DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ORNL-2548 Chemistry ~ General TID-4500 (15th ed.) Contract No. W-7405-eng-26 REACTOR CHEMISTRY DIVISION PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS R. E. Thoma, Editor DATE ISSUED QOAK RIDGE NATIONAL LABORATORY Qak Ridge, Tennessee operated by UNION CARBIDE CORPORATION for the U.S. ATOMIC ENERGY COMMISSION INTRODUCTION 1. 2. METAL-FUSED-SALT SYSTEMS 3. .1 LT 1.2. 1.3. 1.4. 2.1 2.2. 2.3. 2.4. 2.5. FUSED-SALT SYSTEMS The System LiF~NaF............... The System LiF-KF................. The System LiF-RbF............... The System LiF-CsF............... The System NaF-KF ............... The System NaF-RbF ............. The System KF=RbF ............... The System LiF—-NaF-KF....... The System LiF-NaF~RbF..... The System LiF~KF-RbF....... The System NaF-KF~RbF ..... The System NaBF ,—KBF,....... The System NaF—FeF, ......... The System NaF-NiF,............. The System RbF-CaF, .......... The System LiF~NaF -CaF, ... 3.1 3.2, 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9 3.10. 3.1 3.12. 3.13. 3.14. 3.15. 3.16. 3.17. 3.18. 3.19. 3.20. 3.2 3.22. 3.23. 3.24. 3.25. 3.26. 3.27. 3.28. 3.29. 3.30. 3.31. 3.32. 3.33. The System Silver—Zirconium. The System Indium=Zirconium --------------------------------- CONTENTS .................................................................................................................................. METAL SYSTEMS ......................................................................................... ----------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------- The System Antimony—ZirCONIUM ..o iieiiirriinecr ittt et et e The System Lead=Zirconium... ------- ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- The Sodium Metal~Sodium Halide Systems ...ccoeieviiiiiiceccc e The Potassium Metal—Potassium Halide Systems ... The Rubidium Metal-~Rubidium Halide Systems .....ccooveereiiinicieieceec The Cesium Metal~Cesium Halide Systems .....cocvirociciciiiiciecs e, The Alkali Metal~Alkali Metal Fluoride Systems ......cccccoovevvieeicei it The System NaF -MgF,—CaF, The System NaF-KF-AIF,.... The System LiF~BeF,............ The System NaF-BeF, .......... The System KF-BeF, ............ The System RbF-BeF, .......... The System CsF-BeF, .......... The System LiF-NaF-BeF,... The System LiF~RbF-BeF,... The System NaF —KF ~BeF, ... The System NaF-RbF -BeF , . The System NaF —-ZnF,, .......... The System KF~ZnF, ........... The System RbF—ZnF, ........... The System LiF~YF ..., The System LiF~ZrF , ............ The System NaF-ZrF ,............. ....................... ......................................................................................... ----------------------------------------------------------------------------------------- ......................................................................................... ----------------------------------------------------------------------------------------- ......................................................................................... ......................................................................................... ----------------------------------------------------------------------------------------- ......................................................................................... ----------------------------------------------------------------------------------------- ......................................................................................... ......................................................................................... ......................................................................................... ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- ........................................................................................ ......................................................................................... ......................................................................................... ----------------------------------------------------------------------------------------- ......................................................................................... ......................................................................................... ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- ......................................................................................... ......................................................................................... ......................................................................................... ......................................................................................... ----------------------------------------------------------------------------------------- ......................................................................................... ----------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------- ......................................................................................... ves il 3.34. 3.35. 3.36. 3.37. 3.38. 3.39. 3.40. 3.41. 3.42. 3.43. 3.44. 3.45. 3.46. 3.47. 3.48. 3.49. 3.50. 3.51. 3.52. 3.53. 3.54, 3.55. 3.56. 3.57. 3.58. 3.59. 3.60. 3.61. 3.62. 3.63. 3.64. 3.65. 3.66. 3.67. 3.68. 3.69. 3.70. 3.71. 3.72. 3.73. 3.74. 3.75. 3.76. 3.77. 3.78. 3.79. 3.80. 3.81. 3.82. 3.83. 3.84. The System KF—-ZrF‘4 ........................................................................................................ 56 The System RBF —ZrF oo, 57 The System CsF—ZrF4 ...................................................................................................... 58 The System LiF---NcF--ZrF:4 ............................................................................................ 60 The System NCJF—KF—ZI'F4 .............................................................................................. 62 The System NaF—RbF—ZrF ..o, 64 The System NaF-CrF,~ZrF ,: The Section NaF.CrF, ~ ZrF , oo, 66 The System NaF—CeF ; —ZrF .o, 67 The System LiF—CeF .t 68 The System NaF —HF .o 70 The System LiF —ThF ;o 72 The System NaF —ThF oot 73 The System KF =ThF , o, 74 The System RBF —ThF ;oo 76 The System BeF ,—ThF , oo 77 The System BeF S UF 4 o 78 The System Mgl:2-Th|:4 .................................................................................................. 79 The System LiF—BeF2--ThF4 .......................................................................................... 80 The System NoF—ZrFA—Th B e e 82 The System LiF-—UF3 ........................................................................................................ 84 The System LiF —UF oo 85 The System NcF-—UF3 ...................................................................................................... 86 The System NaF—UF ; ..o 88 The System KF —UF ;i s 90 The System RBF —UF ;oo s o1 The System CsF—UF ;oo e 92 The System ZrF =UF .ot s 93 The System San-—UF4 ...................................................................................................... 94 The System PbF ,—UF ;oo s 95 The System Th F4—UF4 ...................................................................................................... 96 The System LiF—NaF—UF4 .............................................................................................. 98 The System LiF —KF—UF 4 s 101 The System LiF—RBF—UF , oo s 102 The System NaF —KF —UF .o 103 The System NGF —RbF —UF oo 104 The System LiF~BeF , —UF , o e 108 The System NaF —BeF , —UF ;oo s 110 The System NaF —PbF ,—UF .o e 113 The System KF—PbF ) —UF , ..o 114 The System NaF —ZrF (—UF ;oo e 116 The System LiF—ThF , —UF /(oo 119 The System NaF-ThF,-UF,: The Section 2NaF.ThF ,~2NaF.UF, ...ccccooeccicen. 124 The System LiF—PuF s 125 The System LiCI—FeCl, i, 126 The System KCI=FeCl, ... 127 The System NaCl=ZrCl, .o e 128 The System KCI=ZrCl ..o e 130 The System LiCl-UCH s 131 The System LiCI-UCH oo, 132 The System NaCl-UCH; e, 133 The System NaCl—UCI ;.o e, 134 4. 5. 3.85. 3.86. 3.87. 3.88. OXIDE AND HYDROXIDE SYSTEMS 4.1. 4.2. 4.3. 4.4, 4.5. 4.6. AQUEOQUS SYSTEMS 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9 5.10. The System KCI—UCl4 ...................................................................................................... The System RbC|—UC|3 .................................................................................................... The System CsCl-UCH, .o, The System KaCrF =Nag CrF L CrF i, .......................................................................................... The System SiOz---ThO2 .................................................................................................... The System LiOH-NGOH ....ooooeeee ettt et ea e enes The System LiOH—KOH ettt e st e e s sete e e sabsas b e s bs e abteeeensanes The System NAOH o 5.17. 5.18. 5.19. 5.20. 5.21. 5.22. 5.23. 5.24. 5.25. 5.26. 5.27. 5.28. 5.29. 5.30. UO,50, Solutions ... Second-Liquid-Phase Temperatures of U02504—Li2504 Solutions .cccocveieeireie. Second-Liquid-Phase Temperatures for U02504 Solutions Containing Li2504 or BeSO, i s Second-Liquid-Phase Temperatures for BeSO4 Solutions Containing UO, v The Sy stem Ni504-—U02$04~—H20 A 25PC et e et Phase-Transition Temperatures in Solutions Containing CUSOA, UO,30,, and HoSO 4o s The Effect of CuSO, and NiSO, on Phase-Transition Temperatures: 0.04 m UO0,50,; 0.01 m HySO, oot The System U0, ~Cu0-NiO~50,-D,0 at 300°C; 0.06 m SO; .coovvcvrivrmniiiiciriinnee, Solubility of Nd,(SO,); in 0.02 m UO,S0, Solution Containing 0.005 m H,S0, (T80 =300PC) .. eeieeeierreeeeeterereeeeerete et et se st s ere e e e s st bsatsasbasesbes satbesaeeseeensbs e enessaenses Solubility of Lo2(504)3 in UO,S0, Solutions ... Solubility of CdSO, in UO,50, Solutions ..., Solubility of Cs S0, in UO,50, SOlUTIONS it e Solubility of Y2(2504)3 in UD,S0, Solutions ... Solubility of A92504 in UO,50, SOlUTIONS i e Solubility at 250°C of BaSO, in U0,S0,~H,0 Solutions ... Solubility of H2WO4 in0.126 and 1.26 M U02504 ........................................................ Phase Stability of HWO, in 1.26 M UO,F, o, Vi 5.31. 5.32. 5.33. 5.34. 5.35. 5.36. 5.37. 5.38. 5.39. 5.40. 5.41. 5.42. The System UO,(NO,),=H,Oueererieiiiii e Phase Equilibria of Uéa and HF in Stoichiometric Concentrations (AQUEOUS SYSTOM) .. ittt ettt e et rere b er e e erssrasesecbenssnessrnsbeessnessanenn Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions ....coccvveevvinccnnnnnn. Solubility of Uranium Trioxide in Phosphoric Acid at 250°C ........cccoviveevvieniienrens Solubility of UQ, in H3PO, Solution .. The System UO,CrO, —H,0 .o Variation of Li,CO, Solubility with UO,CO, Concentration at Constant CO, Pressure (250°C) oottt ittt sttt e e e e es s The &ystem Li,0-UO, ~CO,—H,0 at 250°C and 1500 pi.....vrerrerermerocrine The System ThINO, )y ZH 0 oo Hydrolytic Stability of Thorium Nitrate—Nitric Acid and Uranyl NItrate SOlUTIONS ¢ e e sbs e b e s ses e b e banenenens The System ThO,~CrO;—H, 0 at 25°C ..o, Phase Stability of ThO,-H,P0,-H,0 Solutions at High Concentrations OF ThO ettt st et e e bbb s PHASE DIAGRAMS OF NUCLEAR REACTOR MATERIALS INTRODUCTION This compilation presents the phase diagrams for possible materials for nuclear reactors developed at the Oak Ridge National Laboratory over the period 1950-59. It represents the efforts of certain personnel in what are now the Chemical Technology, Metallurgy, Chemistry, and Reactor Chemistry Divisions of ORNL. This document also contains diagrams originated by other installations under contract to ORNL during that interval. In addition, a few diagrams from the unclassified literature have been included when they form part of completed systems sequences, No general discussion of the principles of heterogeneous phase equilibrium has been included since excellent discussions are available in many well-known publications. Equilibria in several of the fused-salt systems presented below have been described in some detail in a 1 recent publication by Ricci.’ Nor has any attempt been made to assemble the phase equilibrium data on reactor materials available from many other sources. For such information the reader is 2=6 referred to other recently published compilations of phase diagrams and to the several new works dealing specifically with nuclear reactor materials.” =7 While some of the diagrams presented below are the result of fundamental researches, most were obtained in support of the ORNL programs in development of fluid-fueled reactors. Others have been developed as a consequence of ORNL interests in reprocessing of nuclear fuels, reactor metallurgy, production of uranium and thorium from raw materials, and studies of mechanisms of corrosion. Much of the research effort was devoted to searches for systems of direct use as fluid fuels or blanket materials; unpromising systems were often given only casual attention. The diagrams in this collection, accordingly, vary widely in the degree of completeness of examination. A brief description of the status of the work is presented in each case; in o few cases, where no detailed description of the system has been published, the available data have been included with the diagram. ]J, E. Ricci, Guide to the Phase Diagrams of the Fluoride Systems, ORNL-2396 (Nov. 19, 1958), 2). F. Hogerton and R. C. Grass (eds.), The Reactor Handbook, vol 2, AECD-3646 (May 1955). 371, Lyman (ed.), Metals Handbook, American Society for Metals, Cleveland, Ohio, 1948. 4F, A. Rough and A, A, Bauer (eds.), Constitution of Urantum and Thorium Alloys, BMI-1300 (June 2, 1958). SE. M. Levin, H. F. McMurdie, and F, P. Hall, Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, Ohio, 1956. 6E. M. Levin, H. F. McMurdte, and F. P, Hall, Supplement to Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, Ohio, 1959, ’B. Yates, Materials for Use in Nuclear Reactors, Information Bibliography, IGRL-1B/R-15 (2nd ed.), 1958, 8H. H. Hausner and S. B. Roboff, Materials for Nuclear Power Reactors, Reinhold Publishing Corp., New York, 1955, 9B. Kopelman (ed.), Materials for Nuclear Reactors, McGraw-Hill Book Co., New York, 1959. 1. METAL SYSTEMS 1.1. The System Silver=Zirconium J. O. Betterton, Jr., and D. S. Easton, ‘“‘The Silver—Zirconium System,'’ Trans. Met. Soc. AIME 212, 47075 (1958). A detailed investigation was made of the phase diagram of silver—zirconium, particularly in the region 0 to 36 at. % Ag. The system was found to be characterized by two intermediate phases, Zr,Ag and ZrAg, and a eutectoid reaction in which the B-zirconium solid solution de- composes into a-zirconium and Zr,Ag. It was found that impurities in the range 0.05% from the iodide-type zirconium were sufficient to introduce deviations from binary behavior; with partial removal of these impurities an increase in the a-phase solid solubility limit from 0.1 to 1.1 at. % Ag was observed. TEMPERATURE (°C) UNCLASSIFIED ORNL-LR-DWG 18989 T 860 / 850 — B+y | S 840 | o Ll @ 830 ) g . l A Al @ 820 4 % O at+B+y w810 7 I 7 v 5 NulE PHASE 800 T S NGLE PHASE WITH A TRACE OF SECOND PHASE n OAV TWO PHASE 790 { THREE PHASE _ FILLED SYMBOLS NDICATE METALLOGRAPHIC SAMPLES 280 WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT | 3 4 5 6 SILVER (at %) Fig. 1.1a. The System Silver=Zirconium in the Eutectoid Region (0-6 at. % Ag)- UNCLASSIFIED ORNL-LR-DWG 189884 1400 { AN \ LIQ | 1300 | N\ N N | AN y +L1Q j 1200 \‘_,_ 'Y w [ | [ | A* d A 1100 — y+8 1000 i i A A 800 r T r SN 800 f— T — — — — - a A A / O SINGLE PHASE a+y ’ ] DAV TWO PHASE 700 I, FILLED SYMBCLS INDICATE METALLOGRAPHIC SAMPLES L WHICH WERE CHEMICALLY ANALYZED FOR SILVER CONTENT 0 5 10 15 20 25 30 35 SILVER {at %) Fig. 1.15. The System Silver~Zirconium in the Region 0-36 at. % Ag. 1.2. The System Indium-Zirconium J. O, Betterton, Jr., and W. K. Noyce, “‘The Equilibrium Diagram of Indium=Zirconium in the Region 0-26 at. pct In,"”’ Trans, Met, Soc. AIME 212, 340-42 (1958), The zirconium-rich portion of the indium—zirconium phase diagram was determined as a study of the effect of alloying a trivalent B-subgroup element, indium, with zirconium in group IVA, The temperature of the allotropic transition was found to rise with indium, terminating in a peritectoid reaction, (5(9.3% In) + ¥(22.4% In) == a(10.1% In) at 1003°C. In this respect the effect of indium is analogous to that of aluminum in zirconium and titanium alloys. UNCLASSIFIED ORNL-LR—DWG 18987 1300 : | 1200 o/ 100 o Bty 1000 o Bty w o P E 900 o Lt 0o = Ll Z | 800 | - 700 B i I / | 600 —+ - l — —_— ¥ @ 500 0 2 4 6 8 10 12 14 INDIUM (at %) Fig. 1.2a, The System Indium—Zirconium in the Peritectoid Region {(0-13 of. % ln). BLANK BLANK UNCLASSIFIED ORNL-LR-DWG 18983 1400 1300 74 B 0 0 1200 roooO 5 O 0 B+Zr,Sb ;GHOO OOOrI’DG 0 &, L a P < < 1000 / o l_ KT 900 8, A ] | 800 s a+Zr25b 700 O 1 2 3 4 5 6 I 8 9 ANTIMONY {(at. %) Fig. 1.3b, The System Antimony~Zirconium in the Peritectoid Region (0—6 at. % Sb). 1.4. The System Lead=Zirconium G. D. Kneip, Jr., and J. O. Betterton, Jr., cited by E. T. Hayes and W. L. O'Brien, ““Zirconium Equilibrium Diagrams,”’ p 443-83 in The Metallurgy of Zirconium, ed. by B, Lustman and F. Kerze, Jr., McGraw-Hill Book Co., New York, 1955, UNCLASSIFIED ORNL—LR—DWG 1375 1200 1100 o —0 0—o0 oo} B 1000 . o . | Bty m xr - > £ 900 @ L a = L l_ 800 - 700 // o SINGLE PHASE / » TWO PHASE 4 THREE PHASE &00 0 2 4 6 8 10 12 LEAD (at. %) Fig. 1.4 The System Lead-Zirconium in the Peritectoid Region (0-12 at. % Pb)l 2, METAL-~-FUSED.SALT SYSTEMS 2.1. The Sodium Metal=Sodium Halide Systems M. A. Bredig and J. E. Sutherland, ‘“High-Temperature Region of the Sodium~Sodium Halide Systems,'’ Chem. Ann. Prog. Rep. June 20, 1957, ORNL-2386, p 119. Subsequent report on these systems to be published. UNCLASSIFIED ORNL-LR-DWG. 21894 A X <— MOLE FRACTION MX 98 765 4.3.2 4 9 1T 1 [ 876 .54 .3.2 4 4200 HSOO‘I ‘ ‘8 T T T T T T T 4200 o COOLING CURVES, THIS WORK . X EQUILIBRATION, MAB,JWJ WTS ‘:, A EQUILIBRATION, HRB, MB 1100 1080° — 1400 1000 — 4 : TWO LIQUIDS 000 o0 X °G 005° NaGl - Na A 900 X {900 2 X 800|— \fi%_o_c 795 800 SOLID SALT + LIQUID METAL 700 700 CsF-Cs 600 600 1100+ ONE LIQUID ONE LIQUID 144100 1026° 1033° 1000 |- ¢ —1000 °C x % X X oC TWO LIQUIDS \ / Two LiouiDs \ 900 - £ \ \- 900 % NaBr - Na . \ { \ x - 800 \ e Nal Na 800 ) 740° x| [ \ [ss2] & ‘x ?00——80 caLT . \ T?OO + o LID SALT + LIQUID METAL { ¢ e I O I I | S?U[f SALT T HIAPIB MERAL , 6 O3 456780 12 3456789 o MOLE FRAGTION OF METAL—> MOLE FRACTION OF METAL —> Fig. 2.1, The Sodium Metal-Sodium Halide Systems. 