» AEC RESEARCH AND DEVELOPMENT REPORT c-54 Reacrors-Specia Features of Aircraft Reactors ORNL MASTER COPY A PHYSICAL PROPERTY SUMMARY FOR . ANP FLUORIDE MIXTURES S. |. Cohen W. D. Powers N. D. Greene: | 3 N ;. ¥ T ' » il : g; X i ‘- - 1 2 o 3~ § v OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE NUCLEAR COMPANY A Division of Union Carbide and Carbon Corporation POST OFFICE BOX P * OAK RIDGE, TENNESSEE ST g o e N ! ' . - | | ! | R . R ) T LEGAL NOTICE This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Mgkes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report. As used in the cbove, ‘'person acting on behalf of the Commission’ includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or centract with the Commission, 5. ol ORNL-2150 C-84 Aircraft Reactors This document consists of 120 pages. Copy {p of 326 copies. . Series A. Contract No. W-Th05, eng 26 Reactor Experimental Engineering Division A PHYSICAIL PROPERTY SUMMARY FOR ANP FLUORIDE MIXTURES by S. I. Cohen W. D. Powers N. D. Greene patE 1ssuep AUG 2 3 1956 OAK RIDGE RATIONAL ILABORATORY Operated by UNION CARBIDE NUCLEAR COMPANY A Division of Union Carbide and Carbon Corporation Post Office Box Y Oak Ridge, Tennessee -* e » oy OO O O L o+ 11. 12. 13. 1h. 15. 16. . . HUEOEEEREOORGON TS . 1. D. AQ G. A. Abbatiello Affel Agron G. Alexander M. Adamson C. Amos A. Bredig E. Boyd B. Briggs . Bohlmann Bender F. Boudreau E. Browning S. Bettis M. Blood J. Buttram P. Blakely F. Blankenship Blander P. Blizard R. Bruce S. Billington . D. Bsumann R. Baldock . Jd. Barton . L. . R. . Cantor Culler Croft E. Center (K-25) H. Clampitt R. Cuneo Cohen M. Copenhaver Cowen S. Carlsmith R. Chambers G. Cobb B. Cottrell J. Cromer A. Christy D. Callihan E. Clifford M. Cooper Carrison H. Cook ~ii- ORNL-2150 LY e o C-84 - Reactors-Special Features of Aircraft Reactors M-3679 (18th ed.) INTERNAL DISTRIBUTION 46, F. by, J. 48. L. 49, E. 50. W. 51. L. 52. J. 53. E. 54, W. 55. A, 56. W. 57. H. 58. D. 59. M. 60. R. 61. J. 62. H. 63. R. 6h. W. 65. N. 66. D. 67. H. 68. R. 69. W. 70. H. 71. E. 72. D. T3. W. Th. G. 75. J. 76. E. 77. F. 78. F. 79. M. 80. F 81. B. g82. p. 83. R. 84, A. 85. R. 86. R 87. J 88. ¢ 89. 8. DR C. H. W. J. E. Doss Devan Doney Dytko Eister Emlet (K-25) Eorgan Epler Ergen . Fraas . Furgerson Friedman Ferguson Feldman . Gilbert Gregg Goeller Gray Gambill Greene . Gregory Gray Gray . Grimes . Hoffman . Hoffman Hamilton Jordan Keilholtz Keyes Ketchen Kertesz A, To e LO Knox Kelley Keller Kinyon R. B. S. B. . N. . A. . G. 9G. F. E._ Lypch Kasten Korsmeyer Kitzes Lindsuer Lyon Lane Lawson e D R T - i - g T - e dwmg u ' s . e m -iii- A < e 9l. M. E. Lackey 128. B. J. Sturm 92. G. L. Muller 129. G. F. Schenck 93. R. E. MacPherson 130. M. J. Skinner ok. W. D. Manly 131. B. E. Thoma . 95. L. A. Mann 132, N, V. Smith 9. E. R. Mann 133. 0. Sisman 97. C. Mantell 134. G. P. Smith 08. W. B. McDonsld 135. C. D. Susano 99. F. R. McQuilkin - 136. R. J. Sheil 100. R. V. Meghreblian 137. A. W. Savolainen 101. R. P. Milford 138. H. W. Savage 102. R. E. Moore 139. R. D. Schultheiss 103. R. E. Meadows 140. W. L. Scott 104k, H. P. Metealf 1k1. 