL~1556 ORNT.~1609 ORNL~-1649 ORNL~1692 ORNL-~1729 ORNL~1771 ORNL-1816 ORNL-1864 ORNL~1896 ORNL-1947 ORNIL,-2012 ORNL~-2061 ORNL~-2106 ORNL-2157 ORNL-2221 ORNL-2274 ORNL~2340 ORNI-2387 ORNL-2440 ORNL~2517 ORNL~-2599 ORNL~-2711 e~ Reports previously issued Period Period == e ] Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period Period in this series are as follows: Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending Ending November 30, 1949 February 28, 1950 May 31, 1950 August 31, 1950 Deecenber 10, 1950 M&rel 10, 1950 Juwe 10, 1951 September 10, 1951 Decenber L@, 195l March 10, 1952 Jime 10, 1952 September 10, 1952 December 10, 1952 Marek 18, 1853 June 10, 1953 September 10, 1953 December 10, 1953 March 10, 1954 June 10, 1954 September 10, 1954 December 10, 1954 March 10, 1955 June 10, 1955 September 10, 1955 December 10, 1955 March 10, 1956 June 10, 1956 September 10, 1956 December 31, 1956 March 31, 1957 June 30, 1957 September 30, 1957 Degenber 31, 1395%7 March 31, 1958 September 30, 1958 March 31, 1959 155 R S e = = —— = . 5 1+ 0 Loy ey e 0 T e P o e L ey — O30 BT TR S oy g oL e = Byl R St ey St 8 . . ~ s - . - .