2,2, The Potassium Metal =Potassium Halide Systems J. W. Johnson and M. A, Bredig, ‘‘Miscibility of Metals with Salts in the Molten State. Ill. The Potassium—Potassium Halide Systems,’’ ]. Phys. Chem. 62, 604 (1958), Complete miscibility of metal and salt exists in the KX=K systems, X = F, Cl, Br, and I, at and above 904, 790, 727, and 717°C, that is, as close as +47, +18, ~7, and +22°, respectively, to the melting points of the salts. The asymmetry of the liquid-liquid coexistence areas, especially of the fluoride and chloride systems, as indicated by the consolute compositions (20, 39, 44, and 50 mole % metal, respectively), is largely explained by the difference in molar volumes of salt and metal, At the monotectic temperature, the solubility of the solid salts in the liquid metal, as well as of the metal in the liquid salt phase, is much larger than in the case of the sodium systems. SIFIED R-DWG 21481B I I I I I I I I g04° 0,56,® COOLING CURVES x EQUILIBRATION AND SAMPLING __ 900 850 800 — © | | | I | I | I | \ 10 20 30 40 50 60 70 80 90 mole % K Fig. 2.2. The Potassium Metol —Potassium Halide Systems, 10 2.3. The Rubidium Metal=Rubidium Halide Systems M. A, Bredig and J. W. Johnson, ‘‘Rubidium~Rubidium Halide Systems,’’ Chem. Ann. Prog. Rep. June 20, 1957, ORNL.2386, p 122; M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, ““Molten Salt—-Metal Solutions. Phase Equilibria,’”" Chem. Ann. Prog. Rep. June 20, 1958, ORNL-2584, p 73. Subsequent report on these systems to be published. UNCLASSIFIED ORNL-LR-DWG. 32909A 800>_ 790° l l — \ /,—-—X-—-..x\ N, /RbF-Rb SV . N 773° ~ ~ 750 — — 1 706° 700 =X WRBGI=Rb ~*~ — OC X 696 ° X ) RbBr—-Rb \x —_ 650 y— T _ \\x 6349 . \\\\\\ Ko Y T — X AN " RbI-Rb N\ o X - .9 X X X X X X 615° 600 | — \x '\ | \ 550 | | 25 50 75 MOLE % Rb METAL Fig. 23. The Rubidium Metai—=Rubidium Halide Systems. 11 2.4, The Cesium Metal=Cesium Halide Systems M. A, Bredig, H. R. Bronstein, and W. T. Smith, Jr., ‘‘Miscibility of Liquid Metals with Salts. 1l. The Potassium—Potassium Fluoride and Cesium—Cesium Halide Systems,' J. Am. Chem. Soc. 77, 1454 (1955), Miscibility in all proportions of cesium metal with cesium halides at and above the melting points of the pure salts, and of potassium metal with potassium fluoride 50° above the melting point of the salt, occurs. The temperature-concentration range of coexistence of two liquid phases decreases in going from sodium to potassium systems and disappears altogether for the cesium systems, The solubility of the solid halides in the corresponding liquid alkali metals, at a given temperature, increases greatly with increase of atomic number of the metal. UNCLASSIFIED ORNL-LR-DWG. 37011 | [ T 700 B CsF-Cs 650 - — CsCl-Cs 600 — °C CsI-Cs 550 — 500 - 1 CESIUM METAL-HALIDE SYSTEMS 450 ' ' | 0 25 50 75 100 MOLE % METAL Fig. 2.4. The Cesium Metal -Cesium Halide Systems, 12 2.5. The Alkali Metal=Alkali Metal Flyoride Systems M. A. Bredig, J. E. Sutherland, and A. S. Dworkin, ‘‘Molten Salt=Metal Solutions. Phase Equilibria,”” Chem. Ann. Prog. Rep. June 20, 1958, ORNL-2584, p 73. UNCLASSIFIED ORNL-LR-DWG. 31067A 1300 1200 1100 1000 4 — °C 900 T \ | 800 4 700 ] CsF - Cs | | | 60Oo 25 50 75 100 MOLE % METAL Fig. 25. The Alkali Metal-Alkali Metal Fluoride Systems, 13 3. FUSED-SALT SYSTEMS 3.1. The System LiF-NaF A. G. Bergman and E. P. Dergunov, ‘‘Fusion Diagram of LiF-KF-NaF,"”’ Compt. rend. acad. sci. U.R.S.S. 31, 753-54 (1941). The system LiF-NaF contains a single eutectic at 60 LiF~40 NaF (mole %), m.p. 652°C. UNCLASSIFIED ORNL-LR-DWG 20457 i /" / 1000 200 / 800 700 TEMPERATURE (°C) 652°C 600 500 LiF 10 20 30 40 5C 60 70 80 90 NaF NaF {(mole %) Fig. 3.1. The System LiF-NaF. 14 3.2. The System LiF=KF A. G. Bergman and E. P. Dergunov, ““Fusion Diagram of LiF~-KF-NaF,"’ Compt. rend. acad. sci. U.R.S.S. 31, 753~54 (1941). The system LiF~KF contains a single eutectic at 50 LiF=50 KF (mole %), m.p. 492°C. 1000 TEMPERATURE (°C) 300 700 600 500 400 UNCLASSIFIED ORNL—-LR—DWG 35483 LiF 10 20 30 40 50 60 70 80 30 KF KF {moie %) Fig. 3.2. The System LiF—KF. 15 3.3. The System LiF-RbF C. J. Barton, T. N. McVay, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951--54. Preliminary diagram. Invariant Equilibria Invariant . Mole % LiF Temperature Type of Equilibrium Phase Reaction in Liquid ©C) at Invariant Temperature 44 470 Eutectic L ——RbF + LiF:RbF 47 475 Peritectic L +LiF ==LiF:RbF General characteristics of the system have been reported by E. P. Dergunov, ‘‘Fusion Dia- grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,”’ Doklady Akad. Nauk S.5.S.R. 58, 1369-72 (1947). 16 TEMPERATURE (°C) 900 700 600 500 400 300 UNCLASSIFIED ORNL-LR-DWG {6145 — T T — —— — — e — —— LIF RbF 10 20 30 40 50 LiF {mole %) 60 Fig. 3.3. The System LiF-RbF, 80 90 LiF TEMPERATURE (°G) 3.4. The System LiF-CsF C. J. Barton, L. M. Bratcher, T. N. McVay, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952-54, Preliminary diagram. Invariant Equilibria Invariant Mele % CsF Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariont Temperature 55 495+ 5 Peritectic LiF + L =— LiF.CsF 63 475 £ 5 Eutectic L =—LiF:CsF + CsF 900 UNCLASSIFIED ORNL- LR-DWG 14632 800 700 600 500 400 300 LiF GCsF 20 30 40 50 CsF (mole %} 60 Fig. 3.4 The System LiF-CsF. 70 80 90 CsF 17 3.5. The System NaF-KF A. G. Bergman and E. P. Dergunov, ““Fusion Diagram of LiF-KF~NaF,'” Compt. rend. acad. sci. U.R.5.S. 31, 75354 (1941). . 900 \ TEMPERATURE (°C) 18 The system NaF-KF contains a single eutectic at 40 NaF-60 KF (mole %), m.p. 710°C, UNCLASSIFIED ORNL-LR--DWG 35484 1000 g 1 T~ 800 \ / 700 600 500 400 NaF 10 20 30 40 50 60 70 80 a0 KF KF {(mole %) Fig. 3.5. The System NaF-KF, 3.6. The System NaF=RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system NaF-RbF contains a single eutectic at 27 NaF-73 RbF (mole %), m.p. 675 + 10°C. General characteristics of the system have been reported by E. P. Dergunov, ‘‘Fusion Dia- grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,’ Doklady Akad. Nauk S.5.S.R. 58, 1369~72 (1947). UNCLASSIFIED ORNL-LR-DWG 3571 900 \ J\ 850 800 \ TEMPERATURE (°C) 700 AN i bd - ) . ¢ o of ° o f P’ < . 650 NaF 10 20 30 40 50 60 70 80 a0 RbF RbF {mole To) Fig. 3.6, The System NaF-RbF, 19 3.7. The System KF-RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system KF-RbF contains a solid solution minimum at 28 KF- 72 RbF (mole %), m.p. 770 + 10°C. UNCLASSIFIED ORNL—LR—DWG 35486 t000 900 700 TEMPERATURE (°C} 600 500 m—— 400 KF 10 20 30 40 50 60 70 80 20 RbF RbF (mole %) Fig. 3.7. The System KF—-RbF. 20 3.8. The System LiF=NaF=KF A. G. Bergman and E. P. Dergunov, ‘“Fusion Diagram of LiF~KF~NaF," Compt. rend. acad. sci. U.R.S.5. 31, 753-54 (1941). The system LiF-NaF-KF contains a single eutectic at 46.5 LiF-11.5 NaF-42.0 KF (mole %), m.p. 454°C. UNCLASSIFIED ORNL- LR-DWG 11394 NaF 930 TEMPERATURE IN °C COMPOSITION IN mole % 950 900 850 800 750 710 652 R 700 / 650 A 600 550 o — / 3 2 v o A2 A & Q o . 22) & \Z e 7/ / / \ N/ / \\ Ay KF \ \/ A / / \U LiF 856 454 492 845 2] 3.9. The System LiF=NaF=RbF C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system LiF-NaF-RbF contains a single eutectic at 42 LiF-6 NaF-52 RbF (mole %), m.p. 430 £ 10°C. The composition and temperature of the ternary peri- tectic point have not yet been determined. General characteristics of the system have been reported by E. P. Dergunov, ‘“Fusion Dia- grams of the Ternary systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium,"’ Doklady Akad. Nauk S.5.S.R. 58, 1369~72 (1947). Dergunov lists the composition and tempera- ture of the ternary eutectic as 46.5 LiF-6.5 NaF-47 RbF (mole %), m.p. 426°C. UNCLASSIFIED ORNL-LR-DWG 1200A TEMPERATURE IN °C COMPOSITION IN mole % 435 / LiF-RbF / / O Q Qg) e & S A\ ,\0 O AD o \ & NaF LiF 990 650 845 Fig. 3.9. The System LiF-NaF-RbF, 22 3.10. The System LiF=KF~RbF C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system LiF-KF~RbF contains a single eutectic at 40 LiF=32.5 KF-27.5 RbF {mole %), m.p. 440 £ 10°C. General characteristics of the system have been reported by E. P. Dergunov, ‘‘Fusion Dia- grams of the Ternary Systems of the Fluorides of Lithium, Sodium, Potassium, and Rubidium," Doklady Akad. Nauk S.S.S.R. 58, 1369-72 (1947). RbF 795 UNCLASSIFIED ORNL-LR-DWG 35479 TEMPERATURE (°C} COMPQSITION (mole %) S / A ss MINIMUM 770 ' P /\ 0 & 850 KF 856 LiF 845 Fig, 3.10. The System LiF~-KF—RbF, 23 3.11. The System NaF-KF-RbF C. J. Barton, L. M. Bratcher, J. P, Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. The system NaF-KF-RbF contains a single eutectic at 21 NaF-5 KF~74 RbF (mole %), m.p. 621 1 10°C. RbF 795 UNCLASSIFIED ORNL-LR-DWG 35482 TEMPERATURE (°C) COMPOSITION {mole %) N > o 70 e, £ 675 £ 770 ~1£ 621 o S\ O Q | \ (@] (@] - ~ 2 3 ) [@)] 2] % o 3 dc‘) o \9 . % \ 9 (o) O \ C& (@] VARV, NERVA VL VA WV \/ v BN L 990 £ 740 856 Fig. 3.11. The System NaF-KF-RbF. 24 3.12. The System NaBF ,-KBF, R. E. Moore, J. G. Surak, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957. Preliminary diagram. The system NaBF ,-KBF, contains a single eutectic ot 88 NaBF ,- 12 KBF , (mole %), m.p. 355°C. The dotted line was obtained from thermal effects representing incompletely understood solid-phase transformations of KBF , and NaBF ,. 700 500 400 TEMPERATURE {°C) 300 200 UNCLASSIFIED ORNL-LR-DWG 35487 ! ! D-..,__. ‘./. P — — [ Pl s — — Py Nl 20 30 40 50 NaBF, (mole %) &0 70 80 S0 NoBF, Fig. 312 The System NoBF4—KBF4. 25 3.13. The System NaF-FeF, R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957. Preliminary diagram. Invariant Equilibria ~ 26 Fig. 313 The System NaF—FeFZ. FeF, (mole %) {nvariant Mole % FeF2 Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariant Temperature 30 680 Eutectic L ¥ NaF + NaF-FeF, 50 783 Congruent melting point L= NoF-FeF2 63 745 Eutectic L = NaF:FeF, + FeF, UNCLASSIFIED ORNL-LR-DWG 22345 1200 T ‘ 1100 | I p l | | ‘ ] L 1000 + ! W | | | | | S | L | | | | | < 900 { | | | { | U] : ] | | - | x w 800 ; ' / : > 700 E l? ‘ I i ‘ | o ! 600 i . i ! | Ly | =z \ 500 ‘ J NaF 10 20 30 40 50 60 70 80 90 FeFo 3.14. The System NoF-NiF, R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1957. Preliminary diagram. Invariant Equilibria Invariant Mole % N'F2 Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariant Temperature 23 795 Eutectic L == NaF + NaF:NiF, 50 1045 Congruent melting point L ‘_—_..3 NaF-NiF2 57 1040 Eutectic L &= NaFNiF, + NiF, UNCLASSIFIED ORNL-LR-DWG 22344 1300 L~ 1200 // 1100 // 3 / 2 1000 yd [IT] ax : \ = \ 1 w S <00 wt e \ 800 \/ 700 — = w o 2 600 NoF tO 20 30 40 50 60 70 80 90 NiF, NiFy (mole %) Fig. 3.14. The System NaF~NiF .. 27 3.15. The System RbF-CaF, C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956. Preliminary diagram. Invariant Equilibria Invariant Mole % CaF, Temperature Type of Equilibrium Phase Reaction in Liquid °C) at Invariant Temperature 9 760 Eutectic —— RbF + RbF-CaF2 50 1110 Congruent melting point L= RbF-CaF2 57 1090 Eutectic L == RbF.CqF2 + CQFZ UNCLASSIFIED ORNL—LR —DW3 17668R 1500 1400 | + +— - F— - A - - O THERMAL ANALYSIS DATA // ® VISUAL OBSERVATION DATA P \ rd 1300 — — — — — = - —///— - rd rd ”~ 7~ e Ve 200 - — —_— — = - — — s — | / o s ‘ s | | \ |/ | W . CD: 1100 /f_!'Xé - . - . _ - 2 e e ] « ( | b [ a =3 ul ‘_ 1000 — — T o= u l S | | | 900 —o — = —_ — — = - al o | ! | 800 — — — - - | _a ‘ | 700 L J | | RbF 50 60 e 80 90 CCJ#':2 Caf, (mole To) Fig. 3.15. The System RbF-CaF,, 28 3.16. The System LiF-NaF-CaF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. The system LiF-NaF~CaF, contains a single eutectic ot 53 LiF- 36 NaF~11 CaF, (mole %), m.p. 616°C. UNCLASSIFIED ORNL —~LR—DWG 12779R TEMPERATURES ARE IN °C COMPQOSITION IN mole Ta 660 6154 663,620 X 5o /. 715 / 660,615 ais , ¢ 950 / NaF 845 Y G- 990 LIF Fig. 3.16. The System LiF—NoF—Cqu. 29 3.17. The System NaF -MgF,-CaF, C. J. Barton, L. M. Bratcher, J. P. Blakely, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. Invariant Equilibria Composition of Liquid {(mole %) Temp:rqfure Type of Solids Present Q) Equilibrium at Invariant Temperature NaF CmF2 MgF2 65 23 12 745 Eutectic NaF, NoF-Mng, and C0F2 35 28 37 905 Eutectic Can, Mng' and NaF-MgF2 UNCL ASSIFIED ORNL-LR-DWG 47575R Cafy 1418 fjso ’ 2% COMPOSITION IN mole % TEMPERATURE IN °C 4250 210 N 200 i 205 1150 10 %0 985 7N 950 90 813 0 850 905 © 940 * o 745 Js S . /o /\ S 3 = S @ o Ny S & 9 % B\ [ (4] Q ) &) 9, & & O \ VAN A/ NgF 830 NaF MgF, 990 MgF, 290 1030 1270 Fig. 3.17a. The System NoF -MgF ,—CaF .. 30 The minimum temperature along the quasi-binary section NaF.MgF,-CaF, occurs at the composition 36 NaF-36 MgF ,-28 CaF, (mole %), at 910°C. The existence of the compound NaF-MgF, was previously reported by A. G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 31, 755 (1941). Ternary systems of alkali fluorides with MgF, have been reported by Bergman et al. as follows: the system LiF-NaF-MgF, by A. G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.S.S. 31, 755 (1941); the system LiF-KF-MgF, by A. G. Bergman and S. P. Parlenko, Compt. rend. acad. sci. U.R.S.S. 31, 818-19 (1941); the system NaF~KF-MgF, by A. G. Bergman and E. P. Dergunov, Compt. rend. acad. sci. U.R.5.5. 48, 330 (1945). UNCLASSIFIED ORNL—LR—DWG 12780 1500 ‘ | 1400 , s ol o Q N \ TEMPERATURE {°C) NaMgF; 10 20 30 40 50 60 70 80 90 CdF, CaF, (mole %) Fig. 3.176. The Subsystem NaF+«MgF ,~CaF , 31 3.18. The System NaF-KF-AIF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the QOak Ridge National Laboratory, 1951-52. Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships occurring within the system NaF-KF-AIF,. Phase diagrams have been reported for the AIF, binary systems, NaF-AIF; [P. P. Fediotieff and W. P. lljinsky, Z. anorg. Chem. 80, 121 (1913); also N. A. Pushin and A. V. Baskow, 5:d. 81, 350 (1913)] and KF-AIF, [P. P. Fediotieff and K. Timofeef, Z. anorg. u. aligem. Chem. 206, 265 (1932)]. UNCLASSIFIED DWG 17406 % / oG 600 685°C 570° Fig. 3.18, The System NaF-KF-Al F,. 32 3.19. The System LiF-BeF, This phase diagram is a composite from several published sources!~ 3 and from unpublished data derived at the Oak Ridge National Laboratory (R. E. Moore, C. J. Barton, R. E. Thoma, and T. N. McVay) and at the Mound Laberatory (J. F. Eichelberger, C. R. Hudgens, L. V. Jones, and T. B. Rhinehammer). Thermal gradient quenching data (ORNL) and differential thermal analysis data (Mound Laboratory) have served to corroborate this composite diagram. Invariant Equilibria Invariant Mole % BeF2 Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariant Temperature 33.5* 454 Peritectic L+LiIF== 2LiF-B¢eF2 52 355 Eutectic L ¥ 2LiF+BeF, + BeF, - 280 Upper temperature of 2LiF-BeF2 + BeF2 — LiF-B-;-.F2 stability for LiF-BeF, *Ref 3. Roy, Roy, and Osborn have reported the presence of the compound LiF.2BeF, in the system LiF-BeF, although neither the Mound Laboratery nor the ORNL data have indicated the exist- ence of this compound. ]D. M. Roy, R. Roy, and E. F, Osborn, J. Am. Ceram. Soc. 37, 300 (1954). 2A. V. Novoselova, Yu. P. Simanov, and E. |. Yarembash, J. Pbys. Chem. (U.S.5.R.) 26, 1244 (1952). 3 John L. Speirs, The Binary and Ternary Systems Formed by Calcium Fluoride, Lithium Fluoride, and Beryllium Fluoride: Phase Diagrams and Electrolytic Studies, Ph.D. thesis, University of Michigan, May 29, 1952. UNCLASSIFIED ORNL—LR—DWG 164 26R 200 800 \ — 700 \ I 3 2 800 —— Lif + LIQUID \ [ w \ 14 2 = & \ L —— a = 500 \ [ ! / BeFp + LIQUID 400 2LIF- EA A LIF + 2LIF- BeFy 2LIF-BeFp + Befy (HIGH QUARTZ TYPE) [ [ ! I | LiF - BeFp + BeFp (HIGH QUARTZ TYPE) J | L LiF - BeFo+ BeFp (LOW QUARTZ TYPE; LIF 10 20 30 40 50 60 70 80 80 BeFy BeF, (male %) 300 2LIF - BeFy 2LIF- BeFg + LiF+ BeFy LiF - BeFp 200 Fig. 3.19. The System LiF-BeF.,. 33 3.20. The System NaF ~BeF, D. M. Roy, R. Roy, and E. F. Osborn, ‘““Flucride Model Systems: |[l}. The System NaF- BeF, and the Polymorphism of Na,BeF, and BeF,,” J. Am. Ceram. Soc. 36, 185 (1953). Invariant Equilibria* Invariant Mole % BeF'2 Temperature Type of Equilibrium Phase Reaction in Liquid ©C) at Invariant Temperature 31 570 Eutectic [ 7= NaF + a-2NaF-BeF, 33.3 600 Congruent melting point L = a-2NaF-BeF, - 320 Inversion a-2NaF«BeF, —= a"2NaF:.BeF, - 225 inversion a-2NaF-BeF, = -2NaF:BeF, 43 340 Eutectic L = a-2NaF:BeF, + [-NaF:BeF, 50 376 £ 5 Congruent melting point L == B"NaF-BeF, 55 365 Eutectic L— ,B’-NOF-Ber + Bel:'2 *Roy, Roy, and Osborn did not list invariant equilibria; those shown are estimates made from the reportec work and from experiments performed at the Oak Ridge National Laboratory. 34 TEMPERATURE (°C) UNCLASSIFIED ORNL-LR-DWG 16425R 900 800 \ \ NoF + LIQUID oe = ORNL DATA 700 HQ = HIGH QUARTZ LQ = LOW QUARTZ fi a~2NaF BeF,+ LIQUID 600 p * L J - Lf b d /"'—_—0 500 \ // . a- 2NaF BeF,+NaF '~ NaF BeF, BeF,(HQ} + LIQUID + LIQUID ‘ 400 N - BeRHO) 4 BNoF BeR | /,—-<7“ 4 -2NaF BeF,+/3 -NaF BeF, \ ]a aF Be % {3 -NaF BeF, L \ | 1 | B-NaF Bef,-+1IQUID 300 —————— 4/-2NoF BeF. +NaF B - NaF Bef, I | @ -enak Berpria + BeF,(HQ) + B-NaF BeF, E | a’-2NaF BeF, B ~NaF BeF,+y -2NaF Bef, BeF,(LQ) + 8- NaF BeF, y-2NaF BeF2+NcF g | ! 200 . NafF 10 20 30 40 50 60 70 80 30 Bef, BeF, (mole %) Fig, 3.20. The System NaF-BeF .. 