8. C. Shuford 105. A. J. Miller 142, L. E. Topol 106. A. S. Meyer, Jr. 1k3. D. G. Thomas 107. J. R. McNally, Jr. 14k, J. Truitt 108. F. C. Maienschein 145, D. B. Trauger 109. H. G. MacPherson 146. W. F. Vaughan 110. J. P. Murray (Y-12) 147. E. R. Van Artsdalen 111. G. J. Nessle 148. G. D. White 112. R. F. Newton 149. G. M. Watson 113. R. H. Nimmo 150. W. T. Ward 114. L. G. Overholser 151. J. C. Wilson 115. R. W. Peelle 152. J. C. White 116. M. B. Panish 153. J. L. Wantland 117. L. D. Palmer 154k. C. S. Walker 118. H. F. Poppendiek 155. A. M. Weinberg 119. W. D. Powers 156. G. D. Whitman 120. A. M. Perry 157. C. E. Winters 121. M. W. Rosenthal 158. M. M. Yarosh 122. REED Library 159. J. Zasler 123, J. D. Redman 160. D. Zucker 124, M. T. Robinson 161-162. Central Research Library 125, J. A. Swartout 163-164. ORNL - Y-12 Technical Library, 126, I. Spiewak B Document Reference Section 127. B. A. Soderberg 165-200. Laboratory Records Department 201. Leboratory Records, ORNL R.C. EXTERNAL DISTRIBUTION 202, AF Plant Representative, Burbank 203. AF Plant Representative, Baltimore 204, AF Plant Representative, Marietta 205-207. AF Plant Representative, Santa Monica 208-209. AF Plant Representative, Seattle 210. AF Plant Representative, Wood-Ridge 211. Air Materiel Area 212, Air Research and Development Command (RDGN) 213. Air Technical Intelligence Center 214. Buresy of Aeronautics, General Representative S © SR SV A agah 215. 216-218. 219. 220. 221. 222, 223. 22h-230, 231-232, 233-234, 235. 236. 237. 238, 239, 240. 2h1, 2h2-2Ls5, 2L 247, 248, 249-250. 251. 252. 253. 25k, 255. 256-258, 259, 260. 261, 262, 263. 264-275. 276. 277. 278. 279. 280. 281. 282, 283-300. 301-325. 326. ajv- Allison Division ANP Project Office, Fort Worth Albuguerque Operations Office Argonne National Laboratory Armed Forces Special Weapons Project, Sandia Armed Forces Special Weapons Project, Washington Assistant Secretary of the Air Force, R&D Atomic Energy Commission, Washington (1 copy to R. H. Graham) Battelle Memorial Institute (1 copy to E. M. Simons) Bettis Plant (WAPD) Bureau of Aeronautics Bureau of Aeronsutics (Code 24) Chicago Operations Office Chief of Naval Research Chicago Patent Group Convair-General Dynamics Corporation Engineer Research and Development Laboratories General Electric Company (ANPD) Hartford Area Qffice Headquarters Air Force Special Weapons Center Idaho Operations Office Knolls Atomic Power Laboratory (1 copy to W. J. Robb, Jr.) Lockland Area Office Los Alamos Scientific ILaboratory National Advisory Committee for Aercnautics, Cleveland National Advisory Committee for Aeronautics, Washington Naval Air Development and Material Center Naval Research Laboratory (1 copy ea. to C. T. Ewing and R. R. Miller) New York Operations Office North American Aviation, Inc. (Aerophysics Division) Nuclear Development Corporation of America OfPice of the Chief of Naval Operations (OP-361) Patent Branch, Washington Pratt & Whitney Aircraft Division (Fox Project) (1 copy ea. to C. C. Bigelow, A. I. Chalfant, M. S. Freed, W. S. Farmer, M. Hoenig, S. M. Kepelner, and R. I. Strough and Fox Project Library) R. G. Rowe, P.0O. Box 481, Van Nuys, California San Francisco Operations Office Sandia Corporation School of Aviation Medicine Sylvania Electric Products, Inc. USAF Project Rand University of California Radiation laboratory, Livermore Wright Air Development Center (WCOSI-3) Technical Information Service Extension, Osk Ridge Division of Research and Development, AEC, ORO sl ‘ gy FOREWORD For the past five years the Heat Transfer and Physical Properties Section of ORNL has investigated some of the physical properties of fluoride mixtures of specific interest to the ANP Project. Particular attention has been given to the "thermal properties”, namely, the density, heat capacity, viscosity, and thermal conductivity, because of the important role that they play in the heat and momentum transfer processes in ANP reactors. A limited study of the electrical conductivity and surface tension of molten fluorides was also conducted. During the first few years of this research task, & large part of the group effort was directed toward the investigation and evaluation of techniques and devices by which these properties could be measured accurately in the temperature range of about 1000°F to 1800°F. The necessity of operating equipment at such high temperature levels as well as in controlled inert atmospheres often made it impossible to use prosaic property equipment. Consequently many new devices had to be developed. The earlier summaries of the physical properties measurements for fluorides were presented in the form of ORNL memoranda; some of these data were designated as "preliminary" because measuring techniques were still in the process of being refined and because the chemical purities of fluoride samples were at times inadequate. The experimental data suwmarized in this report in most cases were obtained by two independent measurement technigques; also, it is believed that most of the samples used were relatively pure. Although much progress has been made in the art and science of making these difficult measurements, further refinements should be and are being made, particularly in the case of thermal couductivity measurements for liquids. M ke | -vi- General interpretations and correlations of these physical property data in terms of the known theoretical and semi-theoretical relations have been and are being made for the fluoride measurements. Such studies have already been reported in some of the topical reports on individual properties (see for example, ORNL 1702 and 1956). Additional topical reports on thermsl properties are in the process of preparation. In general, the molten fluorides &are good heat transfer media because their thermel conductivities, thermal capacities per unit volume, and densities are high and their viscosities and vapour pressures are reasonable; the following tabulation gives the approximate ranges over which each of the thermal properties varies: thermal conductivity: 0.5 to 2.6 Btu/nr-ft°-(°F/ft) thermal capacity per unit volume: 0.7 to 1.3 cal/cms-oc density: 2 to 4.5 gm/cc viscosity: 2 to 12 centipoise These thermal properties influence the heat and momentum transfer in reactor cores and heat exchangers in more or less complicated ways depending upon the system geometry and the fluid flow regime. Hence, it is not possible to rate a heat transfer fluid on the basis of its properties alone. However, detailed studies of the effectiveness of molten fluorides as reactor coolants and fuels (for a range of system geometries and flow conditions) have been conducted and presented in the ANP literature (see for example references 48 and 49). Within the last year or two, several externsl organizetions have initiated thermal property research on flucride mixtures. The National Bureau of Standerds and the Naval Resesarch Laboratory have made heat capacity measurements and the -vii- ! . T M W, Mound Isboratory has made density and viscosity determinations. The Battelle Memorial Institute and the Mound Laborstory have started thermal conductivity research on these liquids. The Heat Transfer and Physical Properties Section wishes to acknowledge the cooperation received from two of the Laboratory's Divieions. The former Materials Chemistry Division prepared the meny samples which were needed in the study; valuable information on melting temperatures, vapor pressures, and phase diagrams of molten fluoride mixtures were also supplied. The Metallurgy Division performed complicated welding tasks in connection with some of the physical property devices. . 