35 3.21. The System KF-BeF, R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R. Grimes, R. E. Meadows, and L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. Invariant Equilibria Invariant Mole % BeF2 Temperature Type of Equilibrium Phase Reaction In Liquid °C) at Invariant Temperature 19 720 Eutectic L &= KF + 3KF:BeF, 25 740 Congruent melting point L == 3KF:BeF, 27 730 Eutectic L T 3KF:BeF, + a-2KF:BeF, 33.3 787 Congruent melting point L &= a-2KF-BeF, - 685 Inversion a-2KF-BeF, = [-2KF-BeF, 52 390 Peritectic B-2KF-BeF, + L 7= KF:BeF, 59 330 Eutectic L & KF:BeF, + 5-KF*2BeF, 66.7 358 Congruent melting point L &= a-KF:2BeF, - 334 Inversion a-KF-2BeF, = B-K F-2BeF, 72.5 323 Eutectic L T (-KF-2BeF, + BeF, This system has been reported by M. P. Borzenkova, A. V. Novoselova, Yu. P. Simanov, V. I. Chernikh, and E. I. Yarembash, ““Thermal and X-Ray Analysis of the KF-BeF, System,” Zbur. Neorg. Khim. 1, 2071-82 (1956). UNCLASSIFIED ORNL-LR-DWG {7574R 200 800 \\ /' a-2KF Bef, ] 700 S 600 wl o o = <{ [0 g Ifil:l / = 500 & 7 [§4] %) i E; . \ v ‘G s @ \ W / X 400 L \ @, a- KF - 2BeF, P\ o 300 o i L m & o L T < i @ 200 KF 10 20 30 40 50 60 T0 80 Q0 BeF, (mole %) Fig. 321, The System KF-BeF.. BeF, 37 3.22, The System RbF-BeF, R. E. Moore, C. J. Barton, L. M. Bratcher, T. N. McVay, G. D. White, R. J. Sheil, W. R, Grimes, and R. E. Meadows, unpublished work petformed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. Invariant Equilibria Invariant Mole % BeF2 Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariant Temperature 16 675 Eutectic L T RbF + 3RbF:BeF, 25 725 Congruent melting point L= 3RbF-BeF2 27 720 Eutectic L= 3RbF:BeF, + 2RbF-BeF, 33.3 800 Congruent melting point L # 2RbF-BeF2 50.5 442 Peritectic L + 2RbF:BeF, = RbF-.BeF, 61 383 Eutectic L = RbF:BeF, + RbF-2BeF, 66.7 464 Congruent melting point L ;—'\ RbF-?Ber 81 397 Eutectic L & RbF-2BeF, + BeF, This system has also been reported by R. G. Grebenshchikov, ‘‘Investigation of the Phase Diagram of the RbF-BeF, System and of Its Relationship to the BaO-Si0, System,’’ Doklady Akad. Nauk §.5.5.R. 114, 316 (1957). 38 900 \ZRbF Bef, +LIQUID 800 3ALF Bef, +LiQUID o 700 [+LIQUID \\// N 3 3RbF BeF, & + IE:J 600 2RbF Bef, > | 2RbF Bef, & +L1QUID / o & s00 RbF 2BeF, +LIQUID — ] o \ RbF BeF, 3RLF BeF, \ | TLQuid + RbF BEF2 + LIQUID 400 - e © 2RbF BeF %5 u e w € & TDF Befo | o o 300 U £ & i o z w o ROF Bef " € rof 28eF, |& RbF 2BeF,+ BeF, 200 RbF 10 20 30 40 50 60 70 80 90 Ber(mole To) UNCLASSIFIED CRNL —LR-DWG 16955 Fig. 3.22 The System RbF-BeF ., BeF; 39 3.23. The System CsF-BeF2 0. N. Breusov, A. V. Noveselova, and Yu. P. Simanov, ‘‘Thermal and X-Ray Phase Analysis of the System CsF-BeF, and Its Interrelationships with MeF and BeF, Systems,’’ Doklady Akad. Nauk S.5.5.R. 118, 935-37 (1958). Invariant Equilibria Invariant Mole % BeF2 Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariant Temperature 14 598 Eutectic L == CsF + [3-3CsF-BeF, 23.5 659 Peritectic a-2CsF-BeF, + L =— a-3CsF-BeF, - 617 Inversion a-3CsF.BeF, == [-3CsF:BeF, 33.3 793 Congruent melting point L — (1.-2CsF-BeF2 - 404 Inversion a-2CsF-BeF, & [3-2CsF-BeF, 48 449 Eutectic L == CL—2CsF-BeF2 + OL-CsF-BeF2 50 475 Congruent melting point L & a-CsF-BeF, - 360 Inversion a-CsF.BeF, = [-CsF:BeF, - 140 Inversion B-csF-BeF2 = ¥-CsF:BeF, 58.4 393 Eutectic L & a-CsF-BeF, + [5-CsF-2BeF, 66.7 480 Congruent melting point L — a-CsF.2BeF, - 450 Inversion a-CsF:2BeF, == [-CsF-2BeF, 77.5 367 Eutectic L 7= f3-CsF-2BeF, + BeF, 40 TEMPERATURE (°C) UNCLASSIFIED ORNL-LR-DWG 354814 900 800 700 600 500 400 300 200 3CsF-BeF2 ZCSF‘E!(-'.*F2 CsF-BeF2 CsF-ZBeF2 100 CsF 10 20 30 40 50 BeF, {mole %) 60 Fig. 3.23. The System CsF—Ber. 70 80 90 E 41 3.24. The System LiF-NaF-BeF, R. E. Moore, C. J. Barton, W, R. Grimes, R. E. Meadows, L. M. Bratcher, G. D. White, T. N. McVay, and L. A. Harris, unpublished work performed at the Oak Ridge National Laboratory, 1951-58. Preliminary diagram. Invariant Equilibria* Composition of Liguid Invariant Solids P A (mole %) o olids Presen Temperature Type of Equilibrium at |nvariant Point LiF NaF BeF, °C) 15 58 27 480 Eutectic NaF, LiF, and 2NuF-BeF2 23 41 36 328 Eutectic LiF, 2NaF°BeF2, and 2Nc:|:-LiF-ZBeF2 20 40 40 355 Congruent melting point 2NOF'LiF'2BeF2 5 53 42 318 Eutectic NaF'Ber, 2NoF-BeF2, and 2N<:1f"'-LiF-2BeF2 31.5 31 37.5 315 Eutectic 2LiF-BeF2, LiF, and 2NoF-LiF-2BeF2 *Invariant equilibria shown in the phase diagram by the intersections of dotted-line boundary curves have not been determined with sufficient precision to be listed in the table. Minimum Temperature on Alkemade Lines Compeosition of Liquid {(mole %) Temperature Alkemade Line LiF NaF BeF, (°C) 16 56 28 485 2NaF-BeF ,-LiF 26 37 37 340 2NaF-LiF-2BeF ,—LiF 1 44 45 332 NaF+BeF ,—2NaF-LiF+2BeF, 16 45 39 343 2NaF:BeF ,=2NaF:LiF+2BeF, 30.5 31 38.5 316 2LiF+BeF ,~2NaF LiF+2BeF, Phase relationships of two of the ternary compounds in this system have been reported by W. Jahn [**Silicate Models. V. Nali(BeF,), a Model Substance for Monticellite, CaMg(SiO,);"’ Z. anorg. w. allgem. Chem. 276, 113-27 (1954); ‘‘Silicate Models. VI. Na,Li(BeF,),, a New Compound in the Ternary System NaF-LiF~BeF,, and lts Relation to Merwinite, Ca,Mg(Si0 ),,"’ Z. anorg. u. allgem. Chem. 277, 274-86 (1954)). 42 UNCLASSIFIED ORNL-LR-DWG 16424R DOTTED LINES REPRESENT INCOMPLETELY DEFINED PHASE BOUNDARIES AND ALKEMADE LINES TEMPERATURE (°C) - COMPOSITION (moie Y) 356 e 290 (LIF -BeF,) e 275‘)\ NaF - BeF, 274 72 NoF - LIF -2 BeF, p, -« 380 400 - 355\ 350 45 e 550 (5 NaF-LIF-3 BeF,) 2 L|F-6%eF;2 (NOF'LIIF-BGF ) 2 Ngg-sBer 500 v 240 2 - — 570 550 ' o - 650 600 700 650 750 800 2\ 850 900 LF 800 750 700 649 700 750 800 850 900 950 NaF 844 980 Fig. 324 The System LiF-NaF-BeF .. 43 3.25. The System LiF—RbF-BeF, T. B. Rhinehammer, D. E. Etter, C. R. Hudgens, N. E. Rogers, and P. A. Tucker, unpublished work performed at the Mound Laboratory. Preliminary diagram. Invariant Equilibria and Singular Points Composition of Temperature Type of Liquid {mole %) P yp ©c) Equilibrium Solid Phases Present LiF RbF BeF2 40.0 20.0 40,0 485+ 5 Congruent 2LF+ ARE IN °C CM 543 2RbF Bef, CM 800 COMPOSITION IN mole Y Fig. 3.27. The System NaF-RbF-BeF .. 47 3.28. The System NoF-ZnF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished Ridge National Laboratory, 1952. Preliminary diagram. Invariant Equilibria work performed at the Oak Invariant Mole % ZnF2 Temperature Type of Equilibrium Phase Reaction in Liquid ©C) at Invariant Temperature 33 635 Eutectic L == NaF + NuF-ZnF2 50 748 £ 10 Congruent melting point L — NaF-ZnF2 69 685 Eutectic L — NaF-ZnF2 + ZnF2 UNCLASSIFIED DWG 14627 R 1000 I l r I | | 900 — ;G 800 — N s = '_ < 0. u 700— a = Ll — 6 00— — LLN ~ 500|— a — =] = | l | | | J i 4OONOF 10 20 30 40 50 60 70 80 90 Znf, ZnF, (mole %) Fig. 3.28. The System NaF-ZnF,, 48 . 3.29. The System KF-ZnF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the QOak Ridge National Laboratory, 1952. li’relimincry diagram. Invariant Equilibria TEMPERATURE (°C} fnvariant Mole % ZnF2 Temperature Type of Equilibrium Phase Reaction in Liquid (OC) at Invariant Temperature 21 670 Eutectic L ¥—=KF + 2KF:ZnF, 30 720 Peritectic L +XK F'°Zn|=2 :AZKF‘Zan 50 850 Congruent melting point L t-___\KF-ZnF2 80 740 Eutectic L &—=KF-ZnF, + ZnF, UNCLASSIFIED DWG 14626 R 1000 T 300 800 700 600 500 400 300 u™ %? - L S _ N (' L b ¥ [aN] | I I | l | | | KF 10 20 30 40 50 60 70 80 90 ZnF, {mole %) Fig. 3.29. The System KF-ZnF.,. ZnF, 49 3.30. The System RbF-ZnF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratery, 1952. Preliminary diagram. Invariant Equilibria Invariant Mole % ZnF2 Temperature Type of Equilibrium Phase Reaction in Liquid (°C) at Invariant Temperature 21 595 £ 10 Eutectic L —— RbF + 2RbF-ZnF2 32 620 + 10 Peritectic L + RbF-ZnF, — 2RbF-ZnF, 50 730 + 10 Congruent melting point L= RbF-ZnF2 70 650 Eutectic L= RbF-ZnF2 + ZnF2 UNCLASSIFIED DWG 15349 R 1000 300 TEMPERATURE (°C) T00 600 e L N ™~ 500 I— . . o b 5 e [Vl oJ 400 1 RbF 10 20 30 40 50 60 70 80 90 ZnF2 ZnF, {mole %) Fig. 3.30. The System RbF-ZnF » 3.31. The System LiF-YF, R. E. Thoma, C. F. Weaver, and H. A. Friedman, unpublished work performed at the Qak Ridge National Laboratory, 1958-59. Preliminary diagram. Invariant Equilibria Invariant Mole % YF3 Temperature Type of Equilibrium Phase Reaction in Liquid C) at Invariant Temperature 19 695 Eutectic I_.:L|F+L|F-YF:3 49 815 Peritectic L+ YF,=—LiF.YF, UNCLASSIFIED ORNL LR-DWG 384416 | | 1400 } } I / ! S | o ! _ J 1300 © RESULTS FROM THERMAL GRADIENT QUENCHING EXPERIMENTS ® RESULTS FROM THERMAL-ANALYSIS EXPER MENTS | | I 1200 —_ — — — | | Mmoo — ——+ [ — Jfi 1000 9C0 TEMPERATURE {°C) 1T BREWER 1387° 800 700 600 500 YF5 (mole 7o) Fig. 3.31. The System LiF-YF .. 20 YF. 51 3.32. The System LiF-ZrF, R. E. Moore, F. F. Blankenship, W. R. Grimes, H. A. Friedman, C. J. Barton, R. E. Thoma, and H. Insley, unpublished work performed at the Oak Ridge National Laboratory, 1951-56. Preliminary diagram. Invariant Equilibria Invariant Mole % ZrF , Temperature Type of Equilibrium Phase Reaction in Liquid Q) at Invariant Temperature 21 598 Eutectic L —3LiF +a-3LiF-ZrF, 25 662 Congruent melting point L= a-3LiF-ZrF , - 475 Inversion a-3LiF-ZrF , &= [-3LiF-ZrF, - 470 Decomposition /5-3|_s|=-zri=4 = LiF + 2LiF-ZrF, 29.5 570 Eutectic L == a-3LiF.ZrF , + 2LiF-ZrF, 33.3 596 Congruent melting point L— 2LiF-ZrF4 49 507 Eutectic L &= 2LiF-ZrF , + 3LiF-4ZrF , 51.5 520 Peritectic L + ZeF , = SLiF-4ZrF, - 466 Decomposition 3LiF-4ZrF, = 2LiFZrF + ZrF 52 {000 900 800 TEMPERATURE (°C) ~ Q < o2} o (@] 500 400 300 UNCLASSIFIED ORNL—LR-DWG 46951 T | | | | ' | | | | i . o l | , : i ] l T t - *T o / | | \ | ! ! \ | ! \ ‘ ! \ i J | | \ | ‘ | Kcz—3L|F ZrF, +LIQuID ! i | LIF+ LIQUID [ : ‘ | Qu : ZrF+ LIQUID 2LIF ZrF4+L_IOUID | | a- 3L ZrF4+2L|F ZrF4 ‘ ‘ | | ‘ ' ™~ 2LIF ZrF, 3LIF 4ZrF+LIQUID [ LIF+a-3LF Irfy, +LIOUID i : 7 2LIF ZeF, + 3LsF 4ZrF, \L SLiIF 4ZrFy+ Zrky | | LLli-'+[3’—3L|F ZrF4 T 3LIF 47ZrF, 2L1F ZrF4+,G’—3L|F ZFF4 e t —_— = ———— = — 1 - i— N | ! | LIF+ 2LIF ZrF4 w 2 LIF ZFF4+ZFF4 | pu| ~N . | | . . ! LIF [1e} 20 30 40 50 60 70 80 90 Zrf, (mole %} Fig. 3.32, The System LiF-ZrF , 53 3.33. The System NaF-ZrF C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, ‘‘Phase Equilibria in the Systems NaF-ZrF ,, UF ,~ZrF ,, and NaF-ZrF ,~UF ,,'" J. Pbys. Chem. 62, 665-76 (1958). Invariant Equilibria Invariant Mole % ZrF4 Temperature Type of Equilibrium Phase Reaction in Liquid ) at Invariant Temperature 20 747 Eutectic L == NaF + 3NoF-ZrF4 25 850 Congruent melting point L # 3NaF-ZrF4* - 523 Inversion a-5NaF.2ZrF, == [3-5NaF.2ZrF 30.5 500 Eutectoid a-5NaF-2ZrF ss — [5-5NaF.2ZrF + + Ye2NaF*Zr Fq 34 640 Peritectic L + 3NaF:Zr F4(ss, ca. 27.5 mole % ZrF4) = a-5Na F-2ZrF4 39.5 544 Peritectic L+ a-SNaF-ZZrF4(ss, 30 mole % ZrFA) — a-2NaF-ZrF4 - 533 Inversion a-2NaF-ZrF :.:‘B-ch.F.sz4 -~ 505 Inversion [3-2NaF+ZrF , == y-2NaF-ZrF 40.5 500 Eutectic L #’)/-2N0F-er:4 + 7NaF-6ZrF4ss 46.2 525 Congruent melting point L= 7N<:F"'6Zr|'_‘4 49.5 512 Eutectic L= 7Nc:|:°6ZrF4 + 3N‘:1F-AZ|'F4 56.5 537 Peritectic L+ ZrF4 —;___—3 3Nc:|=-42rF4 *A determination of the crystal structure of 3NaF-ZrF4 has been reported by L. A. Harris, **The Crystal Structures of Nq3ZrF7 and Na3HfF7," Acta Cryst. 12, 172 (1959). 54 UNCLASSIFIED ORNL -LR-DWG-22405 Y3174 4ONE Piizg 4ONL — 7 %7z Jong | 1000 r\.\l..\ 741z _doNg 1 o Y1172 4ONG —— —————d 1 I S N / Y1z 4ong / o] o o j&] o [ o O O Q O (@) o [eu] - {e] I's] < (Do) 3HNLYYIJNGL 300 10 20 30 40 50 60 70 80 g0 ZcF, imale %o} NaF Fiz 3.33. The System NaF-ZrF .. 55 3.34. The System KF-ZrF , C. J. Barton, H. Insley, R. P. Metcalf, R. E. Thoma, and W. R. Grimes, unpublished work petformed at the Oak Ridge National Laboratory, 1951-55. Preliminary diagram. Invariant Equilibria Invariant Mole % ZrFy Temperature Type of Equilibrium Phase Reaction in Liquid ©c) at Invariont Temperature 14 765 Eutectic L Z—KF + 3KF°ZrF4 25 910 Congruent melting point L — 3K F-ZrF, 36 590 Peritectic 3KF-ZeF + L ;”‘2!(F-Zrlz4 40.5 412 Peritectic 2KF+ZrF, + L :3KF°2ZrF4 42 390 Eutectic L — 3K F-2ZrF , + KF-ZrF 50 475 Congruent melting point L= KF-ZrF, 55 440 Eutectic L == KF-ZrF4 + ZrF4 UNCLASSIFIED ORNL-LR-DWG 18965 {1000 ' ! | 200 /t \ ; - // 800 \\// \ // ¢ ; / w 700 - — & / > = < o W ¥ / 5 600 \ - E 500 \// u W \ 400 A A <1\ — s X [ fYs) o N us o [a . N w . X 0. ~y p's 300 KF 10 20 30 40 50 60 70 80 a0 ZrF, ZrF, (mole %) 56 Fig. 3.34 The System KF-ZrF .. 3.35. The System RbF=ZrF, R. E. Moore, R. E. Thoma, C. J. Barton, W. R. Grimes, H. Insley, B. S. Landau, and H. A, Friedman, unpublished work performed at the Oak Ridge National Laboratory, 1955-56. Preliminary diagram. Invariant Equilibria Invariant Mole % ZrF4 Temperature Type of Equilibrium Phase Reaction in Liquid ©C) at Invariant Temperature 10 710 Eutectic L :—‘RbF+3RbF"-ZrF4 25 897 Congruent melting point L &— 3RbF-ZrF4 34 620 Peritectic L 4+ 3RbF+Zr F4ss = a.-ZRbF-ZrF4 - 460 Inversion a-2RbF.ZrF, :__—‘B-szF-sz4 - 370 Lowered inversion CL-QRbF-ZrF4ss . fi-2RbF-ZrF4ss and decomposition 42 410 Eutectic L =— a-2Rb F:ZrF ss + 5RbF-4ZrF , 44.4 445 Congruent melting point L == 5RbF-4ZrF, 48 390 Eutectic L = 5Rb F-4ZrF4 + [5-Rb F-ZrF4 50 423 Congruent melting point L — a.-RbF-ZrF4 - 3N Inversion a-RbF.ZrF, == [S-RbF.ZrF 54 400 Eutectic L — a-RbF-ZrF4 + RbF-2ZrF4 57 447 Peritectic L+ ZrF4 =5 RbF-2ZrF4 UNCLASSIFIED ORNL-LR—-DWG 14029R 1000 1 ~ ‘ T \ 200 ‘ } | /\\ \ 1 | \ 800 ] — oy - ] [&] | < ' / & 700 & / 2 600 b— A ] ! | \ | \ : \ | 5 - - - — 00 ; ‘ll \ l} | ) «| | ot e = 400 [———— = — :T’L ——;}‘T\‘ = —\/ 7 T R it B N [ | I \ 5 N w '} | [ L x 300 1 1 L v} & | RbF 10 20 30 40 50 60 70 80 20 zrF, ZrF, {mole%) Fig. 335. The System RbF—ZrF . 3.36. The System CsF-ZrF, C. J. Barton, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1952-53. Preliminary diagram. Invariant Equilibria Invariant Mole % ZrFy Temperature Type of Equilibrium Phase Reaction in Liquid °C) at Invariant Temperature 9 640 Eutectic L &= CsF + 3CsF-ZrF, 25 775 Congruent melting point L == 3CsF-ZrF4 35 520 Peritectic L +3Cs FoZrF4 — 2CsF.Zr F4 40 420 Eutectic L= 2CsF-ZrF4 +a-Cs F-Zer 50 515 Congruent melting point L — a-CsF-ZrF, - 320 Inversion a-Cs F~ZrF4 = ,B-Cs F-ZrF4 59 470 Eutectic L= OL-CsF-ZrF4 + ZrF4 58 TEMPERATURE (°C} UNCLASSIFIED ORNL—LR—DWG 18963 1000 ) | i 900 — o | prd | 800 - - o / - | . / / \ N | ) 600 — / e 500 R TN / ! F \/: J LLw "\‘.-‘ u N . 400 & ™ 1 n I :'u; ™~ « % (@) 300 CsF 10 20 30 40 50 60 70 80 30 zZrF, ZrF4(mole To} Fig. 336. The System CsF-ZrF . 59 3.37. The System LiF-NaF-ZrF F. F. Blankenship, H. A, Friedman, H. Insley, R. E. Thoma, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953-59. Preliminary diagram, Invariant Equilibria Composition of Liquid (mole %) Temperature Type of Solids Present (°C) Invariant at Invariant Temperature LiF NaF ZrF, 37 52 n 604 Eutectic NaF, LiF, and 3NaF.ZrF, 55 22 23 590 Eutectic a-3LiF-ZrF ,, 3NaF-ZrF ss, and LiF 32 36 32 450 Peritectic ~ [-3LiF.ZrF,, 3NaF-ZrF ,ss, and 2LiF.ZrF, 31 35 34 448 Peritectic ~ 3NaF.ZrF,, a-5NaF.2ZrF ;ss, and 2LiF.ZrF 31 34.5 34.5 445 Peritectic ~ 2NaF-ZrF,, @-5NaF-2Z¢F ss, and 2LiF.ZrF, 26 37 37 425 Eutectic 2NaF-ZrF,, TNaF-6ZrF ,, and 2LiF-ZrF 29 25.5 45.5 449 Eutectic 7NoF-6ZrF ,, 3NaF-4ZrF ss, and 2LiF.ZrF, 29 24.5 46.5 453 Peritectic ~ 3NaF.4ZrF ss, 3LiF:4ZrF ;ss, and 2LiF-ZrF, 28 24 48 475 Peritectic 3NuF-4ZrF4ss, 3LiF-4ZrF4ss, and ZrF4 60 NaF 990 P-537"7 F-512._, 7 NaF + 6 Zrfg - UNCLASSIFIED ORNL-LR-DWG 38145 ZrF, 912 TEMPERATURE IN °C COMPOSITION IN mole % == INDICATES SOLID SOLUTION 2LIF - ZrFy R — 2 NaF - ZrF, —f~—— % BE—— ) m’ —————— s - fi£-570 5NoF 2ZrFy~- A\-w R 4807 e ] e N 5 O 3INaF « ZrF,— a_#—.-nfll 'm-_ 990 6 “SLiF - Zrfy a” FREEEET T E-747-4 —£-605 £-6562 Fig. 3.37. The System LiF—NaF-Z«F LiF 845 61 3.38. The System NaF-KF-ZrF, R. E. Thoma, C. J. Barton, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-35. Preliminary diagram. Invariant Equilibria* Composition of . Inveriant P * Liquid (mole %) Temperature Type of Equilibrium Solids Present at Invariant Point NaF KF ZrF, ©C) 34 58 8 695 E utectic NaoF, KF, and 3KF-Z:‘F‘4 45 38 17 720 Eutectic NaF, 3KF-ZrF4, and 3Nt:F-3KF"-2ZrF4 61 19 20 710 Eutectic NaF, 3NuF-ZrF4, and 3NaF-3KF°22rF4 52 17 31 Peritectic 3NuF-ZrF4, 3NaF-3KF-2ZrF,, and NaF-KF-ZrF4 48 18 34 Peritectic 3NaF:ZtF ,, NaF*KF*ZrF ,, and 5NaF-2ZrF4 33 32 35 Peritectic 3N0F-3KF'ZZrF4, 3KF-ZrF ,, and NCIF-KF-ZrF4 12 51 37 Peritectic 3KF-ZrF ;, 2KF+ZrF ,, and NaF-KI":-ZrF4 40 21 39 Peritectic 5Na F-?ZrF4, 2NaF.ZrF ,, and NaFoKF-ZrF4 39 21 40 Peritectic 2Na F-ZrFA, 7NaF.6ZtF ,, and NaF.KF-ZrF , 11 49 40 Peritectic 2KF-ZrF4, 3KF-22rF4, and NaF-KF-ZrF4 10 48 42 385 Eutectic 3KF-2ZrF4, KF-ZrFA, and NuF-KF-ZrF4 15 40 45 Eutectic KF-ZI'F4, NaF-KF-ZrF4, and ZNGF-3KF'521‘F4 22 33 45 Peritectic NuFoKFoZrF4, 7NoF-6ZrF4, and 2N0F-3KF°521'F4 25 25 50 Eutectic 7NaF+6ZtF ,, 3NaF-4ZrF ,, and 2NaF-3KF-52rF4 21 29 51 Eutectic 3NaF-4ZrF4, ZrF4, and 2Nc:|:-3|(f=-52rF4 20 30 50 432 Congruent melting point 2N0F-3KF-SZrF4 *Three solid phases have been observed routinely in the composition region 30~50 mole % ZrF4 which have not been identified as to composition. Whether these exhibit primary phases at the liquidus surface has not yet been determined, **Compositions of invariant points shown by the intersection of dotted boundary curves are approximate. 62 UNCLASSIFIED ORNL-LR-DWG 35480 ZrF, 912 g0o0 TEMPERATURE IN °C COMPOSITION IN mote 7o A 2NaF 3KF 5ZrF, 850 B NoF KF ZrF, C 3NaF 3KF 27rF, 800 750 700 890 600 550 3NaF 4ZrF, P 537 500 450 £440 250 £ 542 > N KF ZrF, 7NaF 6ZrF o \ £ 500 ° - e - £ 390 VA syt 450 - P 412 550 - IKF 2ZrF, - P 530 P 640 __.._..._/ = 550 2NaF Zri, 750 - 2KF ZrF, a\ 790 0 SNoF 2Z¢F, 200 / / " 80 850’\#; 3NaF ZrF, %// /C — e 2, £ 747 ,_,K; 4 4A £ 765 &8 - 900 S0 T N Y\ Y VRN, KF £ 710 856 Fig. 3.38. The System NoF—KF—ZrF4. The isotherms for the temperatures 600, 650, and 700°C between the 30 and 40 mole % ZrF, compositions have been omitted in order not to obscure the phase relationships in this polythermal projection. 