1%%10% H. F. POpQEQFiek A. B. c. D. E. F. G- H. -viii- TABLE OF CONTENTS lu----.—-fl-----w—-----muu-——------—-------mfl-----—-u-—-- - ek G S TABLE IT: TABULATION OF MIXTURES ACCORDING TO CHEMICAL SYSTEM TABULATED FLUORIDE PROPERTY DATA= = o o mm s o oo s oo eome e VISCOSTITY WORKSHEET - mm e o o s o e e e e s e e CONCLUDING REMARKIS = === = mm s e e e e e e REFERENCES = = = e e e e e e e e e e —————— Al Page + W o o ~N o0 O W 109 110 111 e .!7‘&95‘ e SUMMARY This report presents a summary of certain physical properties that have been determined experimentally on the fluoride mixtures that have been formulated within the ANP program &t ORNL (Refs. 1, 2). These properties include the density, enthalpy, heat capacity, heat of fusion, thermal conductivity, viscosity, Prandtl number, electrical conductivity and surface temsion. In addition to the experimental data, values'have been predicted for the heat capacity and density of the other mixtures from the correlations of these properties. ZEstimates of the viscosity have also been made for a number of the mixtures on which no experimental data were available. I '!!Illlg -2- - INTRODUCTION This report presents a compilation of certain physical properties that have been determined experimentally or predicted from correlations of experimental data for mixtures of fluorides that have been formulated within the ANP program (Ref. 1, 2) Each individual page of the tabulation is devoted to & summary of all of the known properties for a mixture together with the composition in mole and weight percent, the average molecular fieight; and the liquidus temperature. This introductory section will present brief discussions of each of the pr0per£ies, providing short descriptions of the experimental systems used and statements regarding the accuracy of the data. Also included In this section is a tabulation of the mixture numbers arranged according to chemical system. A. Density. Density measurements have been made on sixteen molten fluoride mixtures. In addition, about nine mixtures containing BeF2 have been studied at Mound Laboratoryl. Measurements were made by the buoyancy principle using & plummet suspended in the molten salt from an analytical balance. An error analysis indicated that the values reported are within +5% of the true values. The results are reported in gms/cc as a function of °C and in lbs/ft3 as a function of °F. ;A large number of fluoride mixtures other than those reported here have been studied at Mound Iaboratory. However, the contents of this report will be limited to mixtures which have been assigned composition numbers within the ANP project at this Laboratory. Work at Mound is being carried out by B. C. Blanke, aided at present by E. N. Bousquet and E. L. Murphy and in the past by L. V. Jones, K. W. Foster and R. E. Vallee. The density (and viscosity) program there at present involves a thorough investigation of systems containing the alkall fluorides with BeF2 and UF) » h gy -3- o Predicted values are given for all the mixtures for which densities have not been experimentally studied. The values given for non-BeF2 mixtures are based on an empirical correlation using the experimental data available (Ref. 16). The densities of mixtures containing BeF2 have been predicted from a similarly developed but slightly different correlation using the experimental data taken on BeFe-bearing mixtures at Mound Laboratory. These relationships correlate the experimental values to within +5% and it is felt that the predicted values are of comparable accuracy. So0lid densities at room temperature have been measured for fifteen mixtures. The measurements were made by the buoyancy principle; samples of salt were weighed in air and then in toluene. An error analysies indicated errors of no more than +5%. Solid densities were calculated for the remainder of the mixtures by & simple formula involving the method of mixtures (Ref. 16). These calculated values agreed within +10% with the experimental values available in most cases; however, a larger deviation was observed in one case which may be attributed to structural complexities. - Values of the volumetric coefficient of liquid expansion, BL, were calculated from the experimental or predicted density data using the equation: 5 =-l(2.e L p \d7T P vhere (%%) is the slope of the density-temperature function. Values have been P calculated at 700°C except when specified otherwise. B. Heat Capacity. The enthalpies, heats of fusion and heat capacities of twenty-one salt mixtures have been determined experimentally by dropping samples at various temperatures into “’ i g calorimeters and then measuring the amount of heat liberated.. The heat capacity is the slope of the enthalpy-temperature relation thus obtained. Two types of calorimeters have been used. One was an ice calorimeter in which the heat given up by the sample melted ice in an ice-water mixture. The amount of ice melted was proportional to the amount of heat transferred and was determined by the volume change in the ice-water mixture. The other calorimeter was a copper block device. The amount of heat liberated by the sample was measured by the temperature rise of a large mass of copper. From the experimental values obtained for the particular fluorides studied, correlations have been found which enable one to predict the heat capacities of other mixtures (Ref. L). Hence, estimetes have been made of the heat capacities of all the mixtures not studied experimentally. The accuracies of the heat capacities determined experimentally are believed to be within +10% of the true values; the predicted values are believed to be in error by no more than +20%. The heats of fusion for the fluo:ide mixtures were obtained directly from the enthalpy-temperature relations. Co Thermal Conductivity. Thermal conductivities of seven mixtures in the liquid state have been measured by variable gap devices (Ref. 11). The conductivity is determined by measuring the temperature gradient across a liquid layer as well as the heat flow through it. The layer thickness is varied so that it is possible to eliminate the effect of interface resistances that may exist in the cell. The thermal conductivities of several liquids were determined in & constant gap device. Great difficulty was encountered when using this device because it was difficult to fill the cell completely with the sample liquid. Two methods have been used to measure solid :&i’:'.‘ :; .'“: # ".F-’ ) “ - -5 S thermal conductivities; one is a steady state technique in which heat is passed through a slab of the solid salt, and the other is a transient method in which the time-temperature behavior of a solid sphere of the salt 1s studied. Error analyses of liquid thermal conductivity measurements indicated that the errors were less than +25%. It 1s believed that the solid thermal conductivities are known more accurately than the liquid values. Consequently, liquid conductivities in particular are considered to be of a preliminary nature at this time. Improved conductivity devices are being designed to increase the accuracy. The temperature dependence of the conductivities of fluoride mixtures is currently being studied; the results indicate that the variation 1s not a large one. Thus, only mean conductivities are reported here. D, Viscosity. Viscosity measurements have been made on thirty-eight molten fluoride mixtures. Thirty-tfib of these were studied at ORNL and nine at Mound Iabnratoryg, 3 Measurements at ORNL were made three being investigated at both laboratories. with two devices; one of these is a capillary efflux viscometer and the other is a modified Brookfield rotational device. Measurements were made at Mound with a rotational viscometer developed there. The values are presented in c.g.s. units and in engineering unite. Kinematic viscosities are given as well as absolute viscosities. In addition, the viscosity of each salt is presented in terms of the usual exponential formula for viscosity: 2A number of measurements have been made at Mound which are not reported here {see footnote 1, page 4). 3The results obtained independently at the two laboratories were in satisfactory agreement; the average values are reported here. ‘ b= ~ Agreement between the values determined by the two different instruments indicated that the results reported are within +10% of the true values. Predicted viscosities are given for & number of salts on which no measurements wvere made. These estimates were based on measurements on fluorides of similar compositions. These predicted values are probably within i?O% of the actual values. A blank sheet of graph paper specially prepared for plotting viscosity data is furnished at the end of this report to facilitate interpolation and extrapolation of the values reported. E. Electrical Conductivity. The data on electrical conductivity included in this report were primarily obtained by means of a current-potential type cell (Ref. 13)}. This device measured directly the amount of current flow for a given voltage drop across a molten salt sample. Measurements were made on five molten fluoride mixtures. 37 KEO3, and NaOH were made within +10% of the values reported in the literature, it was felt Since redeterminations of the conductivities of molten LiNO that the fluoride messurements were in error by no more than this amount. F. Surface Tension. Surface tension measurements were made on one fluoride mixture, Composition 30, using a system consisting of a platinum ring supported from & calibrated wire spring which could be raised and lowered with a vernier (Ref. 21). A thermocouple probe was used to measure the surface temperature of the molten fluoride as accurately as possible. G. Accuracy Summary. The following is a summary of the accuracy limite for the properties presented in this report: TABLE 1 Error Limits Error Limits for for Predicted Experimental or Estimated . Measurements Values Density (Solid) + 5% —— Density (Liquid) + 5% + 5% Heat Capacity +10% +20% Thermal Conductivity - +25% —— Viscosity +10% +20% Electrical Conductivity +10% -——— Surface Tension ———— - H. -8- Tabulation of Mixtures According to Chemical System. The following table lists the mixture numbers arranged according to chemical system. TABLE II Binary Coolants Corresponding Ternary Fuels System Mixtures System Mixtures NaF-ZrF) 28, 29, 31, 32, 3k, NaF-ZrF) -UF) 27, 30, 33, 38, 39, 40, ul, 45, C test, T1l, 83 4o, 44, 46, 70, 99, 108 N&F-ZI'FA "UF3 ll'9 N&F-BGF2 35, TT’ 113 NaF“BEFe"UFh l, 3, 16, 17, 36’ 76, % LiF-BeF, T, 112 LiF-BeF,-UF) 75 LiF-NaF 100 LiF-NaF-UF), 18, 101 