63 3.39. The System NaF-—RbF—ZrF4 . R. E. Thoma, H. Insley, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-56. Preliminary diagram. Invarlant Equilibria Composition of Invariant Liquid (mole %) Temperature Type of Equilibrium Solids Present at Invariant Point NeF RbF ZrF, c) 23 72 5 643 Eutectic NaF, RbF, and 3RbF-Z|’F4 50 27 23 720 Eutectic NaF, 3RbF-ZrF4, and 3N<:|F-ZrF4 37 32 31 605 Eutectic 3NaF-ZrF4, 3RbF-ZrF4, and NaF-RbF-ZrF4 39 26 35 545 Peritectic 3Na F-ZrF4, SNGF-ZZrF4, and NOF-RbF-ZrF4 36.3 24,2 39.5 427 Peritectic 5N0F-ZZrF4, 2NaF-ZrF ,, and NcF‘RbF-ZrF“ 345 24 41.5 424 Peritectic 2NaF-ZrF , NaF:RbF:ZrF,, and 3NaF.3RLF-4ZrF 34 23.5 42,5 422 Peritectic 2NaF-ZrF4, 7NuFo6ZrF4, and 3chF-3|'\’|:>F-AZrF4 33 23.5 43.5 420 Eutectic 7Na F«6ZrF,, 3NaF-3RbF-4ZrF ,, and NoF-RbF-ZZrF4 28.5 21.5 50 443 Eutectic 3NoF-4ZrF4, 7NaF-62rF4, and NaF-RbF.2ZrF , 28 21.5 50.5 446 Peritectic 3Na F-AZrF4, ZrF4, and NaF-RbF-2ZrF4 23.5 39.5 37 470 Peritectic NaF.Rb F-ZrF4, 2RbF-ZrF4, and 3RbF«ZrF 4 21 40 39 438 Peritectic NoF-RbF-Zer, 2RbF-ZrF 4, and 3NaF:3RbF-4ZsF 8 50 42 400 Eutectic 3NaF-3RbF-42rF4, ZRBF-ZrFA, and SRbF-tinF4 8.5 47 44.5 395 Eutectic 3NaF-3RbF-42rF4, 5RbF-ZrF4, and NuF-RbF-2ZrF4 6.2 45.8 48 380 Eutectic NaF-RbF~22rF4, 5RbF-4ZrF4, and RbF-ZrF4 5 42 53 398 Eutectic NaFoRbF-ZZrF4, RbF+ZrF ,, and RbF-2ZrF 6.5 39 54.5 423 Peritectic ZrF4, NaF-RbF-QZrF4, and RbF«2ZrF 4 33.3 33.3 33.3 642 Congruent melting point Na F-RbF-ZrF4 25 25 50 462 Congruent melting point ~ NaF:RbF.2ZrF . 64 Minimum Temperatures on Alkemade Lines Composition of Liquid (mole %) Temperature Alkemade Line NaF RbF ZeF, (°c 24.75 24,75 51.5 455 NaF:RbF.2Zr F4—-Zr F4 6 44 50 402 thF-RbF-2ZrF4—RbF-ZrF4 7.5 46.5 46 405 NaF-RbF-2ZrF4—5Rb F-4ZrF4 8.5 48.5 43 405 3NaF-RbF-4ZrF4—5RbF-4Zr F4 28 28 44 435 3N<:|F-RbF-AZrF4—NaF-RbF-2ZrF4 22 40 38 442 3N<:|F-3RbF-4Zr|=4--2F2bF-ZrF‘1 29 41.5 49.5 450 NaF«Rb F-2ZrF4-7Na F-6ZrF’4 37 24.5 38.5 610 NuF-RbF-ZrF4~3NaF-ZrF4 47 28 25 732 3Na:1I"'-ZrF:“—-SRl:.vl"'-ZrF4 36 48 16 777 NaF-3RbF.Zr F4 30 36.7 33.3 598 NaF-RbF-ZrF4-3RbF-ZrF4 UNCLASSIFIED QORNL-LR-DWG 46960A ZrF, 910 300 COMPOSITION N mole 7 g NoF RbF 2ZrF, TEMPERATURE N °C b 3NaF 3RbF 4;,;:4 850 ¢ NaF RbF 2rF, 800 ~e— 00— "\ RbF 22rE, 3INaF 4ZrF, - - ] I N ——— £ ~ RbF-Z1F, 423 S £ 390 TNoF 8Zrk, T SRbF 4ZrF, 445 £ 500 8 -~ £440 P 544 500 550 £ 640 Soeggo ¢ 60C P E20 2NaF ZrF, = 650 500 2Hor ZrF, SNOF 2ZrF, 700 %0 150790 @/ 3NaF Z¢F, 3RbF ZrF, 897 £ 747 £ 710 NaF RbF 980 £675 790 Fig. 3.39. The System NaF-RbF-Z¢F .. 65 3.40. The System NaF-CtF,—ZrF,: The Section NaF.CrF, — ZrF, at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. R. E. Thoma, H. A. Friedman, B. S. Landau, and W. R. Grimes, unpublished work performed No invariant equilibria occur for compositions lying on the section NaF.CrF =ZrF . 2 4 UNCLASSIFIED ORNL-LR-DWG 19367R 1000 900 ~ T Zrfy +LIQUID 800 N / s \ Crfy+ Zrf, + LIQUID t W \\ | 2 | £ 700 ! — < / & < s NaF - CrFp + LIQUID W | w a-NoF - CrF,-2ZrF, ~N | = + LIQUID O | 600 . & ! — © a—NaF CrFyp 2ZrFy + ZrFy NaF - CrF, + a-NaF : CrF,- 2 ZrF, s =z 500 NoF:Crfp + B-NaF - Crfp- 22rF, B—NaF-CrFp: 2ZrF4 + ZrFy 400 } l NaF - CrFp 10 20 30 40 50 60 70 80 90 ZrF, 66 Fig. 3.40. The Section NaF:CrF ,~ZrF ZrF, {mole %) 3.41. The System NaF -CeF,-Z/F, W. T. Ward, R. A. Strehlow, W. R. Grimes, and G. M. Watson, ‘‘Solubility Relationships of Rare Earth Fluorides and Yttrium Fluoride in Various Molten NaF-ZrF, and NaF-ZrF ,-UF Solvents,”” J. Chem. Eng. Data (in press). UNCLASSIFIED ORNL-LR-DWG 29164R CeF3 (1387°C) ——————— NaF 800°C 50 %o ZrF, (918°C) Fig. 3.41a, The System NaF-CeF ,-Z¢F . UNCILLASSIFIED ORNL-LR~-DWG 29165R PROBABLE NaF-ZrF, PRIMARY PHASE FIELDS A Zrl:4 D 2NaF- ZrF4 B 3NoF-4ZrF4, E 5NaF - ZZrF4 C ?NcF-GZrF4 F 3NaF- ZrF4 30%2rF, “E o 50% 70% ZrF, Fig. 3415, The System NaF —~CeF ;~Z¢F ; in the Region 30-70 Mole % NaF, 0-20 Mole % CeF 3¢ 30--70 Mole % ZrF4. 67 3.42. The System LiF-CeF, C. J. Barton, L. M. Bratcher, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956-57. Preliminary diagram. The system LiF-CeF, contains a single eutectic at 81 LiF=19 CeF, (mole %), m.p. 755 £ 5°C. 68 TEMPERATURE (°C) 1300 1200 1100 000 S00 700 600 UNCLASSIFIED ORNL-LR-DWG 19365 LIF Cefy (mole %) Fig. 3.42. The System LiF-CeF . 7 oG 4 /\ L / ’ p. e / / b—O0—0—O0——0— 0 0 O 4 L o e e ] 10 20 30 40 50 60 70 80 90 CeF, 69 3.43. The System NaF -HfF R. E. Thoma, C. F. Weaver, T. N. McVay, H. A. Friedman, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956-~58. Preliminary diagram. Invariant Equilibria Invariant Mole % HfF4 Temperature Type of Equilibrium Phase Reaction in Liquid ) at Invariant Temperature 18.5 695 Eutectic L == NaF + 3NaF.HfF, 25 863 Congruent melting point L T 3NaF-HfF * 34 606 Peritectic L + 3NaF-HfF , == a-5NaF.2HfF - 535 Inversion a-5NaF2HfF , = [3-5NaF-2HfF 35 586 Peritectic L + a-5NaF-2HfF = [3-2NaF-HfF - Below 350 Inversion [3-2NaFHfF , = y-2NaF-HfF - Below 350 Inversion ¥-2NaF HfF , = 8-2NaF-HfF , 43 510 Eutectic L 7 [3-2NaFHfF , + 7NaF.6HfF 45 531 Peritectic L + NaF+HfF , == 7NaF.6HfF 50 557 Congruent melting point L & NaF-.HfF, 53 535 Eutectic L = NaF-HfF , + HIF, *A determination of the crystal structure of 3NaF-HfF4 has been reported by L. A, Harris, **The Crystal Structures of ch3ZrF7 and NaaHfFr" Acta Cryst. 12, 172 (1959). 70 TEMPERATURE (°C) UNCLASSIFIED ORNL-LR-DWG 35488 1050 950 \ 850 A Va \ 750 VI \ 650 550 i \// us e uTl = uY “~— as0 SHEe Pt w | U W T j=) (=] [=] [=] u z|=z Z 2| o o o - 350 NaF 10 20 30 40 50 S0 Hffi; HfF, (mole 7o} Fig. 3.43. The System NaF —HfF ,. 71 3.44. The System LiF-ThF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, ‘‘Phase Equilibria in the Fused Salt Systems LiF~ThF, and NaF-ThF ,,"" J. Phys. Chem. 63, 1266-74 (1959). Invariant Equilibria Invariant Mole % ThF4 Temperature Type of Equilibrium Phase Reaction in Liquid °C) at Invariant Temperature 23 568 Eutectic L = LiF + 3LiF-ThF4 25 573 Congruent melting point L= 3LiF-ThF4 29 565 Eutectic L = 3Lif‘7-ThF4 + 7LiF-6ThF4 30.5 597 Peritectic LiF-2ThF4 +L = 7LiF-6ThF4 42 762 Peritectic LiF-4ThF, + L & LiF.2ThF, 62 897 Peritectic ThF, + L — LiF+4ThF, UNCLASSIFIED GRNL-LR-DWG 26535A 150 T i i : 1050 S AN U S N N e gt Y S 950 u / U " | A | 5 850 I S S 0 R I = ] \/ | i L | | | | a 0 — — S . — - > | | ‘ | | | “eso; N - A1 el N L l l H | 550 = | ] s 3LIF- hF4*-—7L!|F-6ThF4-- L_||F ThE, - l ] | | | 450 LIF 10 20 30 40 50 60 -~ O 09] @) Q0 o — -y ~n Fig. 3.44. The System LiF-ThF , 72 3.45. The System NaF-ThF, R. E. Thoma, H. Insley, B. S. Landau, H. A. Friedman, and W. R. Grimes, ‘'Phase Equilibria in the Fused Salt Systems LiF—ThF4 and NoF-—ThF4," J. Phbys. Chem. 63, 1266-74 (1959). Invariant Equilibria Invariant Mole % ThF4 Temperature Type of Equilibrium Phase Reaction in Liquid C) at Invariant Temperature 21.5 645 Peritectic NoF + L =—— a-4NoF-ThF4 22.5 618 Eutectic L = a-4Na F-ThF4 + 2NaF+Th Fq - 604 Inversion -4Na F-ThF4 pr— fi-4NaF-ThF4 - 558 Decomposition ,B-4NaFoThF4 ¥ NaF + 2NaF.ThF, 33.3 705 Congruent melting point L —— 2NaF-ThF4 37 690 Eutectic L = 2Na F-Th!:4 + 3!‘«1<:|F-2ThF4 40 712 Congruent melting point L — 3NaF-2ThF4 41 705 Eutectic L— 3NcF-2ThF4 + a-NaF-ThF4 - 683 Decomposition 3NaF:2ThF , == 2NaF:ThF, + a-NaF-ThF, - 45.5 730 Peritectic NaFs2ThF, + L‘—:‘-a-NaF-ThF4 58 831 Peritectic ThF4 + L/ NaF-ZThF4 UNCLASSIFIED ORNL-LR-DWG 28528AR 1150 1050 L~ 950 [\ // G AN / : \ / & 850 / o \ g \ y \ 750 ' A — g \ z \ E 1 i = 650 \ / « L~ e \Val = LS = E et oJ |_. . 550 L 's 4NaF-ThF, R 2 | 2Naf Tf, " J 450 ! NaoF 10 20 30 40 50 60 70 80 90 Thh, ThF, (mole %) Fig, 3.45. The System NaF -ThF .. 73 3.46. The System KF-ThF W. J. Asker, E. R. Segnit, and A. W. Wylie, *‘The Potassium Thorium Fluorides,”’ J. Chem. Soc. 1952, 4470-79. This system has also been reported by A. G. Bergman and E. P. Dergunov, Doklady Akad. Nauk §.5.5.R. 53, 753 (1941) and by V. S. Emelyanov and A. J. Evstyukhin, ‘*An Investigation of Fused-Salt Systems Based on Thorium Fluoride — [I. NaF-KF-ThF ,, NaF-ThF ,, and KF- ThF,,”" J. Nuclear Energy 5, 108-14 (1957). Invariont Equilibria Invariant Mole % ThF4 Temperature Type of Equilibrium Phase Reaction in Liquid ©c) at lnvariant Temperature 14 694 Eutectic L &= KF + 8-5KF-ThF, - 635 Inversion (.L—f)KF-ThF4 — 3-5K F-ThF4 - 712 Peritectic L +3KF-ThF, = a-5KF.ThF, 25 865 Congruent melting point L rT\‘_— 3KF-ThF4 - 570 Decompos ition 3KF.ThF, — [B-5KF-ThF, + 3-2KF-ThF 31 691 Eutectic L —=3KF.ThF, + a-2KF.ThF, - 747 Peritectic L + KF-ThF, —= a-2KF-ThF, - 645 Inversion a-2KF-ThF, == [3-2KF-ThF, 50* 905 Congruent melting point L— I(F-ThF"'4 —_ 56 875 Eutectic L KF-ThF4 + KF-ZTH:'4 66 930 Peritectic L+ KF-3T|1F4 — KF-2ThF4 75 990 Congruent melting pawint L— KF-3T|'\F4 78 980 Eutectic L= |(i"‘-3ThI"'4 + ThF4ss *|t has been shown that the compound labeled by Asker et al. has the actual formula 7K F-6ThF4, cf. R. E. Thoma, Crystal Structures of Some Compounds of UF4 and ThF 40 (December 11, 1958). 74 4 with Alkal: Fluorides, ORNL CF-58-12- TEMPERATURE (°C) 1200 {100 1000 900 800 T00 600 500 UNCLASSIFIED ORNL—LR—DWG 18966 3KF-ThE, \ u_v & J hy mn Y ) = . [ e od X w X uy ue u £ 2 £ o . % v = KF 10 20 30 40 50 60 70 80 a0 ThF, (mole %) Fig. 3.46, The System KF--ThF4. ThF, 75 3.47. The System RbF—ThF4 E. P. Dergunov and A. G. Bergman, “Complex Formation Between Alkali Metal Fluorides and Fluorides of Metals of the Fourth Group,”’ Doklady Akad. Nauk S.5.5.R. 60, 391-94 (1948). Invariant Equilibria 76 ThF, (mole %) Invariant Mole 7% ThFd Temperature Type of Equilibrium Phase Reaction in Liquid ©C) at Invariant Temperature 15 664 Eutectic L = RbF + 3RbF-ThF4 25 974 Congruent melting point L = 3RbF-ThF4 37 762 Eutectic L &= 3RbF-ThF, + RbF.ThF, 50 852 Congruent melting point L= RbF-ThF4 54 848 Eutectic L= Rl:oF-ThF4 + F&‘bF-3ThF"4 75 1004 Congruent melting point L= RbF-3ThF4 80 1000 Eutectic L= RbF-3ThF4 + ThF4 UNCLASSIFIED ORNL~LR—DWG 20464 1200 ] ‘ ‘ l i i ! l ! | l ! 1114° 1100 ! ' - | 1 J 1 1004° o 1000 "~ 1000 97& ~ £ 900 / \ 5 / 852° 848° 2 < & / / a 800 _ - S i 5 780 \ \/ 762° ™ — 700 - 664° \I | | £ u fg ! 600 " - = o f—— ¢ | s 5 " { a 14 | 500 ‘ RbF 10 20 30 40 50 60 70 80 90 ThE, Fig. 3.47. The System RbF-ThF , 3.48. The System BeF,~ThF, R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, *‘Phase Equilibria in the Sys- tems BeF,-ThF, and LiF-BeF,~ThF,,” paper to be presented at the 136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13-18, 1959. The system BeF,—ThF, contains a single eutectic at 98.5 BeF,-1.5 ThF, (mole %), m.p. 526 + 3°C. UNCLASSIFIED ORNL-LR-DWG 24551 1200 1100 =" / / 1000 900 p / 800 / 700 / 600 \/ 500 BeF, 10 20 30 40 50 60 70 80 90 Thf, ThF, (mole %) TEMPERATURE (°C) Fig. 3.48. The System Ber—ThF4. 77 3.49. The System BeF,.UF, T. B. Rhinehammer, P. A. Tucker, and E. F. Joy, Phase Equilibria in the System BeF ,~UF , MLM-1082 (to be published). Preliminary diagram. The system BeF,-UF, contains a single eutectic at 99.5 BeF2—0.5 UF, (mole %), m.p. 535 £2°C, UNCLASSIFIED ORNL LR DWG 28598 I [[le]0] T T T T | T T T T T [ T 1000 LIQUID 900+ et 00f- UFg4 +LIQUID TEMPERATURE ©-0-00—0-0—0-0-0- 000 =0=0—0 00— 0—O—§——Tr - o —-— - o o - o o ——— QHIGHBeF2 +UF, 400 i l ! | L 1 1 ! ! | L | ! l | I | ) 0 10 20 30 40 50 60 70 80 90 100 BeFo MOLE PERCENT UF4 UFy Fig. 3.49. The System Ber—UFd. 78 3.50. The System MgF ,~ThF, J. O. Blomeke, An Investigation of the ThF ;~Fused Salt Solutions for Homogeneous Re- actors, ORNL-1030 (June 19, 1951) (declassified with deletions). Invariant Equilibria Invariant Mole % ThFA Temperature Type of Equilibrium Phase Reaction in Liqutd (°C) at Invariant Temperature 25 915 Eutectic L — ThF4+MgF2-2ThF4 33.3 937 Congruent melting point L= Mng-ZThF4 40 925 Eutectic L — MgF2-2ThF4 + MgF:Z UNCLASSIFIED ORNL-LR-DWG 20465 12C0 | | 1100 - | | /V 1000 s . é/ £ g — Qo & 2 900 —— ] x W a = C = % 800 £ o b= 700 600 ThF, 10 2C 30 40 50 60 70 80 90 MgF2 MgF, (mole %) Fig. 3.50. The System MngnThF4. 79 3.51. The System LiF-BeF,-ThF, R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, ‘‘Phase Equilibria in the Sys- tems BeF,~ThF, and LiF-BeF,~ThF,,”” paper to be presented at the 136th National Meeting of the American Chemical Society, Atlantic City, N. J., Sept. 13—-18, 1959. Invariant Equilibria Composition of Liquid Invariant Type of Solids Present {mole %) T R emperature Invariant at Invariant Point LiF BeF, ThF, (°C) 15 83 2 497 t 4 Peritectic ThF4, LiF-AThF4, and BeF2 33.5 64 2.5 455 t 4 Peritectic LiF-4ThF4, LiF-2ThF4, and BeF2 47 51.5 1.5 356 £ 6 Eutectic 2LiF-BeF2, LiF-2ThF4, and BeF, 60.5 36.5 3 433 5 Peritectic LiF-2ThF4, 3LiF-ThF4ss, and 2LiF-BeF 2 65.5 30.5 4 444 T 4 Peritectic LiF, 2LiF - ny o - W0 L o > L W L 2w r © 21 2 Tl o # W W 500 r+—o r+—5-x ol e A9)] oJ ™~ o o [0 ot 400 \ RbF 10 20 30 40 50 60 70 80 90 UF4 UFs (mole %) Fig. 3.58, The System RbF-UF . 91 3.59. The System CsF-UF, C. J. Barton, L. M. Bratcher, J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-53. Preliminary diagram. Invariant Equilibria Invariant Mole % UF4 Temperature Type of Equilibrium Phase Reaction in Ligquid ©C) at Invariant Temperature 7.5 650 Eutectic L. —=CsF + 3Cs F-UF4 25 970 Congruent melting point L ——= 3Cs F-UF4 34 800 Peritectic L+ 3(.:s.F"-UF4 —— 2Cs F.-UF, 41 695 Eutectic L \——2C5;F-UF4 +cl-CsF-UF4 50 735 Congruent melting point L— Cl,-CsF-UF4 - 550 Inversion a-CsF-UF, &= [(-CsF-UF, 53 725 Eutectic L #Q-CsF-UF“ + UF, UNCLASSIFIED 1100 ORNL-LR-DWG. 18915 ! } ] ! | ! ] 1 ' 1000 |— — 900 — - e w 800 — — g .— L9 x o 2700 ] .— 600 — - - u¥ 500 [— 5 > —] 5|4 : voo | ! ! | | | | | CsF 10 20 30 40 50 60 70 80 90 UF, uf, (mole %) Fig. 359. The System CsF—UF4. 92 3.60. The System ZrF ,.UF, C. J. Barton, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, ‘‘Phase Equilibria in the Systems NaF-ZrF ,, UF ,~ZrF ,, and NaF-ZrF,~UF ' J. Phys. Chem. 62, 665-76 (1958). The system ZrF ,~UF , forms a continuous series of solid solutions having a minimum melting temperature of 765°C at 77 ZrF ,-23 UF, (mole %). TEMPERATURE (°C) 1050 1000 950 300 850 800 750 700 UNCLASSIFIED ORNL—LR—DWG 19887 A LIQUIDUS POINTS FROM THERMAL GRADIENT QUENCHING EXPERIMENTS \ @® SOLIDUS POINTS FROM THERMAL GRADIENT QUENCHING EXPERIMENTS \ \\ ‘I/ ® - & \ \ A 'y \' \ \ ™. \ ‘ [ ] \t\ y r"'"—.J UF4 1Q 20 30 40 50 60 70 80 90 ZrF, Zr&_(mde%fl Fig. 3.60. The System ZrF 4—UF4. 93 3.61. (July 1959). The System SnF,-UF, B. J. Thamer and G. E. Meadows, Invariant Equilibria The Systems UF4—SnF2 and PuF ;—-SnF ), LA-2286 Invariant Mole % UF4 Temperature Type of Equilibrium Phase Reaction in Liquid ©c) at Invariant Temperature 0.5 212 Eutectic L= .."ml:2 + 2SnF2-UF4 4.5 340 Peritectic L+ San-UF4 p—— 2SnF2'UF4 7.8 371 Peritectic L + UF, = SnF,UF, UNCLASSIFIED ORNL—LR— DWG 36864 1400 1000 - / 900 // 800 // / 450 l ‘ 400 -~ ] 700 Ve LL / (3 — a7 A -~ [®) Pl — P 350 —A [0 ul AT 2 600 E 300 PR A SOLUBILITIES BY FILTRATION ] = / & v A LiQUIDUS POINTS FROM DTA & i / HEATING CURVES z 2 250 b ¥ LIQUIDUS POINTS FROM DTA == - L /‘ COOLING CURVES A 500 200 [ - N 150 / 0 " 2 3 a4 5 6 7 8 9 10 400 UR, (mole %) ] | | | 300 / 200 u us o ) L;_N o [ = oy o 100 SnF2 10 20 30 40 50 60 70 80 90 UE‘ UF4 (mole 079) 94 Fig. 361. The System SnF ,—-UF . . 3.62. The System PbF,..UF, C. J. Barton, L. M. Bratcher, J. P. Blakely, G. J. Nessle, and W. R. Grimes, unpublished work performed at the Qak Ridge National Laboratory, 1950-~51. Preliminary diagram, Invariant Equilibria Invariant _ Mole % UF4 Temperature Type of Equilibrium Phase Reaction in Liquid €c) at invariant Temperature 14.3 920 Congruent melting point L 6PbF2-UF-'4 35 835 Eutectic L :_6|:’13F2‘UF4+3F’|:>F2-2U|':4 40 840 Congruent melting point L = 3PbF,-2UF, 62 762 £ 10 Eutectic L \-fi3PbF2'2UF4+ Ul‘:4 The eutectic at quite high PbF, concentrations is not shown on this diagram. The authors examined thermal data but found no evidence of a eutectic thermal effect. TEMPERATURE (°C) 1050 UNCLASSIFIED DWG14633R 1000 [— 950 — 9200 — 850 [— 800 — 750 — 700 6 PbF, - UF, f f 3PbF,- 2UF, 30 40 50 UF, (mole %) 60 70 80 90 UR, 95 3.63. The System ThF4—UF4 C. F. Weaver, R. E. Thoma, H. A, Friedman, and H. Insley, ‘‘Phase Equilibria in the Systems UF ,~ThF, and LiF-ThF ,~UF ,,”" paper presented at the 61st National Meeting of the American Ceramic Society, Chicago, Ill., May 17=21, 1959, The system ThF ,~UF, forms a continuous series of solid solutions without a minimum. 96 TEMPERATURE (°C) 1200 LUNCLASSIFIED ORNL-LR-DWG 27913 1100 P 1000 ‘—YL:::: _____ —m==t==== + === IQUID + Th¥F, -UF, SOLID SOLUTION \ 300 800 Th,—UF, SOLID SOLUTION ] 20 30 40 50 60 70 80 Q20 UF, UF, {mole %) Fig. 363. The System ThF ,-UF 97 3.64. The System LiF-NaF-UF, R. E. Thoma, H. Insley, B. S. Laondau, H. A. Friedman, and W. R. Grimes, ‘‘Phase Equilibria in the Alkali Fluoride=Uranium Tetrafluoride Fused Salt Systems: Ill. The System NaF-LiF-~ UF,,'" J. Am. Ceram. Soc. 42, 21-26 (1959). Invariant Equilibria Composition of Liquid invariant (mole %) Temperature - T)tpl ?f Solid IPhas'es P:s.ent NoF L UF4 c) quilibrium at Invariant Point 60 21 19 480 Eutectic 2NaF-UF4, NaF, and LiF 65 13 22 497 Peritectic 5-3N0F~UF4, 2NaF-UF4, and NaoF 7 65.5 27.5 470 Peritectic 7LiF-6UF4ss,* 4LiF.UF,, and LiF 35 37 28 480 Eutectic 2NaF-UF4, 7NaF-6UF4ss, and LiF 57 13 30 630 Peritectic 2NaF-UF ,, 5NaF-3UF4, and 7NaF-6UF4ss 24.3 43.5 32.2 445 Eutectic 7NaF-6UF4ss, LiF, and 7LiF-6UF4ss 24,5 29 46.5 602 Eutectic NaF-2UF4, 7LiF-6UF4ss, and 7NaF-6UF4ss 24.3 28.7 47 605 Peritectic NaF-2UF4, LiF-4UF4, and 7LiF-6UF455 23.5 28 48.5 640 Peritectic UF4, NaF-2UF4, and LiF.-4UF, 37.5 10.5 52 660 Peritectic UF4, NaF-QUF4, and 7N0F-6UF4ss *The compounds 7LiF-6UF4 and 7Nc:F-6UF4 as they occur in the ternary system are members of the solid solution 7LiF-6UF4—-7NuF-6UF4. 98 UNCLASSIFIED ORNL—LR—DWG 28244R COMPOSITION IN mole % TEMPERATURE IN °C TNaf - 6UF, P&73 . 2NaF - UF, — PEAS /e, £623 ‘\ ) 3NGEF6.4:F4‘ \ 850 950 900 VAN NaF 990 Fig. 3.64a, The System LiF-NaF-UF . 99 TEMPERATURE (°C) 100 UNCLASSIFIED 255 ORNL-LR—DWG 2979 \ \ 700 \ | \ LIQUID 675 \\ \ o 650 \ = \ \ S \ + : LiF+ 4UF \ 7NGF+6UF, ss L + LIouiD 625 ! + LIQUID L f’o \ w \ — ™~ a l ——— T e 600 — 3 1 \ K , l LiF+4UF, + Zo ' l 7L|F-6UF4 SS ~ , | + LIQUID 7 NoF'GUF4 5S ] ; l. 913 | 7LiF- 6UF, ss | ' 4 l ?L:F-GUQ ss | | | 550 l | 7NaF «6UF, 10 20 30 40 LiF {mole %) Fig. 3.645. The Join 7NaF.6U F4—7LiF-6UF4. 50 7L||'-'-6UF4 3.65. The System LiF-KF-UF, C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950~51. Preliminary diagram. The system LiF~KF-UF, has not yet been defined at the Oak Ridge National Laboratory with sufficient precision to permit the temperatures and compositions of the invariant equilibria to be listed. UNCLASSIFIED ORNL—LR~DWG 28633R UF, 1035 1000 TEMPERATURE (°C) 950 —LiF 4UFf, COMPOSITION (mole %) 900 KF 2UFf,— 850 P 765 800 A 750 A -P 775 70 E735- © ot 650 Al = 7KF GUFq— —-7TLIF GUF4 'A 600 —P 810 E740- 199 550 S 700 ~ ‘ P 7674 - 2KF UF, N a5, ™ 650 P . 600 Q0= LiF 845 Fig. 365, The System LiF—KF--UF4. 101 3.66. The System LiF-RbF-UF, C. J. Barton, J. P. Blakely, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. Preliminary diagram. Phase relationships within the system LiF-RbF-UF, have not yet become so well defined at the Oak Ridge National Laboratory that the compositions and tem- peratures of the invariant points may be listed. UNCLASSIFIED ORNL-LR~0OWG 28634R UF, 1035 S 10002 RbF SUF, _ TEMPERATURE IN °C COMPOSITION IN mole 7o 950 \- LIF 4UF, 900 P-832 850 2RbF 3UF, _ BOO 7 P-730 _ - p-722 750 P77s E-714 700 & RbF UF, - Q 7RbF 6UF, - - TLF GUF, P-693 A& 600 R E-6757% A \- P 610 P-818- 550 A N 2RbF UF, - 550 500 N 600 58 Q_£490 3RbF UF, - 700 650 - P500 750 L 950 lele) y - 4LIF UF, 300 850 700 ‘ 750 = E-710 - r 800 750 _ £-450 RbF N AV, RV AN RV LLIFEJ 790 E-470 8 Fig. 366, The System LiF-RLF-UF . 102 3.67. The System NaF-KF-UF R. E. Thoma, C. J. Barton, J. P. Blakely, R. E. Moore, G. J. Nessle, H. Insley, and H. A. Friedman, unpublished work performed at the Oak Ridge National Laboratory, 1950-58. Preliminary diagram. Phase relationships within the system NaF-KF-UF, have not yet become so well defined at the Oak Ridge National Laboratory that the compositions and tem- peratures of the invariant points may be listed. UNCLASSIFIED ORNL—LR-DWG 38112 UF, 1035 THIS DIAGRAM HAS BEEN DERIVED ENTIRELY FROM TA DATA COMPOSITION IN mole % TEMPERATURE IN °C * NoF KF UF, ‘A, 4 2 F 2NGF UF, T L , - Peag A - /550 ‘\\ P /@Q © 4 £623 /X &\ G of o0 4 3NaF Ufy ™/ 3KF Uy £ 648 = 0 faum = 700 900—2 £ 710 856 Fig. 3.67. The System NaF-KF-UF . 103 3.68. The System NoF -RbF-UF, R. E. Thoma, H. Insley, H. A. Friedman, and W. R, Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955=56. Preliminary diagram. Invariont Equilibria Composition of Liquid Invariant (mole %) Temporature ETYTTZ crf Solidl Pha?es F';re.sem oF e oF, C) quilibrium at Invariant Point 18 73 9 670 Eutectic RbF, NaF, and 3RbF-Ul’-‘4 46 33 21 470 Eutectic NaF, NaF-RbF-UFd, and BI%F-UF4 44 33 23 500 Peritectic NqF-RbF-UFd, 2RbF-UF4, and .'SRbF-UF4 45 30 25 485 Peritectic NaF, 2NaF-UF4, and Nc:F-RbF-UF4 52 23 25 500 Decomposition 3NaF-UF4, NaF, and 2NaF-UF4 41 26 33 555 Peritectic 2RbF.UF4, 2NaF-UF4, and N.,F.RbF.UF4 57 8 35 630 Decomposition 2NaF-UF4, 5NaF-3UF4, and 7NuF-6UF4 33 30 37 535 Eutectic 2RbF-UF4, 2NaF-UF4, and ‘/'RbF-éUF4 32 29 39 340 Peritectic 7RbF-6UF4, 2NoF-UF4, and 7N<:F-¢5UF4 26 27 47 620 Eutectic 7RbF-6UF4, 7NqF-6UF4, and RbF-UF4 25 25 50 630 Eutectic 7NcF-6UF4, RbF-UF4, and 2RbF-3UF4 27 22 51 633 Peritectic 7NaF-6UF4, 2RbF-3UF4, and RI:F-BUF4 33 14 53 655 Peritectic 7NaF~6UF4, RbF-3UF4, and RbF-6UF4 42 3 55 678 Peritectic 7NqF-6UF4, RbF-éUFA, and UF, 104 {000 900 800 TEMPERATURE (°C) -~ @] (@] 600 500 400 TEMPERATURES ARE IN DEGREES CENTIGRADE COMPOSITIONS IN MOLE PERCENT 7NF BUF, SNaF_3UF, 673 UNCLASS FIED ORNL LR DWG 1674(AR RGF BUF, . NoF 2UF, b 800 RGF UF, _‘« TROF GUFq —— = e\ 93 2 To Fig. 3.68a, The System NaF-RbF-UF ,. RbF a0 UNCLASSIFIED ORNL~-LR—DWG {7665R 3RbF - UF, + LIQUID 5NaF-3UF, + LIQUID "-./ 4 — 2 NeF - UF, m}~\/ / 2RbF -UF, + LIQUID Fig. 3.68b. The Section 2NaF-UF4—2RbF-UF4. 2NoF - UF, + 2RbF - UF, & + uY W % E 2NoF UF +Naf RbF Uf, 5 Naf - RbF - UF, + 2RbF - UF, L e 4 % 2 5 X o z ‘ o 0 10 20 30 40 50 60 667 RbF {moie %) 105 106 TEMPERATURE {C) UNCLASSIFIED ORNL LR DWG 417666 650 600 / 550 / 2NaF UF, 2RbF UF4 + LIQUID + 2RbF UF, / + L QUID N NoF + LiQUID G L@ ast 500 \ / wof | - 2NaF UF4 + NaF RbF UF,; + LIQUID NaF + 2NoF UF, oNaF UFat LIQUID 4 4 + LIQUID Iy 2 NaF + NoF RbF UF, E w 2 450 55 50 45 40 35 NaF (mole %) Fig. 3.68c. The Section NaF-NaF«RbF:UF ,, 30 TEMPERATURE {°C) UNCLASSIFIED ORNL-LR-DWG 17667R 1000 N //———'— SO0 / [ / 3RbF - UF, + LIQUID 800 7 N 700 //x A 600 Z2RbF UF, + LIQUID uE /2RbF UF; + 2NoF UF; + LIQUID ~ l 500 NaF _RDF UFs * 2RbF UFs + LIQUID uwr NaF ROF UF, + 3RbF UFy + LIQUID . ! 3 ' - ’ B Es] e u. " NoF RbF UF, + 3RbF UF, 8 2 l | - 400 333 35 40 45 50 55 60 65 70 75 RoF {male % ) Fig. 3.684. The Section 3RbF-UF4—NuF0RbF-UF4. 107 3.69. The System LiF—BeF,-UF, L. V. Jones, D. E. Etter, C. R. Hudgens, A. A, Huffman, T. B. Rhinehammer, N. E, Rogers, P. A. Tucker, and L. J. Wittenberg, Phase Equilibria in the LiF-BeF ,—UF Ternary Fused Salt System, MLM-1080 (Aug. 24, 1959). UNCLASSIFIED MOUND LAB NO 1035 56-41-29 (REV) UFy ALL TEMPERATURES ARE IN °C £ = EUTECTIC F = PERITECTIC LIF‘4UF4 UF,| = PRIMARY PHASE FIELD £ P 4LIF-UF, '\ Fig. 3.69a. The System LiF-BeF ,—UF .. 108 Preliminary diagram. Invariant E quilibria Composition of Liquid Temperature Solid Phases Present (mole %) (°C) Type of Equilibrium at Invariant Temperature LiF BeF2 UF4 72 6 22 480 Peritectic (decomposition 4L'|F-UF4, LiF, and 7LiF-6UF4 of 4LiF-UF4 in the ternary system) 69 23 8 426 Eutectic LiF, 2LiF-BeF2, and 7LiF-6UF4 48 51.5 0.5 350 Eutectic 7LiF-6UF4, 2LiF-BeF2, and BeF2 45.5 54 0.5 381 Peritectic LiF-4UF4, 7LiF-6UF4, and BeF2 29.5 70 0.5 483 Peritectic UF4, I_iF-4UF4, and Be F2 The minimum temperature in the quasi-binary system 2Lil'-'»E'>eF2—7LiF-6UF4 occurs at 65 LiF-29 BeF -6 UF, (mole %) at 438°C. A three-dimensional model of the system LiF-BeF ,-UF, is shown in Fig. 3.695. UNCLASSIFIED PHOTO 24247 Fig. 3.695. Model of the System LiF—BeF o—UF 4 109 3.70. The System NaF=BeF,=UF, J. F. Eichelberger, C. R. Hudgens, L. V. Jones, G. Pish, T. B. Rhinehammer, P. A. Tucker, and L. J. Wittenberg, unpublished work performed at the Mound Laboratory, 1956~57. Preliminary diagram. invariant Equilibria Composition of . Temperature Solid Phases Present at Liquid (mole %) ey ec) Type of Equilibrium Invariant Temperature NaF BeF2 UF4 74 12 14 500 Peritectic (decomposition of 3NaF-UF4, NaF, and ZNOF-UF4 3Nc|F-UF4 in ternary sys- tem) 72.5 17 19.5 486 Eutectic NaF, 2NaF-UF4, and 2N&:|F-Be|:2 64.5 9 26.5 630 Peritectic (decomposition of 5N0F-3UF4, 2NuF-UF4, and 7NaF-6UF4 5Nc:F-3UF4 in the ternary system) 57 42 1 378 Peritectic 2NaF-BeF2, 2N0F-UF4, and 7NaF-6UF4 56 43.5 0.5 339 Eutectic 2NaF-BeF2, NuF-BeF2, and 'I'Nc:F-6UF4 43.5 55.5 1 357 Eutectic 7NaF-6UF4, BeF,, and NaF-BeF, 41 58 1 375 Peritectic 7NaF-6UF4, NaF-ZUF4, and BeF2 26 63 1 409 Peritectic NuF-2UF4, NuF-4UF4, and BeF, 44 18 38 665 Peritectic 7NaF-6UF ,, UF,, and NaF.2UF, 40 47 13 548 Peritectic UF4, NuF-2UF4, and NaF-4UF 27 72 1 498 Peritectic UF4, BeF,, and NaF-4UF4 The minimum temperature in the quasi-binary system 2NaF.BeF,—~2NaF.UF, occurs at 66.7 LiF-25 BeF,-8.3 UF, (mole %) at 528°C. The minimum temperature in the quasi-binary system NaF.BeF ,~7NaF.6UF, occurs at 50.5 NaF-48.5 BeF,~1.0 UF, (mole %) at 367°C. A three-dimensional model of the system NaF-BeF,-UF, has been constructed by the authors and is shown in Fig. 3.705. 110 UNCLASSIFIED MOUND LAB NO 56—11-30 (REV} UF, ALL TEMPERATURES ARE IN °C m i = EUTECTIC P = PERITECTIC = PRIMARY PHASE FIELD 7 NaF 6UF, ‘ 5NaF 3UF, 5NaF 3UF, P 2 NaF UF4/"'I‘ / P 3NaF UF, 3NaF UF, [~ 2L N 7 NoF su - N TS Y RN V. = NN W b~ | A4 Av4 / £ \ £ BeF, 2 NaF BeF, NaF BeF, Fig. 3.70a. The System NuF—Ber—UF4. 1M1 oy W TP %4 <2 Ho Or Za ) ~BeF Model of the System NaF & 706. g F 112 3.71. The System NaF -PbF ,—UF, C. J. Barton, J. P. Blakely, G. J. Nessle, L. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships within the system NaF-PbF ,~UF . UNCLASSIFIED ORNL—LR~DWG 20455R 1035 TEMPERATURE IN °C COMPOSITION IN mole T NoF-2UF, 7NaF - 8UF, 5NaF- 3UF, 2NaF-UF, 650 / 3NaF-UF, 4 / / £ L, i \ AN /] 2N . NaF / Wd‘%\ \ \\ Gé‘o S0p.\ 550 ‘ kY, ~ Y *%0 290 815 Fig. 3.71. The System NaF-PbF,-UF 113 3.72. The system KF~PbF_-UF, C. J. Barton, J. P, Blakely, G. J. Nessle, L.. M. Bratcher, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1950-51. Preliminary diagram. No study has been made at the Oak Ridge National Laboratory of the phase relationships within the system KF—PbF ,-UF ,. 114 UNCLASSIFIED OWG 115144 UF, 1035 TEMPERATURE IN °C COMPOSITION IN mole % 800 ~Q 850 L 800 A KF 2UF, ¢ & 7 2 %0 h 7KF BUF, ¢ ! X 3PbF, 2UF, A 840 2KF UF, g AN 3KF UF4 g \ X 6PbF, UF, 210 Fig. 372. The System KF-PbF,-UF .. 115 3.73. The System NaF-ZrF4-—-UF4 C. J. Barten, W. R. Grimes, H. Insley, R. E. Moore, and R. E. Thoma, “Phase Equilibria in the Systems NaF—ZrF4, UF4-ZrF4, and NaF-ZrF4-UF4,” J. Pbys. Chem. 62, 665~-76 (1958). UNCLASSIFIED ORNL—LR—DWG 19886R ALL TEMPERATURES ARE IN °C TAN A /\ NcF-2UF—'4 A {\ )Y A 7NaF-6UF, ‘Q 5NaF-3UF, A 2NaF-UF, 800 /\ ‘ 750 3NoF-UF, ll /V 765 750 \? \ 800 A 850 AU\ 675 50 900 Al 3 600 700 BOO VA 950 \ W 650 850 \ ‘ \m . 900 NoF : VA MW AL, U\ Irfy 990 3NaF-Zrf, fl 3NaF-2Zrf, 3NaF-4Zrf, 942 5NaF.2 ZrF 4 PNaF-ZrF a 7NaF-6Zrfy NaF+ZrF, Fig. 3.73a. The System NoF -ZrF ,~UF ., 116 Invariant Equilibria and Singular Points Composition of Liquid (mole %) Temperature T ¢ Ecuilibei Solids Present (°C) ype of Lquilibrium at Invariant Point NaF ZrF4 UF4 69.5 4.0 26.5 646 Maximum temperature 3Nc1F-(U,Zr)F4 and 2Na I:-UF4 of boundary curve 68.5 5.5 26.0 640 Peritectic 3NaF-(U,Zr)F4, 2NaF-UF4, and 5NoF-3UF4ss 65.5 12.0 22.5 613 Peritectic or SNGF-(U,Zr)FA, 5NoF-3UF4ss, decomposition and 7NuF-6(U,Zr)F4 64.0 27.0 2.0 592 Peritectic 3Na F-(U,Zr)F4, SNaF:2Zr F4ss, and 7Nc1F-6(U,Zr)F4 61.5 34.5 4.0 540 Peritectic 5NaF-2ZrF4ss, ZNGF-ZrFA, and 7NaF-6(U,Zr)F4 50.5 47 2.5 513 Peritectic 7Na F-6(U,Zr)F4, (U, Zr)F4, and 3N¢:|F-¢IZrF4 UNGLASSIFIED 850 ORNL—LR—DWG 19888 . 800 /t// 750 - // = A £ 700 / ‘E'c-’ / ] q : P e i 650 < e - E ‘ . A .El I 600 A LIQUIDUS POINTS FROM THERMAL GRADIENT QUENCHING EXPERIMENTS -—— ® SOLIDUS POINTS FROM THERMAL GRADIENT QUENCHING EXPERIMENTS B LIQUIDUS POINTS FROM THERMAL ANALYSIS A INITIAL COMPOSITION OF FILTRATION MIXTURES O FILTRATION RESIDUE COMPOSITIONS 550 © FILTRATE COMPOSITIONS - 500 3NaF+UF, 5 10 15 20 3NaFZrF, Zrf, (mole %) Fig, 3735, The Subsystem 3NaF'UF4—3NuF-ZrF4. 117 UNCLASSIFIED ORNL -LR-OWG 176694 800 750 " 650 ,/ / / _—] TEMPERATURE (°C) co0 = / 550 ///// ) 500 TNoF- 62rF, 10 20 30 40 50 60 70 80 90 7Naf-6UF, 7NoF - 6UF, (mole %) Fig. 3.73¢c. The Subsystem 7NaF6ZrF ;~7NaF+6UF . 118 3.74. The System LiF—ThF4-UF4 C. F. Weaver, R. E. Thoma, H. Insley, and H. A. Friedman, *‘Phase Equilibria in the Systems UF ,~ThF, and LiF-ThF ,~UF,,”” paper presented at the 61st National Meeting of the American Ceramic Society, Chicago, ill., May 17-21, 1959. Invariant Equilibria Composition of Liquid Invariant (mole %) Temperature 1YPe ©f Solids Present at Invariant Point LiF ThF4 UFA (°c) Equilibrium 72.5 7.0 20.5 500 Peritectic LiF, 3LiF+(Th,U)F ,, and 7LiF-6(U, Th)F 72.0 1.5 265 488 Evtectic LiF, 4LiF-UF,, and 7LiF-6(U, Th)F, 53 18 19 609 Peritectic 7LiF-6(U, Th)F ,, LiF-2(Th,U)F ,, and LiF-4(U, Th)F, A three-dimensional model of the system LiF-ThF ,~UF , is shown in Fig. 3.74e. ThF, MM UNCLASSIFIED ORNL-IL.R-DWG 28215AR2 PRIMARY-PHASE AREAS TEMPERATURE IN °C {a) UF,~ThE, (ss) COMPOSITION IN mole o ¢ (b) LiF- 4UF LIF 4ThE, (ss) (c) LiF 2Th UIF, (ss) LIE 4ThE (d) 7LIF BUF,~7LIF 6ThF, (ss) 4 (€) 3LIF Th{UIF, (ss) (f) LF LiF 2ThE, P 897 AN A (@) A B 7, 7TLIF 6ThE, OOO P 762 S, A % \ K} ® o (a) \ P 597 & % ' £ 565 3LIF ThE, £ 568 A PGO ’c‘a o % Q Alf) ‘%5 AN\ 3 B /3500 2 \\ LIF (\) W \ \ i\ \61-488 by \/ UF4 845 auF uFy” P500" £430 P 610 \ P 775 LIF 4UF, 1035 TLIF BUF, Fig. 3.74a, The System LiF-ThF ,~UF . 119 120 TEMPERATURE (°C) 575 550 525 500 475 450 UNCLASSIFIED ORNL-LR-DWG 35503R LIQUID + 3LiF - ThF, ss LiF + LIQUID LiF+ 3LiF« ThF, ss + LIQUID LiIF+7LiF -6ThF, —7LIF-6UF, ss + LIQUID 4LiF-UR + LIQUID + LIF 4LiF-UR + LIQUID 4LiF-UR +7LiF-6ThE —7LIF-6UFR ss + LIQUID 3LiF - ThF, ss 3LIF - ThF, ss + 7LiF - 6Thk, = 7LIF - 6 UFy ss + LiF LiF + 7LiF - 6 ThF,— 7LiF - 6 UF4 ss LiF + 4LiF -UF, + 7LIF -6 ThF, —7LIF - 6 UF,; ss 4 LIF «UF, + 7LiF - 6 ThF, ~ TLiF - 6 UF, 55 — A THERMAL DATA ® QUENCH DATA O TIE LINE DATA (@) LIQUID 10 15 20 25 UF, (mole %) Fig. 3.74b, The System LiF-ThF ,—UF ,;: The Section at 75 Mole % LiF. TEMPERATURE {°C) 850 800 750 700 650 600 550 UNCLASSIFIED ORNL-LR-DWG 27917 UF, (mole %) ] ! ‘ | I LIQUID \‘\\‘ ‘ AN » Q‘\ 2 NN NN LIQUID + LiF - 4ThF,— LIF 4UF, N SOLID SOLUTION — ™ ~ LIQUID +LiF-2ThF, |\ \\ ‘ \[q SOLID SOLUTION N r NN | O N\t LQUID + LIF- TR, - LF - 4UF, SOLID SOLUTION + K )( LiF - 2ThF, SOLID SOLUTION N S N S SR N P’— __\_______ —_— T _____L———T———' LIQUID + LiF - 2ThF, SOLID SOLUTION + (uomo + LiF - 4ThF, — LiF - 4UF, SOLID SOLUTION 7LIF 6ThF, — 7LiF - 6UF, SOLID SOLUTION + 7LIF - 6ThF, — 7LiF - 6UF, SOLID SOLUTION 7LIF-6ThF, — 7LIF - 6UF, SOLID SOLUTION 0 5 10 5 20 25 30 35 40 a5 Fig. 3.74c. The System LiF-ThF ;~UF ;: The Section at 53.8 Mole % LiF, 121 UNCLASSIFIED ORNL-LR-DWG 35506R (@) UFa—ThF, ss + LIQUID () LIF-4UF,— LIF: 4ThF+ LIQUID (¢) UF,—ThF, ss + LIQUID + LiF - 4UF, —LiF - 4ThF, ss (d) LIF-2ThF, ss + LIQUID + LIF- 4UF, — LIF - 4ThF, ss () LiIF- 4UF, ~LiF- 4ThF, ss + LIQUID + 7LIF- 6 UF, — 7LIF - 6ThF, ss (F) LIF-2ThF,ss (g) LIF- 4UFy~LIF- 4ThFs ss + 7LIF-6UF4—7LiF -6ThFass (#) LiF- 4UF, —LIF-4ThF, ss + 7LIF-6UF, —7LiF - 6 ThF, ss +LIF - 2ThF, ss 1100 ‘ A THERMAL BREAKS ® QUENCH RESULTS O TJIE LINE INTERSECTION 1000 (@ 7 T~ (&) LIQUID (6) ‘ 900 E) o wl o D 5 800 | Vel & = 2 — 700 l 800 4 ] _\(8) | (g} 500 30 40 50 60 66 2/3 UF, {(mole %) Fig. 3.74d. The System LiF-ThF ,~UF ;: The Section at 33.3 Mole % LiF, 122 r- UNCLASSIFIED _PHOTO 34246 H + £ ¥ 3 ) LIF- = 7 5 £ & Fig. 3.74¢c. Model of the System LiF-—ThF4—UF4. 123 v 3.75. The System NaF~ThF,~UF : The Section 2NaF-ThF ;=2NaF.UF R. E. Thoma, H. Insley, H. A. Friedman, and C. F. Weaver, unpublished work performed at the Oak Ridge National Laboratory, 1958-59. Preliminary diagram. UNCLASSIFIED ORNL-LR-DWG 34986 725 ! /BZ—- 2NaF - Thi, + LIQUID 700 P~ - 5-2NaF UThF, f M SOLUTION AND LIQUID | — SNaF - 3UF, 675 \‘\, —~ AW LIQUID\ 650 \\\ = 625 \ T I 5NaF - 3UF, +8 -2NaF - U(ThiF \ AND LIQUID B, 2NaF - Th(U)F, \ \ 600 (— +8-2NaF -U(ThF, /\' TEMPERATURE (°C) SOLID SOLUTIONS 575 \\ 550 SOLID SOLUTION SOLID SOLUTION \\ 5 - 2NaF - U{ThiF, 525 ‘ 500 2NaF - ThF, 5 10 15 20 25 30 2NaF-UF, UF4 {rmole %} Fig. 3.75. The Section ZNoFOThF4—2NqF°UF4. 124 3.76. The System LiF-PuF, C. J. Barton and R. A. Strehlow, ‘‘Phase Relationships in the System Lithium Fluoride— Plutonium Fluoride,’’ paper presented at the 135th National Meeting of the American Chemical Society, Boston, Mass., Apr. 5-10, 1959. The system LiF-PuF, contains a single eutectic at 80.5 LiF~19.5 PuF; (mole %), m.p. 743°C. UNCLASSIFIED ORNL-LR—DWG 34847 | 1425°C 1400 >~ ” ” TEMPERATURE (°C) S @) N \ PuF3 (mole %) Fig., 3.76. The System LiF-PuF ., 125 3.77. The System LiCl=FeCl, C. Beusman, Activities in the KCI-FeCl, and LiCl-FeCl, Systems, ORNL-2323 (May 15, 1957). The system LiCl-FeCl, forms a continuous series of solid solutions with a minimum at 60 LiCl—-40 FeCl, (mole %), m.p. 540°C. UNCLASSIFIED ORNL-LR-DWG. 20942 700 T | | 08 600 wh @ > .— z w500 — — a = 1Y) - 400 |- — 300 i | | | ] ] | | | o] {e] 20 30 40 50 60 70 80 30 100 MOLE % FeCl, Fig. 3.77. The System LiCl-FeCl,, 126 3.78. The System KCI-FeCl, C. Beusman, Activities in the KCl-—FeC12 and LiCl-FeCl, Systems, ORNL-2323 (May 15, 1957). Anearly identical diagram to this one has been reported by H. L. Pinch and J. M. Hirshon, **Thermal Analysis of the Ferrous Chloride~Potassium Chloride System,’” J. Am. Chem. Soc. 79, 6149-50 (1957). Invariant E quilibria Invariant _ Mole % FeC|2 Temperature Type of Equilibrium Phase Reaction in Liquid C) at Invariant Temperature 35 385 Peritectic L+KCl—= a-2KCl-FeCl, - 255 Inversion a-2KCl-FeCl, :fiQKCI-FeCIz 39 355 Eutectic L ‘:\a-2KC!-FeC|2+a-KC|-FeC|2 50 400 Congruent melting point L= C(.-KCI-FeCl2 - 300 Inversion a-KCl+FeCl, == 3-KCI-FeCl, 53 390 Eutectic L \-T\-«-—G.-KChFeCiz + FeCl2 UNCLASSIFIED ORNL-LR-DWG. 20940R 800 700 600 e) Qe w g 2500 < o i a = Lot ’-—. 400 e A ® [ ] hd v 3850 390° L ] L J Y L K ] 356 ® e Kol-FeCl, 2KCI- FeCl,—=— 300 PO ) hd ?eo - — . - L] '] S _lo *—eo- 0O IO 20 30 40 50 60 70 80 a0 100 MOLE % FeCl, Fig. 3.78. The System KCl-—FeCIz. 127 3.79. The System NaCl~Z(Cl, C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1956. Preliminary diagram, Invariant Equilibria Invariant Mole % ZrCl4 in Liquid Temperature Type of Equilibrium Phase Reaction at Invariant Temperature (°C) 28.0 535 %5 Peritectic L + NaClI F‘:'_."“ 3Na Cl'ZrCl4 - 44515 De composition 3INa Cl'ZrCI4 = NaCl + C\’.-2Na(.':l'Zr('_:|4 28.5 525t5 Eutectic I..='13N4::CI°ZrC|4 + a-2NaC|'ZrC|4 33.3 626 + 5 Congruent melting point L &= a-2NaCl*ZrCl, ~ 370 5 Inversion @-2NaCl+ZrCl ;==/5-2NaCI+ZCl , 58 3525 Peritectic L + B-2NaCl+ZrCl , &= a.-3NaCl4ZrCl , - 31215 Inversion a-3NaCl+4ZrCl , T===/3-3NaCl*4Z:Cl 63 3125 Eutectic L .\:"“-,8-3N0CI°4ZrCI4 + ZeCl, Previous reports on the system Nc:CI-ZrCI4 have been made by N. A. Berlozerskts and O. A. Kucherenko, Zhur. Priklad., Kbhim. 13, 1552 (1940), |. S. Morozov and B. G. Korshunov, Zhur. Neorg. Kbhim. 1, 145(1956), and H. H. Kellogg, L. J. Howell, and R. C. Sommer, Physical Chem- ical Properties of the Systems NaCl-ZrCl,, KCI-Z:Cl , and NaCI-KCl-ZrCl,, Summary Report, NYO-3108 (April 7, 1955). 128 TEMPERATURE (°C) UNCLASSIFIED ORNL—LR~-DWG 17671 900 - 800 l 700 N l | 3NaCl ZrCl, +a2NaCl ZrCl, NaCl + LIQUID /~a2NOCI ZrCly + LIQUID | 600 — -~ | /N —- i 3NaCl ZrCl, + LIQUID o) ~ (@] 500 NaCI+ 3NaCl ZrC, aZNO‘CI ZrCl, + LIQUID —T ] 400 | NaCl+a2NacCl ZI’C|4 o -0 | | ‘ ™ —B2NaCl ZrCl, +LIQUID —-o-Bo—o | ZrCl,+ LIQUID HFOO—O—O—— ‘ @) a3NaCl 4ZrCl,+32NaCl ZrCl, Z:\;"‘: d_ O ¥ (@) 300 ——— 00— O == P — — == = | a3NaCl 4ZrCl, + LIQUID NaCl + B2NaCl ZrCl, [ B2NaCl ZrCl,+B3NaCl 4ZrCl, B3NaCl 4ZrCl,+ZrCl, NaCl 10 20 30 40 50 60 70 80 90 zrci, ZrCl, (mole %) Fig. 3.79. The System NaCl-Z(Ci . 129 3.80. The System KCI-Z(Cl, C. J. Barton, R. J. Sheil, and W. R, Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1955. Preliminary diagram. Invariant Equilibria Mole % ZrCl4 Invariant Phase Reaction at ] L. Temperature Type of Equilibrium ) in Liquid o Invariant Temperature (-C) 23 600+ 5 Eutectic L ¥==KC! + 2KCI*ZrCl, 33.3 7905 Congruent melting point L :— 2KC|°ZrC|4 48 565 £ 5 Peritectic L+ .'ZKCI'ZrCl“'-‘fia.JKCPéZrCI4 i . — - . - 222t 4 Inversion a-7KClI 6ZrCl4T——- 7KClI 6ZrC|4 65 225 + 4 Eutectic L T==0a-7KCI*6Z¢Cl, + ZrCl, Some phase work on this system has been reported by H. H. Kellogg, L. J. Howell, and R. C. Sommer, Pbhysical Chemical Properties of the Systems NaCl-ZrCl,, KCI-ZrCl,, and NaCl- KCl-ZyCl,, Summary Report, NYO-3108 (April 7, 1955). UNCLASSIFIED ORNL—-LR-DWG 16152 800 '\ fl o \\ / | _ - L) 600 el ® ] — — — ¢ S g \ o 5 500 2 w Z | S i }_ é g — o & = \ e £ 400 § — z . g | Q o N S L 300 ) N g : v od _ (&) ¢ | M~ —— ) g ] U= = W e e e e e —— T —— v | KCI 10 20 30 40 50 60 70 80 90 ZeGl, 130 ZrGl, (mole %) Fig. 3.80. The System KCI-ZrCl . 3.81. Ridge National Laboratory, 1953, TEMPERATURE (°C) The System LiClI-UCI, C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the QOak Preliminary diagram. The system LiCl-UCI, contains a single eutectic at 75 LiCI-25 UCI, (mole %), m.p. 495 + 5°C. UNCLASSIFIED DWG 22252 900 /C) 800 // 700 r.\t‘-(fi L~ ] c/ . pd N‘. / L\ / 500 . S —————— N ® ® 104 L4 ® ORI Ts é) 400 300 LiCl 10 20 30 40 50 &0 70 80 90 UCIS UCI5 (mole %) Fig. 3.81. The System LiCl-UCI, 131 3.82. The System LiCl=UCI, C. J. Barton, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. Preliminary diagram. Invariant Equilibria Mole % UCI Invariant Ph R i ole % ULl Temperature Type of Equilibrium ase Reaction at in Liquid ©c) Invariant Temperature 29 415 Eutectic L &= 2LiCl-UCI, + LiCl 33.3 430 T 10 Congruent melting point L =2Liclucl, 48 405 Eutectic L= 2LiCZ|'UC|4 + UCI4 TEMPERATURE (°C) 132 Some data on this system were reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943). 700 UNCLASSIFIED DWG 19904R 600 500 400 300 200 100 LiClI UCl, (mole %) Fig. 3.82. The System LiCI—UCI4. 80 90 ucl, 3.83. The System NaCI-UCI, C. A. Kraus, unpublished work. Preliminary diagram constructed with the author's permission from data reported in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943). The system NaCl-UCl, contains a single eutectic at 67 NaCl-33 UCI; (mole %), m.p. 525°C. UNCLASSIFIED ORNL-LR-DWG 20464 900 [ ) / . L) o 2 600 / & \\/,/ x . = 1l A Y A ¢ - L) V' ¥4 &, 500 o— 400 300 NacCl 10 20 30 40 50 60 70 80 90 UCly UCIS {mole %) Fig, 3.83. The System NoCI—UCI3. 133 3.84. The System NaCl=UCI, C. J. Barton, R. J. Sheil, A. B, Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. Preliminary diagram. Invariant Equilibria Invariant Mecle % UC] in Liquid 4 Temperature Type of Equilibrium Phase Reaction at Invariant Temperature in Liqui ) (°C) 30 430 =5 Eutectic L &==NaCl + 2NaCl*UCI, 33.3 440 t 5 Congruent melting point L‘—.._"‘\2N0C|‘UC|4 47 370 %5 Eutectic L— 2Nc:lC|°UCl4 + unidentified compound 57 41515 Peritectic L+ UCI4 #unidenfified compound A phase diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943). UNCLASSIFIED DWG 21104 900 T T 8OO P> 700 \ \ : 1 600 y 500 o TEMPERATURE (°C} o @ SR SIS S 5 PR, S —— 400 | __ D N 300 : / ‘?\\ ENOCI-UCI4 200 NaCl 10 20 i | i ! | 40 50 &0 70 80 90 ucCl uci, {mole %) oY) (@] Fig. 3.84, The System NaCI—UC|4. 134 3.85. The System KCI-UCI, C. J. Barton, A. B. Wilkerson, T. N. McVay, R. J. Sheil, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954. Preliminary diagram. Invariant Equilibria Invariant Mole % UCI . Phase Reaction at 4 Temperature Type of Equilibrium in Liquid (°C) Invariant Temperature 25 550 Eutectic L == KClI +2KC|'UC|4 33.3 630 Congruent melting point L"*-(_.‘__—“.'ZKCI'UCI4 44 330 Eutectic L &= 2KCI'UCI + KCI-UCI . . . . 49 345 Peritectic L + KClI 3UC14<——-.—"'\‘KCI UC|4 . . _ . 61 395 Peritectic I+ UC|4‘__ KClI 3UC|4 A phose diagram of this system has been reported by C. A. Kraus in Phase Diagrams of Some Complex Salts of Uranium with Halides of the Alkali and Alkaline Earth Metals, M-251 (July 1, 1943). TEMPERATURE (°C) UNCLASSIFIED ORNL-LR-DWG 1532R 700 \' 600 4 ____J)O_o_l)lj___ — X /fl) oo | \& X a00 | TrTIrePtoettres E A = o e ’/ < o] _= 300 O _ o ] [ 2 - 2 M g o S o ¥ ¥ KCl 10 20 30 40 50 &0 70 80 Q0 UCI4 UCI4 {mole ) Fig. 385, The System KCI—UC|4. 135 3.86. The System RbCl—UCl3 C. J. Barton, R. J. Sheil, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1954. Preliminary diagram. Invariant Equilibria Mole % UCI Invariant Phase Reaction at ST Temperature Type of Equilibrium . in Liquid o Invariant Temperature (C) 15 610 Eutectic L ;_{RbCI + 3RbCl'UC|3 25 745 110 Congruent melting point L #3RbCI'UC|3 40 560 £ 10 Peritectic L+ 3RbC|'UC|3"‘; 2RbCI°UC|3 i — . . 45.5 5135 Eutectic L +—=2RbClI UCI3 + RbClI UC|3 - . L] 49 550 £ 10 Peritectic L+ UCI3—\\_—R!:CI UCI3 UNCLASSIFIED ORNL-LR-DWG 340 900 JL B T o -~ 800 = /’ ~ // 9 o -7 N 700 ¢ ‘//, D g o G : & 600 - o I S E——— e} o _ ? © 0 ¢ T 500 o O o+ ? ° oo 400 st—13& - 2 2 3] S S 2 x z 2 > o a 300 . B 40 50 [5le; 70 80 90 UGl UCly (mole %) | o o o N (@] [81] o Fig. 3.86. The System RLCI-UCI 136 3.87. The System CsCI-UCI, C. J. Barton, A. B. Wilkerson, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1953. Preliminary diagram. Invariant Equilibria Invariant Mole % UCI Phase Reaction at 4 Temperature Type of Equilibrium . in Liquid o Invariant Temperature (7C) 20 50515 Eutectic L &= CsCl + 2CsClUCI 33.3 65715 Congruent melting point L:—-2Cs CI-l..lCl4 58 370 £ 5 Eutectic LF7=2CsCkUCI, + CsCl-2uCl 63 3825 Peritectic L + UCl,7==CsCl2ucl, ) UNCL ASSIFIED DWG 22253R 8C0 700 — —— . N 600 f\( A S [ S e d lfil:J /_-O = 2 /©/ & 500 . ®o0a e = C \c / ® i 0 ® \ / 400 © (OO 2O ORGS o U'(A)‘- = e ComC 1O T A Bt 300 o = - S (] o & S 200 © CsCl 10 20 30 40 50 60 70 80 S0 UCl4 ) UCI4 (mole %) Fig. 3.87. The System CsCI-uCl, 137 3.88. The System K,CrF ,—Na,CrF —Li,CrF, B. J. Sturm, L. G. Overholser, and W. R. Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951-52. Preliminary diagram. UNCLASSIFIED NO3CFF6 DWG 17407 O X-RAY PATTERN OBTAINED AT THESE COMPOSITIONS SOLID SOLUTION K3N03(CrF6)2 o 0O SOLID SOLUTION VARV~ V A VAR VAR Gk ‘o; L S N ‘r; K3Crfg K LICrFg L1, KCrFy L|3CrF6 Fig. 3.88. The System K3CrF6—N03CrF6—Li3CrF6. 138 4.1. The System $i0,~ThO, (*C) TEMPERATURE 4. OXIDE AND HYDROXIDE SYSTEMS L. A. Harris, ‘A Preliminary Study of the Phase Equilibria Diagram of ThO,-Si0,,"” J. Am. Ceram. Soc. 42, 74-77 (1959). UNCL ASSIFIED PHOTO 31087 2300 T Ll l\ T T T T T T N AN 2200} \ . ThO, + LIQUID \ 21004 \ LIQUID 7 2000} \ . . 1975 * 50° BN ~ ~ 19001 \ — ThO,+ ThO, - Si0, ~ ThO, - Si0, + LIQUID AN 1800} AN SI0,+ - AN LIQUID S N u—) + o \ 1700} ol — — — — 700~ 10 —_— e N o ,f Th02 . Si02 + SiOZ 1600 1 1 1 1 i 1 i 1 1 0 10 20 30 40 50 60 70 80 90 100 ThO, $10, (WT %) S0, Fig. 4 1. The System 5i0,~ThO,. 139 4.2, The System LiOH-NaOH C. J. Barton, J. P. Blakely, K, A, Allen, W. C, Davis, and B. S. Weaver, unpublished work petformed at the Oak Ridge National Laboratory, 1951. Preliminary diagram. A phase diagram of the system LiOH=NaOH has been reported more recently by N. A, Reshetnikov and G, M. Oonzhakov, Zbur. Neorg. Khim. 3, 1433 (1958), Invariant Equilibria Mole % LiOH Invariant Temperature T . Phase Reaction at o ype of Equilibrium in Liquid (*C) Invariant Temperature 27 219 Eutectic L == NaoOH + a-NaOH.LiOH 40 250 Peritectic L+ LiOH = a-L.iOH«NaOH - 180 Inversion a-LiOH+NaOH == 5-LiOH«NaOH UNCLASSIFIED ORNL-LR-DOWG 20463R 500 T | | 450 o ——t 400 ° 350 o D & o i o E 300‘ = ' . l M — — e s— 250 Py T a-NeOH LiOH | L o } v % ! 200 ———— A B-NaOH LiOH 150 L NaOH 10 20 30 40 50 6C 70 80 S0 LiOH L1CH [mole %) 140 Fig. 42. The System LiOH-NaOH. 4,3, The System LiOH~KOH C. J. Barton, J. P. Blakely, L. M, Bratcher, and W. R, Grimes, unpublished work performed at the Oak Ridge National Laboratory, 1951, Preliminary diagram. Invariant Equilibria Mole % KOH Invariant Temperature T f Eauilibri Phase Reaction at ilibrium in Liquid (°C) ype of =qu Invariant Temperature 40 315 Incongruent melting point of L+ LiOH —3LiOH.2KOH 3LiOH.2KOH 70 245 Eutectic L ==3LiOH+2KOH + [5-KOH UNCLASSIFIED ORNL-LR-DWG 20460R 600 5 399 e 400 BN ul / o p (4] }.— 6.1 UNCLASSIFIED DWG 20233 60 O SATURATED SOLUTIONS ® SLURRIES Y UOgHPQ 4 H,0 1/ UO.(HPOY3H,O N \ He0O © 50 60 mole % H,PO, Fig. 5.2 The System UO ,—H,PO —H,0, 25°C Isotherm, 0-60 mole % UDj, 0-60 mole % HaPO,. 146 5.3. The System U(HPO,),-ClI ,0,-H,0, 25°C Isotherm J. M., Schreyer and L. R. Phillips, ‘““The Solubility of Uranium(VI) Orthophosphates in Perchloric Acid Solutions,”’ J. Phys. Chem. 60, 588 (1956). The stable solids in this system are U(HPO,),.2H,0, U(H,P0,),(CIO,),-4H,0, and U(H2PO4)2(CIO4)2-6H20. Metastable anhydrous U(HPO4)2 formed readily in all solution compo- sitions tested. X-ray diffraction patterns indicated the existence of three polymorphic forms of U(H,P0,),(CIO,),6H,0. UNCLASSIFIED ORNL-LR-DWG. 6845 ot _U(HzP04)2 (ClO4)2" 4H20 — D __ U{H2PO04)2 (ClOa)2* 6H20 ‘_ o . i) \} 2 _ ¥ Y- A . ). g% "' A R NS *,«_Ti iy b= o AN AL .( .. e QCTh \ T B \ ke % \ 1 \J \\L \ \I\V\\l 25 30 3 H20 5 10 15 20 ‘ wt.% — ' e e Cl207 5 40 45 50 55 60 66 70 Fig. 5.3. Schreinemakers’ Projection of the System U0 ,~P ,0.,-Cl,0,-H,0 at 25°C. A projection on the UOz—C|207—H20 face, plotted in rectangulor coordinates. 147 5.4. The System UO,-Na,0-CO,-H 0, 26°C Isotherm C. A, Blake, C. F. Coleman, K, B. Brown, D. G, Hijll, R. S. Lowrie, and J, M. Schmitt, **Studies in the Carbonate—Uranium System,’’ ], Am. Chem. Soc. 78, 5978 (1956). UNCLASSIFIED ORNL-LR—-DWG 39480 COMPOSITION wt %, No,O Fig. 5.4a. The System UO ;—Na ,0-C0 ,—H ,0 at 26°C. Compositions are plotted in weight per cent. |, solutions in equilibrium with sodium uranates; I, solutions in equilibrium with sodium wranyl tricarbonate; Ill, solutions in equilibrium with uranyl carbonate. A, N02C03; B, N02C03-H20; C, N02C03-7H.20; D, N02C03-]0H20; E, N02C030N0HC03-2H20 (trona); F, NaHCO3, G, U02C03; H, Na4UO2(CO3)3. The entire upper face of the tri- angular prism represents pure water. 148 The stable uranium—carbonate solids found were U02C03 and Na ,U0,(CO,};. The solution composition at the transition point (not determined exactly) was at least 26 wt % UO,, 5.6 wt % Nazo, and 7.2 wt % CO2 (mole ratio UOB:N020:C02 = 1:1.0:1.8). Further data on this system are available from the American Documentation Institute (document No. 5079). These include compositions, pH's, and densities at points in and near the planes Na,0-CO,~-H,0, U0,-Na,0-H,0, UO,CO,~Na,CO,-H,0, Na,U0,(CO,),-NaHCO,- H,0, UO;-Na,C0,~H,0, UO,-NaHCO,-H,0, and UO,CO;~Na,0-H,0. Related phase equilibria in the system Na,0-UO;-H,0 at 50 and 75°C are reported by J. E. Ricci and F. J, Loprest, J. Am. Chem. Soc. 77, 2119 (1955), UNCLASSIFIED PHOTO 24714 H20 A, Na, 10, (CO, ), B. Na, U0, (C0,), COMPOSITION wt % C. Na,C0, " 10H,0 Na,CO4 U0,CO,4 Fig. 5.4b. The Section UO ,C0 ;—-Na,C04—-H,0 at 26°C, 149 5.5. Portions of the System ThO,-Na,0-C0O,~H 0, 25°C Isotherm F. A. Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955, The stable thorium~carbonate solids found were ThOCO,:8H,0 and NuéTh(COB)S-quO. Ternary Points Solid Phases Present Composition of Solution (wt %) N06 Th(C03)5-12H20, NqHCOs, and N02C03-N0HC03-2H20 {trona) NaéTh(C03)5°12H20, N02C03-'|0H20, and trona Tho, Na,0 co, 0.62 12.0 9.96 0.48 14.1 10.86 EQUILIBRIUM SOLID PHASES a-b z+ NaHCO4 b z + NaHCO, + TRONA b-c NCIHCO3 + TRONA b-d z+ TRONA d 2 + TRONA + Nc12CO3 10H,0 d-e TRONA +Na,COz 10H,0 d-f z+Na,CO5 10H,0 g-h z+ThOCO5 8H,0 {z=3Na,0 ThO, 5CO, 12H,0 (TRONA =Na,CO, NoHCO; 2H,0} N02C03 40H20 0 NagTh(COslg 12H,0 UNCLASSIFIED ORNL-LR-DWG 38010 COMPOSITION wt % (ThOCO, BH,0 \ \ \ oo, \ ~ J)/ . (Th, CO,) 1 trona | e " R ™~ — & \\ o NGHCO, N - /" N3Na,0 Tho, 5C0,) ~ - oo L7 - d > co 0 2 ¢ (Na,0 CO,) (3Ng,0 4C0,) (Na,0 2C0,) Fig. 5.5a. Perspective Representation of the System ThOz—Nuzo—COZ—H 20 as a Tetrahedron. 150 The highest thorium solubility found was 3.35 wt % ThO, (3.06 wt % Na,0, 3.60 wt % CO,) in equilibrium with solid N06Th(CO3)5-]2H2O and ThOCO;-8H,0. (The terminal points of this binary line were not established.) The maximum thorium solubility in equilibrium with Na,Th(CO,) 4-12H,0 and Na,CO,4-10H,0 was 1.25 wt % ThO, (12.5 wt % Na,0, 9.4 wt % CO,); with Na,Th(CO,)4-12H,0 and trona, the highest solubility was 0.7 wt % ThO, (12.6 wt % Na,0, 10.4 wt % COZ). The highest found with NabTh(CO3)5-12H20 and NaHCO, was 1.2 wt % ThO2 (5.0 wt % Na,0, 6.0 wt % CO,), which was the most dilute NaHCO, solution tested. UNCLASSIFIED ORNL- LR~ DWG 38043 ThO, EQUILIBRIUM SOLID PHASES i o z+ Nr_qHCO3 Z + NaHCO5 + TRONA NaHCO3 + TRONA z + TRONA z+ TRONA + N02C03-4OH20 TRONA + chco3-aoH20 z+ N02C03A10H20 z+ ThOCO, 8H20 1] a o ThOCO, [} 1] \ 1 =Y COMPQSITION wi T GO QO a a o o dJo {z= Na ThiCO4)5 12H,0} (TRONA = Na,CO5NaHCOy 2H,0) VARV, R Na,CO; ec TRONA NaoHCO, Na,0 Fig. 555, The System ThOZ—NGZO—COZ-—Hzo at 25°C, Projection to the Th02-N020—C02 face along radii from the H,0 vertex, 151 UNCLASSIFIED ORNL- LR-DWG 38014 EQUILIBRIUM SOLID PHASES 0-b z+ NaHCO, b Z+ NaHCO, + TRONA b-c N@HCO;+TRONA b-d z+ TRONA d z+ TRONA+No,CO5 $OH,0 d-e TRONA +Na,COy 10H,0 d-t z4+No,CO3 10H,0 g-h z+ ThOCC; 8H0 COMPQSITION wt % {z = 3Na,0-ThO, 5C0, 12,0} {TRONA = Na,CO5 NaHCO, 2H,0l 80 75 \/ \/ \/ {ThO, CO,) (3Na,0 4C0,) o 5 10 45 20 25 30 Fig. 55c, The System ThO 2—N020—C02—H 20 at 25°C. Projection to the Th02-C02—3N020-4C02—H20 internal plane, represented as an equivolent triangle, along radii from the C02 vertex, Portion from 70 to 100 wt % H,0, 152 4 5.6. The System Na,0-CO,~H,0, 25°C Isotherm F. A, Schimmel, unpublished work performed at the Oak Ridge National Laboratory, 1955, Significant changes from the data of Freeth [Phil, Trans. Roy. Soc. London 233, 35 (1922)] were found throughout the range; there was closer agreement in the bicarbonate range with the data of Hill and Bacon [J. Am. Chem. Soc. 49, 2487 (1927)]. Transition Points Composition of Solution Solid Phases Present (wt %) Na, 0 co, NaOH:H,0 and Na,CO, 40.5 0.85 Na,CO, and Na,CO4+H,0 31.4 0.72 Na,CO,H,0 and Na,CO,+7H,0 18.7 6.9 Na,CO4+7H,0 and Na,CO,+10H,0 17.85 7.8 . Na,CO5:10H,0 and Na,CO4:NaHCO4+2H, 0 (trona) 13.7 10.35 Trona and NaHCO, 11.9 9.5 153 The System N020—C02—H20, 25°C Isotherm Composition of Saturated Solution (wt %) Equilibrium Sclid Phase N020 C02 41,3 0 NaOH-H20 40.5 0.85 N02C03 40.45 0.8 N02C03 3.6 0.67 N<12CC)3 31.4 0.72 N02C03 and Na2C03-H2O 31.1 0.78 N02C03-H20 29.9 0.5 N02C03-H20 26.6 0.4 N02C03-H2O 25.2 0.55 N02C03-H20 23.2 0.9 N02C03-H20 23.15 1.0 N02C03-H20 21,15 2.3 NOZCOS-H2O 19.3 4.3 N02C03-H2O 18.95 6.0 N02C03-H2O 18.57 7.5 N02C03-H20 (metastable) 18.6 7.8 Na2C03-H20 {metastable) 18.7 6.9 N02CO3-H20 and N02C03°7H20 18.5 6.75 N02C03'7H20 {metastable) 17.7 7.95 N02C03-7H20 (metastable) 18.3 7.3 N02C03-7H20 17.85 7.8 N02C03'7H20 and N02C03'70H20 17.3 7.88 N02C03- ]0H20 16.1 7.9 Na2CO3~10H20 15.6 7.92 Na2C03-10H20 15.1 8.1 N02C03-10H20 13.7 8.85 Nu2C03-'|0H20 13.28 9.4 N02C03-'|0H20 13.55 10.15 N02C03-70H20 14.1 1.0 N02C03-10H20 (metastable) 13.7 10.35 N02C03-]0H20 and trona* 17.0 13.0 Trona {metastable) 16.7 12,7 Trona (metastabie) 13.8 10.35 Trona 1.9 9.5 Trona and NqHCO3 11.55 9.3 NqHC03 10.5 8.8 NuHC03 9.4 8.0 NaHCO3 8.1 7.5 NcHCO3 6.4 6.5 chHCO3 5.4 5.75 NoHCO:‘l 3.9 5.0 NeHCO, 3.56 4,95 NaHCO, 3.47 4.93 NuHC03 *The formula of trona is N02C03-N0HC03'2H20. 154 Na,COy TRONA VAl V. UNCLASSIFIED ORNL~LR-DWG 38014 H0 95 90 85 80 75 70 65 No,CO3- 10H,0 60 55 NaHCO, \ vV N NN COMPOSITION wt %o 20 25 A 30 A4 35 4 40 ; g4 NG,CO5H,0 Na,COy4 ‘ 50 A\VA T VARV Na,C 5 10 15 Fig. 5.6. 45 Cco The System Nu20—C02—H20, 25°C Isotherm. 0-50 wt % Na,0, 0-50 wt % Co.,. 155 5.7. Solubility of Uranyl Sulfate in Water 1. C. H. Secoy, J. Am. Chem. Soc. 72, 3343 (1950) (data above 300°C). 2, C. H. Secoy, J. Am. Chem. Soc. 70, 3450 (1948) (data up to 300°C). 3. L. Helmholtz aond G. Friedlander, Physical Properties of Uranyl Sulfate Solutions, MDDC-808 (1943) (room temperature data), 4. C, Dittrich, Z. pbysik, Chem. 29, 449 (1899). 5. E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. Marck 15, 1952, ORNL.-1280, p 180-83, 6. E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. Jan. 31, 1959, ORNL-2696, p 210-11, The two-liquid-phase region of this system in actuality must be represented by the three components UO,, 50,, and H,0, The curve representing the boundary of liquid-liquid immisci- bility is correct for stoichiometric solutions. However, the tie lines within the region of immisci- bility do not connect two solutions containing stoichiometric U0,50, but rather connect solu- tions containing varying concentrations and ratios of UO; and SO, (Fig. 5.10). At low concen- trations and high temperatures, that is, below 0.02 m UQ,50, and above 250°C, hydrolysis occurs to produce a nonstoichiometric solution phase. The point of hydrolysis is dependent on concentration and temperature (see Sec 5,13), Note: Revised data (ref 5) are used to construct the immiscibility boundary in the figure. Earlier data (ref 1) showed higher temperatures in this region and a possible likelihood of acid impurity in the solutions. 156 TEMPERATURE (°C) 400 350 300 250 200 130 100 50 -50 ORNL-LR-DWG 844A UNCLASSIFIED — UNSATURATED SOLUTION ICE + SOLUTION U0,50,+ 3 Hy0 + SOLUTION T T T T T T T UNSATURATED SOLUTION (/.2) + VAPOR U02504'H20 7. + ¢ SOLUTION TWO-LIQUID PHASES Lg \ - 7;4 — ICE + U0,50,-3H,0 0 ! 2 3 4 5 S m, moles /1000 g HZO Fig. 5.7. The System U02504—H 20- 157 5.8. TwosLiquid-Phase Region of UO,S0, in Ordinary and Heavy Water E. V. Jones and W, L, Marshall, HRP Quar. Prog. Rep. March 15, 1952, ORNL-1280, p 180--83. The two curves shown are boundary curves for liquid-liquid immiscibility obtained by ob- serving the phase-transitional behavior of known U0,30,-H,0 (D20) solutions in sealed tubes as a function of temperature. For later reference, this procedure is designated the visual- synthetic method. As was described in Sec 5.7, the concentrations and compositions of the two phases within the boundary region at equilibrium cannot be obtained from this figure. Mixtures which are solutions at lower temperatures separate into two liquid phases as the temperature is raised, according to the boundary curves, 158 TEMPERATURE (°C) 300 290 280 UNCLASSIFIED ORNL-—LR-DWG 29314 m, moies UO,50, /1000 gm H,0, D50 Fig. 5.8 Two-Liquid-Phase Region of U0,50, in Ordinary and Heavy Water. 159 5.9. The System U0,-30,~H,0 1. A, Colani, Bull. soc. chim. France [4] 43, 754-62 (1928). 2. J. S. Gill, E. V, Jones, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 87. The 25° data on the SO,~rich side are those of Colani. The higher temperature data are those of Gill, Jones, and Secoy, obtained by filtration techniques at temperature. The number and identity of the solid phases in the UO;—rich regions at 25, 100, and 175°C are somewhat uncertain, Subsequent unpublished work of F. E. Clark and C. H. Secoy has disclosed that the K solid is identical (x-ray diffraction} with the mineral uranopilite, 6UO3-SO3-tzO, that the G solid is not identifiable as any known mineral, and that at least one additional unidentified solid phase occurs at 25 and 100°. The liquidus curves for the 25 and 100° isotherms are essentially correct as shown except that the transition points (two solid phases} occur at some- what lower concentrations than those indicated. UNCLASSIFIED DWG 21234 F=U0z-H,0 K= URANOPILITE 6U03-S0318 (?)H,0 G=G BASIC SALT (5U05- 2505~ yH,0)? E=U0,S0, - 3H,0 D=U0,S0, - 2H,0 C=U05- 2505 6H,0 B=UO5- 2505 3H,0 A=UOy- 2505 1.5H,0 SO : U0 Fig. 5.9a. The System UO 330 3—H,0 at 25°C, 160 UNCLASSIFIED HZO DWG 21835 \ \ F=U05H,0 \ G=G BASIC SALT \ E =U0,S50," 3H,0 \ \ \ \ \\ 2 Fig. 5.95. The System UO 3—503—H 20 at 100°C, 161 UNCLASSIFIED DWG 21936 F = U0 H,0 G=G BASIC SALT SO 162 UNCLASSIFIED HZO DWG 21937 . SOLID PHASE : B UO3-H,0 99.75 \ 99.50 \ 99.25 /\ X SO U053 ({? @) ‘OO O © O . K - 7 o o ‘A o S o) O Fig. 5.94. The System U0 ;~50,-H,0 at 250°C, 163 5.10. Coexistence Curves for Two Liquid Phases in the System U0,50,-H,50 ,-H, 0 H. W, Wright, W. L. Marshall, and C. H., Secoy, HRP Quar. Prog. Rep. Oct. 1, 1952, ORNL-1424, p 108. All curves in this figure must extrapolate to the critical temperature of water (374,2°C) at zero concentration of uranium., These are boundary curves which were determined by observing sealed tubes in which immiscibility occurred in UO,-50,~H,0 solutions upon varying the temperature. As was explained in Sec 5.7, they do not represent concentrations and compo- sitions of the two liquid phases within the temperature-concentration region of immiscibility but are lower solution boundary curves, 164 TEMPERATURE (°C) UNCLASSIFIED ORNL-LR OWG 6586 450 9) [ ONE PHASE ONE PHASE AT 525°C AT 530°C 1 I 425 ‘ 400 - 955 350 x 50, \ | 5 =148 | [ \ f 325 — \\ I ! | S04 \\ e 300 —— g T a SO, 94 _ \'\ S =1 000 I— [ 275 ! e} 5 10 15 20 25 URANIUM (wt =) Fig. 5.10. Coexistence Curves for Two Liquid Phases in the System U0 ,50 ,-H,50 ,-H 0. 165 5.11, Two-Liquid-Phase Region of the System UO,50,-H,50,-H,0 R, E. Leed and C. H. Secoy, Chem. Quar, Prog. Rep. Sept. 30, 1950, ORNL-870, p 29-30; C. H. Secoy, Chem. Quar. Prog. Rep. Dec. 31, 1949, ORNL-607, p 33--38, In contrast with the immiscibility curves shown in Fig. 5.10, each of these curves must extrapolate to a critical temperature curve for SO,—H,0 in which a small or negligible amount of UQ, is dissolved. Since SO, dissolved in H,0 (neglecting any dissolved UO,) will elevate the critical temperature, the curves obtained from solutions containing a constant amount of free H,S0, will all extrapolate to critical temperatures higher than that (374.2°C) for H,O alone. UNCLASSIFIED DWG. 10085 410 /| T T T T l \I / \ 400F / \ . / \ [ | 390 f| _ ’l \ / [ 380 X T} B AN \\ l/ , Ill Y 7 370 360 ?.. \ \ \\.O/ / / Z s 2 350 // / - E 0.480 M ACID / / W 340 | / \o 0.365M ACID/ 330 B 0.248 M ACID 320 310 0.099 M ACID 300 NO ACID 290 | | | | | l | 0 10 20 30 40 50 60 70 80 WEIGHT PERCENT U050, Fig. 5.11. Two-Liquid-Phase Region of the System U0 ,50 ,—H 50 ,—H,0. 166 5.12, Two-LiquidsPhase Coexistence Curves for UO,—Rich Solutions in the System Uo,-S0 - H,0 With and Without HNO, E. V. Jones and W. L. Marshall, HRP Quar. Prog. Rep. July 1, 1952, ORNL-1318, p 147-48, These curves have been obtained by the visual-synthetic method mentioned in Sec 5.8. They are therefore boundary curves and do not describe compositions and concentrations within the liquid-liquid immiscibility region. UNCLASSIFIED DWG 15625 I ! |18 I 300 290 280} %o ._./. / ] o—" 270 - 300} — -0~ L - 120 AND CONTAINING 290 SG, A 002 M UO,(NO,), 280 o o © g/ - TEMPERATURE (°C) ! 1 | i 0 {0 20 30 40 TOTAL URANIUM (wt %) Fig. 5.12. Two-Liquid-Phase Coexistence Curves for UO ,—Rich Solutions in the System U03—503—H20 With and Without HN03. 167 5.13. Solubility of UO, in H,50 ,-H,0 Mixtures W. L. Marshall, Anal. Chem. 27, 1923 (1955). The data are represented in this manner in order to show the full concentration range on one figure and to best indicate the degree of precision. The solid phase is a-U0,-H,0 below 205°C and B-UQ0,:H,0 above 205°C. These curves represent hydrolysis equilibria. UNCLASSIFIED ORNL-LR-DWG. 1840AR 1.0 = .0 0000 — TWO-LIQUID PHASE — REGION =~/ 3 S o E o DIRECT UO3 AND SO, it = Z - ANALYSES = = - * ANALYSES BASED ON - < = pH AT ROOM TEMPERATURE . - | *® & o ® © * ] g S 2 0.01 =— — Q — 3 Q f— -] Od' - — w — -] N I — - 0.001 — — e 0.0001 | | | 03 04 05 06 07 08 09 40 44 42 413 44 SOLUBILITY MOLE RATIO UOB/ HZSO4 Fig. 5.13. Solubility of U0, in H,50 ,—H,0 Mixtures, 168 5.14. Effect of Excess H,S0, on the Phase Equilibria in Very Dilute U0 ,SO, Solutions 1. W, L. Marshall, Anal, Chem. 27, 1923 (1955). 2, H. W. Wright, W, L. Marshall, and C. H. Secoy, HRP Quar, Prog. Rep, Oct. I, 1952, ORNL-1424, p 108, The curves were drawn by C, H. Secoy from data used for Figs. 5.10 and 5.13. UNCLASSIFIED ORNL-LR-DWG 19100 375 1 3 i 350 [\ N\ \\\\ AN 9 \\\ 05 = 1454 _ ~ \ SO3 £ 325 ™SS ~ U5, =142 ~, 3 1 Lid o = L 300 S+L+V 9 ) ® / L+V 275 - | /| s=soup ' 1 4 L = LIQUID / / V = VAPOR 250 =/ O 0.5 10 URANIUM (wt %) Fig. 5.14. Effect of Excess H2504 on the Phase Equilibria in Very Dilute uo 2504 Solutions. 1.5 169 5.15. SecondsLiquidsPhase Temperatures of U0,50,-Li,S0, Solutions R. S. Greeley, S. R, Buxton, and J, C. Griess, ‘‘High Temperature Behavior of Aqueous U0,S0,~Li,50, and UO,SO,~BeSO,,"”" paper presented at American Nuclear Society 2nd Winter Meeting, New York City (Oct, 1957). Also R. S. Greeley and J. C. Griess, HRP Dynamic So- lution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56.7.52, p 30-31. These data were obtained by the visual-synthetic method mentioned in Sec 5.8, UNCLASSIFIED ORNL-LR-DWG 19101 400 / 380 // ~ 340 / / & / { i { vl 2 /. ’e 843 320 — . LIEJ g //// '—-—/ ~ 300 i — -/ — A 0.42-0.45 m U0,50, PLUS Li»S504 ] 280 © 4.3 m U0,50, PLUS LS04 | | ® 2.2 mU0,50, PLUS LizSOq4 CONCENTRATIONS ARE UNCORRECTED 260 FOR LOSS OF WATER TO VAPOR PHASE - AT ELEVATED TEMPERATURES 240 R 0] 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 Li2504 (rn) Fig. 5.15. Second-Liquid-Phase Temperatures of U0,50 ,-Li, SO, So- lutions. 170 5.16. Second-Liquid«Phase Temperatures for U0,S0, Solutions Containing Li,SO, or BeSO, R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 30. Liquid-liquid immiscibility occurs at the boundary curves as the temperature is raised. UNCLASSIFIED ORNL-LR-DWG 15803 400 } | SUPERCRITICAL U0,504 + 100 MOLE % L12504 7 LIGHT PHASE ~ ’ )/ / U0,S04 + 70 MOLE % \0— / /A/ 112504 — | | 350 / /{02504 + 50 MOLE % Li,50, | - g” S -— - < — e —— — U0,50, + 100 MOLE % BeSO, uJ ~ T / "' ‘/ ; g ~ | U0250; + 25MOLE % L1504 2 L) _/- [ ~t3&0--' 300 \D. — -...________D_________._-_——-D/m)2504 250 0 05 1o 15 20 25 30 35 MOLALITY OF UO,S0, Fig. 5.16. Second-Liquid-Phase Temperatures for UO,50, Solutions Con- taining Li 2.‘304 or BeS0 ,. 171 5.17. SecondsLiquid-Phase Temperatures for BeSO, Solutions Containing UO, R. S. Greeley and J. C. Griess, HRP Dynamic Solution Corrosion Studies for Quarter Ending July 31, 1956, ORNL CF-56-7-52, p 31, Liquid-liquid immiscibility occurs at the boundary curves as the temperature is raised. UNCL ASSIFIED ORNL-LR-DWG 15804 400 — TEMPERATURE (°C) 300 250 0 0.5 t.0 1.5 2.0 2.5 3.0 MOLALITY OF BeSOa Fig. 5.17. Second-Liquid-Phase Temperatures for BeSO, Solutions Con- taining U0, 172 5.18. The System NiSO,-U0,$0,~H 0 at 25°C E. V. Jones, J. S. Gill, and C. H. Secoy, HRP Quar. Prog. Rep. Oct. 31, 1954, ORNL-1813, p 166-67. Also included in the reference are solubility data for this system at 175 and 250°C, The data at high temperature are not in sufficient quantity for a diagram to be presented. UNCLASSIFIED ORNL~LR-DWG 3713A Fig, 5.18. The System NiSO4—U02504—H20 at 25°C. Compositions are plotted in weight per cent, 173 5.19. PhasesTransition Temperatures in Solutions Containing Cu$0,, UO,SO,, and H,50, F. E. Clark, J. S. Gill, R. Slusher, and C. H, Secoy, J. Chem. Eng. Data 4, 12 (1959). All data were obtained by the visual-synthetic method mentioned in Sec 5.8 and represent temperatures at which immiscibility occurred upon raising the temperature, No deductions can be made regarding compositions within the two-liquid-phase region. UNCLASSIFIED ORNL-LR-DWG 24422B 3 94 mole % EXCESS SULFURIC ACID 305°C, 300-\._\ i i5 20 U02$O4(w'r Do) uo, 504(wt T} 15 - 15 — /340 Cc—~— 29 11 mole % EXCESS /355“C 3875 mole Ta EXCESS SULFURIC ACID 335 v ~ 10 3N B~ < Q 0 320 10 U0, S0, (wi %) SULFURIC ACID 5 10 UOZ SO4 (w1 a]fl) —325°C~ 19 25 mole 7 EXCESS BULFURIC ACID Cuso, {wi %) 5 10 U0, S04 (wt %) 15 20 === TEMPERATURE CONTOUR LINES lisotherms) FOR APPEARANCE OF TWO LIQUID PHASES SR REGION OF BLUE-GREEN CRYSTALLINE S0LIDS [ REGION OF RED SOLIDS 4 REFERENCE COMPOQOSITION OF Q1 m CuSO4 Qim U02304 <~ REFERENCE COMPOSITION OF HRT FUEL. 0 005 m CuS0, 004 m U050, (PLUS ca 0025 m Hy50,)(55%) Fig. 5.19. Phase-Transition Temperatures in Solutions Containing CuSO4, U02504, and H2504. 174 5.20. The Effect of CuSO, and NiSO, on Phase:Transition Temperatures: 0.04 = UO,S0,; 0.01 = H,SO C. H. Secoy et al., HRP Quar. Prog. Rep. July 31, 1957, ORNL.2379, p 163. Also additional data: F, F. Moseley, Core Solution Stability in the Homogeneous Aqueous Reactor; the Effect of Corrosion Product and Copper Concentrations, HARD(C)/P-41 {May 1957) The curves for liquid-liquid immiscibility were drawn from data obtained by the visual- synthetic method mentioned in Sec 5.8. Saturation temperatures for solid-liquid equilibria were obtained by measuring solution concentrations as a function of temperature and determining a break in the curve. The numbers in parentheses are temperatures at which the indicated solid phase appeared upon raising the temperature. Solid phases indicated in parentheses were found in small quantity, UNCLASSIFIED ORNL-LR-DWG 23014 A OO4H L Z L d (249) <249 T<249 Z T 200 (186) (175) -282 Z (245) 7 220 Z Z Z Z (261) 7 003e— e ° Z —@ ( 249) ( 249) 2 (215 *(197) (185) -282) \-282 7 \229 Z % 3CuO 303 2H2 ~ (+NiSO4-H,0) 7 Soo2 47 % 0 ° - P %, (240) (211) (186) = Z 216 % A 7Y, Aéé / Z 001 — 7 ® — @ %, (215) (189) SECOND LIQUID PHASE %, %, %, \ 330 320 310 %, | \} “ 0 001 002 003 004 CuSQy (m) Fig. 5,20, atures: The Effect of CuSO4 and NiSOA on Phase-Transition Temper- 0.04 U02504; 0.01 m» H,SO 175 5.21. The System UO;~Cu0-Ni0-S0,-D,0 ot 300°C; 0.06 = SO, J. S. Gill, R. Slusher, and W. L. Marshall, HRP Quar. Prog. Rep. Jan. 31, 1959, ORNL-2696, p 20513, The variation in solution composition in the presence of one, two, and three solid phases was determined at 300°C from 0.04 to 0.2 m 503. Solubility relationships at 0.06 m .‘303 were ob- tained from these separate solubility curves, and the skeletal volume figure for the five-compo- nent system was drawn. Other skeletal figures can be drawn at various SO, concentrations. This investigation is still in progress, and the data are subject to revision. UNCLASSIFIED ORNL- LR -DWG. 35714A 7 Ternary Composition 0.014 m NiO 0.010 m CuO 0.025 m U0, ! | | | | | ! | | | T I I I .05 0.04 UO3- UO,504 SOLID QUESTIONABLE m UOy 0.03 0.02 0.01 Fig. 5.21. The System U0Q ;~Cu0-Ni0-50,-D,0 at 300°C; 0.06 m 50,. 176 UNCLASSIFIED ORNL-LR-DWG 925A 10.0 5.0 < ISUAL OBSERVATION METHOD 2.0 0.5 Ndp(SOg)3 IN SOLUTION (g/liter) o 0.2 0.1 Fig. 5.22. Solubility of Nd2(504)3 in 0.02 U02504 Solution Containing 0.005 m H,50, (180-300°C), N \ /— TRACER-FILTRATION METHOD e \\~ <] Te—o 180 200 220 240 260 280 300 TEMPERATURE (°C) 5.22. Solubility of Nd2(504)3 in 0,02 » UO S0, Solution Containing 0.005 H2$04('|80—300°C) R. E. Leuvze et al., HRP Quar. Prog. Rep. April 30, 1954, ORNL.1753, p 176-79. Also included in the reference are preliminary solubility data for rare earth sulfate mixtures as well as Cee2(504)3 and Lc:2(504)3 in 0,02 m U02504, 0.005 m H2504. 177 5.23. Solubility of La,(80,), in U0, 50, Solutions E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF.55-7-69 (declassified Aug. 23, 1955). Experimental data for Figs. 5.23-5.27 were obtained by the visual-synthetic method described in Sec 5.8. The very large effect of UO,S0O, must be noted and indicates consider- able solvation of other species by aqueous UO,S0,. UNCEL ASSIFIED 300 o DWG. 14640A ] l | | I A | | A TWO LIQUID PHASES \ A MUTHMANN AND ROLIQ 250 — \ — \ \ \ ® ® \ ° W 200 ° /IN .35 m U0, SO, — o - — \ ~ ° Ll a = - .\..‘ 150 ®-0-g—0 —_ 100 — ° \.\ 1.0 2.0 3.0 4.0 La,(S0,)5 (Wt %) Fig. 5.23. Solubility of L02(504)3 in U0 ,50 , Solutions. 178 5.24. Solubility of CdS0, in U050, Solutions E. V. Jones, M, H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also Tne Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955), See comments in Sec 5.23. UNCLASSIFIED DWG. 14613A | | | | | 250 - 5 IN 1.35 m U0,S0, N IN 0.427 m U0,S0, . 200 T o e W 150 - o - — < 0- ~ Ll ~ = P L 100 — & — ® BENRATH 50— — 0 | | | | | | O 5 10 15 20 25 30 35 CdSO, (WT %) Fig. 5.24. Solubility of CdSO4 in U02S°4 Solutions, 179 5.25. Solubility of Cs,50, in UO,50, Solutions E. V. Jones, M. H, Lietzke, and W, L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solution, ORNL CF-55.7.69 (declassified Aug. 23, 1955). TEMPERATURE (°C) 180 See comments in Sec 5.23. UNCLASSIFIED DWG. 146174 300 | 200— IN 1,35 m U0,50, {00 ® BERKELEY IN 0.427 m U0,5S0, 70 Cs, S0, (WT %) Fig. 5.25. Solubility of Cs,50, in UO ,S0 , Solutions, 75 . 5.26. Solubility of \’2(504)3 in V0,50, Solutions E. V. Jones, M. H, Lietzke, and W, L, Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Agqueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955), See comments in Sec 5.23. TEMPERATURE (°C) 350 300 250 200 150 {00 UNCLASSIFIED DWG 146354 TWO LIQUID PHASES IN 114 m U02504 IN 0427 m U02804 | | | | l | 10 20 30 40 Y,(80,); (wt %) Fig. 5.26. Solubility of Y2(504)3 in UO,50, Solutions. 181 5.27. Solubility of Ag,50, in U0,S0, Solutions E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 (1957); also The Solubility of Several Metal Sulfates at High Temperatures and Pressures in Water and in Agueous Uranyl Sulfate Solution, ORNL CF-55-7-69 (declassified Aug. 23, 1955). See comments in Sec 5.23. UNCLASSIFIED DWG. 14645A o l., 250 — /. 200|— ] __ /o _ e ® d T 50— | ’;C_x IN 0427 m U050, b = - _ IN 1.35 m UO_SO _ 2°Va IN H o 100 / - 'S B — BARRE ] 50— — R TN A A N A O M A I I O O 205 5 10 15 18 AgZSO4 (WT %) Fig. 5.27. Solubility of Ag,50 , in UD,50, Solutions. 182 5.28. Solubility ot 250°C of BaSO in U0 ,50,~H,0 Solutions E. V. Jones, M. H. Lietzke, and W. L. Marshall, J. Am. Chem. Soc. 79, 267 {1957); also The Solubility of Several Metal Sulfdtes at High Temperatures and Pressures in Water and in Aqueous Uranyl Sulfate Solutions, ORNL CF-55-7-69 (declassified Aug, 23, 1955). Solutions were filtered from solids at 250°C to obtain the solubility of BaSO, in H,0. Counting of radioactive barium was used to determine the solubility concentration. The very large effect of UO,S0, must be noted and indicates considerable solvation of other species by aqueous UO,S0,. UNCLASSIFIED DWG. 15330 A 100 1 T — 1 T 1 ' 4 - / ay L = /./ - 10 — o — @ BaSO4{mx10°) SOLUBILITY 0.2 0.4 06 0.8 1.0 1.2 1.4 VMOLALITY UO,S0, Fig. 5.28. Solubility at 250°C of BuSO4 in UO 2504—H20 Solutions. 183 5.29. Solubility of H, WO, in 0.126 and 1.26 M UO,SO, C. E. Coffey, W. L. Marshall, and G. H. Cartledge, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 96-99. The data shown in the figures were obtained by direct sampling of equilibrated solutions, by the filter bomb method, and by the synthetic method described previously in Sec 5.8. In 0,126 M UQ,S0, the solubility of H2WO4 first shows a positive temperature coefficient of solubility and then, above 100°C, a negative coefficient of solubility. In 1.26 M UO,50, the temperature coefficient of solubility is positive up to 285° the temperature at which two liquid phases form — a characteristic of U02$O4—H20 solutions. UNCLASSIFIED DWG. 21760B 300 ® ° 000 o 5200 R o E ( ) b / 3 . * L SOLUTION\ |,/ SOLID + SOLUTION = 1 = 100 1) /. 0 0 1.0 2.0 3.0 SOLUBILITY (MOLARITY OF H,WO, x 10°) Fig. 5.29a. Solubility of H2W04 in 0.126 M U02504. 184 TEMPERATURE (°C) 300 200 100 UNGLASSIFIED DWG. 24757 B | TWO LIQUID PHASES /b o] SOLUTION QO (o] O SOLID + SOLUTICN C 10 20 40 SOLUBILITY ( MOLARITY OF H,WO0, x10°) Fig. 5.295. Solubility of H,WO , in 1.26 M U0 ,50,. 185 5.30. Phase Stability of |'|2WO4 in 1.26 M UOF, C. E. Coffey, W. L. Marshall, and G, H, Cartledge, HRP Quar, Prog. Rep. Oct. 31, 1953, ORNL-1658, p 96-99. The methods of solubility and stability determination were the same as for analogous studies of H,WO, in UO,S0, (Sec 5.29). The data on the figure as drawn show temperatures at which hydrolytic precipitation of an unidentified solid phase occurs from solutions stable at lower temperatures, 186 TEMPERATURE (°C) 300 200 100 UNGLASSIFIED SOLUBILITY (MOLARITY OF H,WO, x 10%) DWG, 21761 B ° / SOLID + SOLUTION // oo /" y SOLUTION 10 2.0 3.0 4.0 50 Fig. 5.30. Phase Stability of H,W0 , in 1.26 M UO,F,, 187 5.31. The System UO,(NO,),~H,0 1. Reported in full by W, L., Marshall, J. S, Gill, and C. H. Secoy, Chem. Quar. Prog. Rep. March 31, 1951, ORNL-1053, p 22-25, 2. Reported in part by W, L. Marshall, J. S. Gill, and C, H. Secoy, J. Am. Chem. Soc. 73, 1867 (1951). As in the case of the system UO,50,-H,0, hydrolysis occurs at high temperatures and low concentrations, resulting in precipitation of UO;:H,0 from stoichiometric UO,(NO,), solutions, In addition, decomposition of NO,™ occurs at elevated temperature to produce an equilibrium vapor phase of nitrogen oxides. Letter A represents a region of complete solution. Data at low temperature up to point F were obtained by direct analysis of equilibrated solutions, whereas the high-temperature data were obtained by the visval-synthetic method described in Sec 5.8. 188 TEMPERATURE (°C) 400 350 300 250 200 150 100 50 UNCLASSIFIED DWG. 10868 O = PRECIPITATION LIMITS e = VAPOR PHASE COLORATION T 10 20 30 40 50 60 U02 (N03)2 (wt °/°) Fig. 5.31. The System U02(N03)2—H20. 189 5.32. Phase Equilibria of U0, and HF in Stoichiometric Concentrations (Aqueous System) W. L. Marshall, J. S. Gill, and C, H. Secoy, J. Am. Chem. Soc. 76, 4279 (1954), The two-liquid-phase region and the region of ‘‘basic’’ solid solution + saturated solution are in actuality segments of the three-component system UOa—HF—HzO, in which the equilibrium phases are nonstoichiometric with regard to UO,F,. This system is somewhat analogous to the system UO,~H,50,-H,0 (see Sec 5.7). UNCLASSIFIED ORNL—LR—DWG 19098 400 f 1 | I T \ T T T T T soLipksuper crimical FLuo | 11 1] | —A—A— A A—A—A——A— A ] 350 | y UO,F, - 2H,0+LIQUID I b U . - - —— . i BASIC SOLID © y UO,F, - 2H,0 300 |—SOLUTION+ ¢~ F + SATURATED SATURATED SOLUTION | SOLUTION ° / \ ® 250 — / L) @ ’ + 2 — — 7 oo (] [ J A — o [ &2 200 — e &J K e u_x(f’ = - UNSATURATED SOLUTION S'S & 150 — Ceo | = / L — - /. 100} o /6 ~ Oe@ N A OUR DATA g' 50 | © DATA OF DEAN & @ 2 UOF, - 2H0 ® DATA OF KUNIN /@ + SATURATED | @ SOLUTION § 0 - O3 ICE + SATURATED SOLN. O-0-0—000 ¢ © SO TN T N S O N I S N S S 0 10 20 20 40 50 60 70 80 90 WEIGHT PERCENT AS UOQ,F, Fig. 5.32. Phase Equilibric of UO , and HF in Stoichiometric Concentrations (Aqueous System). 190 5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Selutions W. L. Marshail, J.S. Gill, and H. W, Wright, HRP Quar. Prog. Rep. May 15, 1951, ORNL-1057, p 112-15, The data were obtained for the most part by equilibrating solutions of known concentration in sealed tubes for various times at different temperatures. Phase changes were observed visuvally, UNGLASSIFIED 350 DWG 1232 | [ ! ] | | i ] — — — 300 - 250}— -8 -— - // a— - 200}— | (&) s A [T ] 1 | = 1 w |50_ - [/ = w l- 100 b L\° CURVE A | MOLAR Hy PO, _ \ CURVE B 2 MOLAR Hy PO, /B/ CURVE G 3 MOLAR Hy PO, 7 O®m OUR DATA 50— 84 KUHN AND RYON — o LOS ALAMOS U MORSE o | | | | | | I 0] | 2 3 4 5 6 7 8 9 UO3 MOLARITY Fig. 5.33. Solubility of Uranium Trioxide in Orthophosphoric Acid Solutions. 191 5.34, Solubility of Uranium Trioxide in Phosphoric Acid ot 250°C J. S. Gill, W. L. Marshail, and H. W, Wright, HRP Quar, Prog. Rep. Aug. 15, 1951, ORNL-1121, p 119-21, Solution and solid mixtures were equated at 250°C in sealed glass tubes. The tubes were cooled rapidly to room temperature, and the solution and solid phases were analyzed, The slow reversibility of equilibrium conditions made this procedure possible. UNCLASSIFIED DWG. 13000 O ANALYTICAL ® PREVIOUS SYNTHETIC ? 0.8 / o B SOLUBILITY OF UD, (M) 0 1 2 3 4 5 6 7 8 CONCENTRATION OF H,PO, (M) Fig. 5.34. Solubility of Uranium Trioxide in Phosphoric Acid at 250°C. 192 5.35. Solubility of UO, in H,PO, Solution B. J. Thamer et al., The Properties of Phosphoric Acid Solutions of Uranium as Fuels for Homogeneous Reactors, LA-2043 (March 6, 1956); W. L. Marshall, J. S. Gili, and H. W. Wright, HRP Quar. Prog. Rep. May 15, 1951, ORNL-1057, p 112-15; and J. S. Gill, W. L. Marshall, and H. W. Wright, HRP Quar. Prog, Rep. Aug. 15, 1951, ORNL-1121, p 119-21, This figure represents a compilation from the data of B. J. Thamer et al. of Los Alamos and W. L. Marshall et al. of Oak Ridge National Laboratory. UNCLASSIFIED ORNL-LR-DWG 29316 N —SOLID PHASE IS / uoz( H2P04)2-3H20 { / (25°C) — - SOLID PHASE IS / \\ U0, HPO," 4H,0 // / r (25°-400°C ;= 7/ 505 /1 f(250°C)| \ : N yAY/ERRIEN 2 / N / 02 / ! 0.4 10 2 5 10 20 PO, MOLARITY Fig. 5.35. Solubility of UD, in H;PO , Solution. 193 5.36. The System U0,Cr0 ,~H 0 1. F. J. Loprest, W, L. Marshall, and C, H, Secoy, J. Am. Chem. Soc. 77, 4705 (1955). 2, W, L. Marshall, HRP Quar. Prog. Rep. March 31, 1953, ORNL-1554, p 105-6. The solid phases are U02Cr04-5]/2H20 (A) and UC,CrO,.xH,0 (B). Curve rs represents the boundary of a region in which hydrolytic precipitation of a basic uranyl chromate occurs. In the same concentration range the dichromate, U02Cr207, is stable to the critical temperatuyre and apparently dissolves in the supercritical fluid (ref 2), UNCLASSIFIED ORNL-LR-DPWG 5144A 140 AN NON-BINARY {30 +—SOLID + LIQUID . — }/% 120 — — B /1/ 0O — o - L//I ¥ B + LIQUID 100 |— T —] 90 — LIQUID ) ] . TEMPERATURE (°C) A+ B A + LIQUID A +ICE —10 | | R | — 0 {0 20 30 40 50 60 70 8O 9C 100 UO,CrO4 (wt %) Fig. 5.36. The System U02Cr04--H20. 194 5.37. Variation of Li,CO, Solubility with UO,CO; Concentration at Constant CO, Pressure (250°C) 1. F. J. Loprest, W, L, Marshall, and C. H. Secoy, HRP Quar. Prog. Rep. July 31, 1955, ORNL-1943, p 227-35, 2. W, L. Marshall, F. J. Loprest, and C. H. Secoy, HRP Quar. Prog. Rep. [an. 31, 1956, ORNL-2057, p 131-32, The solubility relationships in the figure indicate strong complexing of U0,CO, with Li,CO, under CO2 pressure. The formation of HCO,™ species in solution is indicated. UNCLASSIFIED ORNL-LR-DWG {1182A g 7/ / 7/ 1.000 I 0.800 QO} \ SLOPES: ® 3. .37 moles of Li per mole of U 0.200 (LipCO5 IS SOLID PHASE) A 4.44 moles of Li per mole of U | AT ISOBARIC INVARIANT : | i ! 1 0 | O 002 004 006 008 010 042 0144 016 048 U0,CO4 (m) Fig. 5.37. Variation of Li,CO, Solubility with U02C03 Concentration at Constant CO, Pressure (250°C). 195 5.38. The System Li,0-U0,~CO,~H,0 at 250°C and 1500 psi 1. F. J. Loprest, W. L. Marshall, and C, H. Secoy, HRP Quar. Prog. Rep. July 31, 1955, ORNL-1943, p 227-35, ORNL-2057, p 131-32, 2. W. L. Marshall, F. J, Loprest, and C, H. Secoy, HRP Quar. Prog. Rep. [an, 31, 1956, As CO, pressure is increased, the area of complete solution (indicated by the shading) increases. As temperature is increased, the solution area decreases, UNCLASSIFIED ORNL-LR-DWG 113428B H,50 100 {O 90 Fig. 5.38. The System Li20-—U03—C02—H20 ot 250°C and 1500 psi, 196 5.39. The System Th(NO,),-H,0 1. Reported in full by W. L. Marshall, J. S. Gill, and C. H. Secoy, HRP Quar. Prog. Rep. Nov. 30, 1950, ORNL-925, p 279-90. 2. W. L. Marshall, J. S. Gill, and C. H, Secoy, . Am. Chem. Soc. 73, 4991 (1951), Hydrolytic precipitation of ThO, and thermal decomposition of NO,™ in this system occur in an analogous monner to the reactions occurring in the system UOZ(NOB)z-—-Hzo (see Sec 5.31). At higher temperatures the two-component system in actuality must be considered in terms of the three components ThO,, HNO,, and H,0. UNCLASSIFIED DWG. 9967 2501+ 225 200 175 150 125 (@] -] i T 100 '—- ! & / n O SOLUBILITY DATA I = 75 ® DEGOMPOSITION PREGIPITATION I - A "MUSH" TEMPERATURES / | O SUPER COOLING d / 50 n | 25— A o _25 — B _50 }— | | | 1 | | | | | 0 10 20 30 40 50 60 70 80 90 100 WEIGHT PERGENT Th{NO3)4 Fig. 5.39. The System Th(N03)4—H20. 197 5.40. Hydrolytic Stability of Thorium Nitrate~Nitric Acid and Uranyl Nitrate Solutions 1. W. L, Marshall and C, H, Secoy, HRP Quar. Prog. Rep. Oct. 31, 1953, ORNL-1658, p 93-96. 2, W. L. Marshall, J. S. Gill, and C. H. Secoy, Chem. Quar. Prog. Rep. March 31, 1951, ORNL-1053, p 22-25, The data used to draw the individual curves were obtained by observations at various tem- peratures of tubes that contained different solutions of known concentration. The procedure was analogous to that used for obtaining data for Fig., 5.33. The curve for hydrolytic precipi- tation of UG,(NO,), is taken from ref 2, UNCLASSIFIED ORNL-LR-DWG.21759B 380 | . NO,/U =2.0 ~ 300 }- - O ) NOs/Th= 5.47 Lol 260 — T NO,/Th=6.65 l_ = i 220 — = W yan NO,/Th=4.0 | 140 |- - 100 | ' 0 1,0 2.0 THORIUM, URANIUM (M) Fig. 5.40. Hydrolytic Stability of Thorium Nitrate=Nitric Acid and Uranyl Nitrate Solutions. 198 5.41. The System ThO,~Cr0,~H,0 ot 25°C 1. H. T. S. Britton, J. Chem. Soc. 123, 1429 (1923), 2. W. L. Marshall, F, J, Loprest, and C, H, Secoy, HRP Quar. Prog. Rep. Jan. 31, 1955, ORNL-1853, p 205-6. The phase diagram at 25° was determined by Britton. Points 1-7 indicate compositions investigated at high temperature by Marshall, Loprest, and Secoy. These solution compositions were phase stable up to 160°C for point 7 and 320°C for point 1. UNCLASSIFIED ORNL-LR-DWG 5020A AA‘ A JANAV 7 YATA AVAVAV i ey JAVAVAY 171 11 JAVAVAVAVA' .AV. VAT AV R Tho, »CrO Fig. 5.41. The System ThOz-Cr03—H20 at 25°C. Compositions are in weight per cent, 3 199 5.42, Phase Stability of ThO ,~H PO ~H,0 Solutions at High Concentrations of ThO, W. L. Marshall, experimental data in ORNL research notebook 2881, p 35 (May 1953). Solutions of appropriate concentrations were prepared and analyzed. These solutions were sealed in glass tubes and shaken at various temperatures for times varying from 1 hr to several days. In this manner the phase stability boundaries with respect to concentration and temper- ature were established. At first inspection of the figure it is surprising that more ThO2 can be dissolved per liter at the lower H,PO,/ThO, ratio than at the higher ratio. Actually, there is a physical volume limitation due to the high fractional volumes occupied by ThO2 and H,PO, at these concentrations. As any solution is diluted with H,O, hydrolysis of thorium in solution occurs. At room temperature, solutions in which the H,PO,/ThO, ratio is 5:1 are gels, whereas 10:1 ratio solutions are still fluid. UNGLASSIFIED ORNL-LR-DWG 38529 400 I # I [ | \1] l 350+ \‘! — \” \l, : Y = D W 300 |- ™ / = / P | HYDROLYTIC HYDROLYTIC < SOLUTION SOLUTION PREGIPITATION PRECIPITATION i CIPITATION ™ "ReGION Al REGION a 250 — o / - o 7 X = BOUNDARY GURVE # BOUNDARY CURVE FOR 40:1 MOLE " FOR 5: MOLE 200 — Y RATIO, HyPO,/ThO, 7 RATIO, — N g Hy PO,/ ThO, \/ y/o 150 I S N N i L1 0 100 200 300 400 500 600 700 80O 900 4000 GRAMS ThO» PER LITER OF SOLUTION (25°C) Fig. 542. Phase Stability of ThO ,—H 3P0 ;~H,0 Solutions at High Concentrations of ThO » 200 ACKNOWLEDGMENT Acknowledgment is made to the following for permission to reproduce copyrighted material: American Ceramic Society American Institute of Mining, Metallurgical, and Petroleum Engineers Analytical Chemistry Journal of Chemical and Engineering Data Journal of Pbysical Chemistry Journal of the American Chemical Society U.S. Atomic Energy Commission 201 MO - MO O IA RPN P EENVNENERACIN T OOMPOMENACOTP - TNOOAC QIR . Ackley . Adams . Adamson . Alexander . Allen . Baes Barton . Beall . Bell . Betterton . Billings Billington . Blake . Blakely . Blanco . Blankenship lander . Blizard . Blood . Boch . Bohlman . Bolt . Boyd . Bredig . Bresee . Briggs . Bronstein . Brown . Brown . Browning . Bruce . Burch . Buxton antor . Carr . Carter . Cartledge Cathers . Center . Chapman . Charpie . Cheverton . Claiborne . Clark . Coleman . Compere . Cox . Crawford . Croft . Culler INTERNAL DISTRIBUTION 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 63. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 33. 84. 85-89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. MOEOTIP AP IMMETO OOV IMEC P A T E =N IP DA PETIrA-ED0C-0 - ORNL-2548 Chemistry — General T1D-4500 (15th ed.) . Culver . Cuneo . Cunningham . Davis Davis . Davis . DeVan . Dickison . Doney . Doss Drury . Dworkin . Emlet (K-25) . English . Eorgan . Evans . Ferguson Fowler . Fraas . Friedman . Frye, Jr. . Gabbard Gall Gill . Gillette . Gilpatrick . Googin (Y-12) Greeley . Gresky . Griess . Grimes uth . Haas . Harley Harritl . Harris . Haubenreich . Hebert . Hemphill Hill . Hise . Hoffman . Hoffman . Hollaender . W. Horton . S. Householder . Insley . H. Jenks . T. Jones . V. Jones EMOErTZPpOIPOANALTIOTVAII>P I MBEMOBLV>TIAIN-0MNO® 203 204 109. 110. 111 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142, 143-147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. MR APE-AAAO - PAANEEC AT AIEE-PERA-AALATZIIACOPCZPIIZOOTE . Jordan . Kasten . Keitholtz . Keim . Kelley . Kelley . Kinyon . Krohn . [.ane anger . Lawson . Lee, Jr. . Leed . Leuze . Lewis . Lietzke . Lincoln Lind . Lindauer . Livingston Long . Lorenz . Lowrie T>»rPp=C 4 U0==0T mr r—owDrITITmMmmmaoe . 1. Lundin Lyon . McBride . McDonald McDuffie . McLain . McNees . MacPherson . McVay McWherter . Manly . Marshall . Meadows . Metcalf . Milford Miller . Miller Morgan . Morgan . Moore . Moore . Murray (Y-12) . Nelson . Nessle . Newton . Overholser . Parsly, Jr. . Pearson . Peebles ZrMEOM-r IrmNO=E-7TITMrroAZer»> nwoZ 165. 166. 167. 168. 169. 170. 171 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204-213. 214. 215. 216. 217. 218. 219, 220, 221. 222. 223. 224. 225. OO =ETNMAE-TUITUDAMPECC-ONRATI T PPrEZAZIIMAAMCOONISS-NMIIPAO OV P>EZICD . Phillips . Phillips (Y-12) . Picklesimer . Rainey Redman Reed . Reyling . Richardson . Robertson Ryon . Savage Savage . Schimmel (Y-12) . Schmitt . Schreyer (Y-12) . Seagren . Secoy . Segaser Shaffer . Shank . Sheil . Shields . Shipley . Silverman . Skinner TPEOUNETIPOACD COUOvTOexT I Im= . Slusher . V. Smith . T. Smith, Jr. . H. Snell . A, Soldano Spiewak . H. Stone . A. Strehlow . J. Sturm . D. Susano E. Sutherland A. Swartout . Taboada . H. Taylor . E. Thoma . G. Thomas . Tobias . S, Toomb . B. Trauger Truitt . E. Unger . Van Winkle . C. VonderLage . T. Ward . M. Watson . S. Weaver . F. Weaver 226. A. M. Weinberg 238. W. 0. Milligan (consultant) 227. K. W. West 239. J. E. Ricci (consultant) 228. M. E. Whatley 240. G. T. Seaborg (consultant) 229. G. C. Williams 241. E. P. Wigner (consultant) 230. C. E. Winters 242. Biology Library 231. H. W. Wright 243-244. Central Research Library 232. J. P. Young 245. Health Physics Library 233. F. C. Zapp 246-265. Laboratory Records Department 234. P. H. Emmett (consultant) 266. Laboratory Records, ORNL R.C. 235. H. Eyring (consultant) 267. Reactor Experimental Engineering Library 236. D. G. Hill (consultant) 268. ORNL = Y-12 Technical Library, 237. C. E. Larson (consultant) Document Reference Section EXTERNAL DISTRIBUTION 269-270. Stanford Research Institute, Menlo Park, Calif. (1 copy ea. to D. Cubicciotti and J. W, Johnson) 271-272. National Lead Co., P. O. Box 158, Cincinnati 39, Ohio (1 copy ea. to R. E. DeMarco and K. Notz) 273. Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St., Washington 8, D.C. (J. W. Grieg) 274. Mound Laboratory, Miamisburg, Ohio (E. F. Eichelberger) 275-276. Minnesota Mining and Manufacturing Co., Central Research Dept., 2301 Hudson Rd., St. Paul 9, Minn. (1 copy ea. to J. R. Johnson and G. D. White) 277. Chemical Separations and Development Branch, Nuclear Technology, Division of Reactor Development, AEC, Washington 25, D.C. (F. Kerze, Jr.) 278. Dept. of Chemistry, Brown University, Providence 12, R.Il. (C. A. Kraus) 279. Mallinckrodt Chemical Works, Uranium Division, P.O. Box 472, St. Charles, Mo. (C. W. Kuhlman) 280. Portland Cement Association Fellowship, National Bureau of Standards, Washington 25, D. C. (E. M. Levin) 281-282. National Carbon Research Laboratories, P.O. Box 6116, Cleveland, Ohio (1 copy ea. to G. W. Mellors and S. Senderoff) 283. College of Mineral Industries, Pennsylvania State University, University Park, Pa. (E. F. Osborn) 284. l.os Alamos Scientific Laboratory, P.O. Box 1663, Los Alamos, N, M. (B. J. Thamer) 285. Dept. of Physics, University of Chicago, Chicago, Ill. (W. H. Zachariasen) 286. Reaction Motors Division, Thiokol Chemical Corp., Denville, N.J. (F. L. Loprest) 287. National Bureau of Standards, Washington 25, D. C. {(H. F. McMurdie) 288. U.S. Geological Survey, Washington 25, D. C. (G. W. Morey) 289. National Carbon Co., Union Carbide Corporation, Parma, Ohio (F. E. Clark) 290. Division of Research and Development, AEC, Washington 291. Division of Research and Development, AEC, ORO 292. Division of Reactor Development, AEC, Washington 293. Division of Reactor Development, AEC, ORO 294. Qak Ridge Institute of Nuclear Studies, Oak Ridge 295-851. Given distribution as shown in TID-4500 (15th ed.) under Chemistry-General category (75 copies - OTS) 205