LiF-KF 102 LiF-KF-UF), 103 LiF-RbF 104 LiF-RoF-UF), 105 KF-BeF,, 11k, 116 RbF-BeF, 115 NaF-KF-UF) 2, 28, 4, T NaF-PbF,-UF) 5 NaF-RbF-UF) 13 RbF-ZrF) -UF), 87, 95 LiF-ZrF), -UF) 93 KF-ZrF), -UF), 22, 9 Ternary Coolants Corresponding Quaternary Fuels System Mixtures System Mixtures NaF-KP-LiF |12 NaF-KF-LiF-UF) 14, 106, 107 NaF-KF-LiF-ThF) 23 NaF-KF-BeF,, 6, 90 NeF-KF-BeF,,-UF), 15 NaF-KF-ZrF) |20, ol NaF-KF-ZrF) -UF) 19,21,25,258,26,110 NeF-LiF-ZrF) | 73, 8o, 81 NaFfLiF-Zth-UFh 72, 82, 86, 91 NaF-LiF-BeF, 47,78,84,88,89,96,97 NaFoLiFfBeFé~UFh 79, 85, 98 NaF-RbF-BeF,-UF) 109 LiF-BeF,-ThF, -UF) | 111 Binary Fuels System Mixtures NeF-ThE), 48 TABULATED FLUORIDE PROPERTY DATA Note: Mixture numbers 50 through 69 have been omitted. These numbers have been reserved by the ANP Chemistry Section for hydroxides (Ref. 1) -10- -y Mixture Comgonent Mol fi Wt. fi 1 BeFo 12 7.50 NaF T6 42,41 UF), 12 50.09 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gn/cc, T = °¢) LIQUID (p = 1bs/ft3, T = °F) oy Avg. M.V. Liquidus Temp. 75.2 514°C (957°F) 3. 77 p* = 3,62 - 0.00075T (Ref. 3) p* = 226.8 - 0.0260T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c x 10") 2,42 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (250° - 465°C) Enthalpy (cal/gm) Hy-H0o* = -5 + 0.219T (Ref. &) Heat Capecity (cal/gm °C) c*= 0.22 Heat Capacity at 300°C (572°F) c *= 0.22 LIQUID (520° - 990°¢) Enthalpy (cal/gm) Bp-B,0o* = -35 + 0.325T Heat Capacity (cal/gm °C) c *= 0.32 Heat Capacity at 700°C (1292°F) e *= 0.32 HEAT OF FUSION (cal/gm) H -Hg* = 2l THERMAL CONDUCTIVITY K (BTU/br ft °F) VISCOSITY o o 2 “C (Centipoises) {(Centistokes) F (1v. /£t-hr) £t~ /hr 700 7.2% (Ref. 3) 2.3% 1300 17.1* 0.0886 800 I, 5% 1.50 1500 10.2% 0.0543 Exponential Form (centipoises) “es experimental values. Other values given are calculated or estimated. - -11- Mixture Component Mol % Wt. % Avg. M.W. Liquidus Temp. 2 NeF 46.5 16.14 121.0 530°C (986°F) KF 26.0 12.49 UF}, 27.5 T1.37 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 4. 7% (Ref. 5) LIQUID (p = gm/ce, T = °¢) p* = 4.70 = 0.00115T (Ref. 6) LIQUID (p = 1bs/ft3, T = °F) o* = 294.7 - 0,0399T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c x 1dh) 2.96 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (240°-480°¢) Enthalpy (cal/gm) Hy-Hyo* = -1+ 0.1497 (Ref. &) Heat Capacity (cal/gm oC) cp* = 0.15 Heat Capacity at 300°C (572°F) c *= 0.15 LIQUID (540°-1000°¢) Enthalpy (cal/gm) Hp-Hy0.* = -13 + 0.230T Heat Capacity (cal/gm °C) cp* = 0.23 Heat Capacity at 700°¢C (1292°F) c *= 0.2 HEAT OF FUSION (cal/gm) H -Ho* = 31 THERMAL CONDUCTIVITY K (BTU/nr £t °F) 0.5 (Liquid) (Ref. 7) VISCOSITY 2 fg (Centipoises) (Centistokes) O (1v. /£4-hr) £+ /hr 600 17.3* (Ref. 8) 4.33 1100 L3, 6% 0.1768 700 9.8% 2,52 1300 23, 5% 0.0983 800 6. 3% 1.67 1500 1k, 3% 0.0616 00 I, 35% 1.1 7 2 ? 4731 /T°K Exponential Form (centipoises) pn = 0.0767e PRANDTL NUMBER 20 at 1100°F, 11 at 1300°F, 6.6 at 1500°F %¥Denotes experimental values. Other values given are celculated or estimated. P ANy ll oy Mixture Component Mol % Weo % Avg. M.W. Liquidus Temp. g, NaF 48.2 17.67 114.3 558%¢ (1036°F) KF 26.8 13.65 UF), 25.0 68.68 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 4.53 LIQUID (p = agm/cc, T = °¢) p* = 4.54 - 0.0011T (Ref. 15) LIQUID (p = lbs/ft3, T = °F) o* = 284.6 - 0.0381T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (l/OC X th) 2.92 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) H - 0¥ = Heat Capacity (cal/gm °C) e * = Heat Capacity at 300%¢ (572°F) e, =0.16 LIQUID Enthalpy (cal/gm) Hy-H 0¥ = Heat Capacity (cal/gm °C) c * = Heat Capacity at 700°C (1292°F) c, = 0.23 HEAT OF FUSION (cal/gm) H -E ¥ = THERMAL CONDUCTIVITY K (BTU/hr ft °F) VISCOSITY fg (Centipoises) (Centistokes) Op (1b. /£t-hr) fte/hr 600 17.3 1100 43.6 TO0 9.8 1300 23.5 800 6.3 1500 1.3 900 L.35 Exponential Form (centipoises) *Denotes experimental values. Other values given are calculated or estimated. v 4 ok -13- Mixture Component Mol % Wt. % 5 BeFo 60 32,87 NaF 25 12.23 UFu 15 54.90 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gm/cc, T = °C) LIQUID (p = 1bs/ft3, T = °F) Avg. M.W. Liguidus Temp. 85.8 465°C (869°F) 3.8% (Ref. 5) p = 3.43 - 0.,00070T p = 209.5 - 0.0243T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.37 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthelpy (cal/gm) Heat Capacity (cal/em °C) Heat Capacity at 300°C (572°F) LIQUID OR GLASS (280°-1050°C) Enthalpy (cal/gm) Heat Capacity (cal/gm °C) Heat Capacity et 700°C (1292°F) HEAT OF FUSION (cal/gm) ~ Bp-Hoou* c ¥ c b P Bp-Hyoo* = -43 4+ 0.3157 (Ref. 4) cp* = 0.32 c.¥=- 0.32 p | > H-Eg*= 0O THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY 39 (Centipoises) (Centistokes) Exponential Form (centipoises) *Denotes experimental values. Other values OF 1b. /f4-hr) £to/br given are calculated or estimated. -1~ | oy Mixture Component Mol % Wt. % Avg. M.W. Liquidus Temp. 4 NaF 35 8.77 167.6 708°¢ (1306°F) KF 20 6.93 UF), 45 8k, 30 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 5.40 LIQUID (p = gm/cc, T = °¢) o = 5.60 - 0.00116T LIQUID (p = 1bs/ft3, T = °F) o = 350.9 - 0.0402T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c x 101*) 2.4 ENTHALPY, HEAT CAPACITY ARD HEAT OF FUSION SOLID Enthalpy (cal/gm) B,-H0.* = Heat Capacity (csl/em °C) cp* = Heat Capacity at 300°¢C (572°F) e, = 0.1k LIQUID Enthalpy (cal/gm) Bp-Hj0.* = Heet Capacity (cal/gm °C) cp* = Heat Capacity at 700°C (12092°F) e, = HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY °c (Centipoises) (Centistokes) °F 1b. /ft-hr £t% /hr Exponential Form (centipoises) *Denotes experimental values. Other values given are calculated or estimated. -15- — “ v Mixture Component Mol % Wt. % Avg. M.W. Liquidus Temp. 5 NaF 60 18.67 135 465°c (869°F) PbF,, 23 41.78 UF,, 17 39.55 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 5.9% (Ref. 5) LIQUID (p = gm/cc, T = °¢) p = 6.01 - 0.001227 LIQUID (p = lbs/ft3, T = °F) o = 376.5 - 0.0423T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/00 X 1oh) 2.35 ENTHALPY, HEAT CAPACITY AND HFAT OF FUSION SOLID - * = Fnthalpy (cal/gm) ] B-B,00 Heat Capecity (cal/gm °C) c * = Heat Capacity at 300°¢ (572°F) e, =0.1% LIQUID Enthalpy (cal/gm) Hy-Bgo* = Heat Capacity (cal/agm °C) e * = Heat Capacity at 700°C (1292°F) c, = 0.19 HEAT OF FUSION (cal/gm) H -HEg* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY “c (Centipoises) (Centistokes) F 1b. /£t-hr) £t Mixture nggonent Mol é Wt. AVE e M.W. Lig uidus TeEE . 25 KF 17.4 9.20 109.9 545°¢ (1013°F) NaF 3.7 13.25 | ZrF), bk L 67.55 UF), 3.5 10.00 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 3.97 LIQUID (p = gm/cc, T = °¢) p* = 3,78 - 0,00091T (Ref. 18) LIQUID (p = 1bs/ft3, T = °F) p* = 237.0 - 0.0315T MEAR VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2,90 ENTHALPY, HEAT CAPACITY ARD HEAT OF FUSION SOLID Enthalpy (cal/gm) Hy-Bio % = Heat Capacity (cal/gm °c) cp* = Heat Capacity at 300°C (572°F) c, = 0.18 LIQUID - * = Enthalpy (cel/gm) . Bp-H,0, Heat Capacity (cal/gm “C) cp* = Heat Capacity at 700°C (1292°F) ¢, = 0.25 HEAT OF FUSION (cal/gm) H -HE* = THERMAL CORDUCTIVITY K (BTU/bar £+ °F) VISCOSITY 32 (Centigoises) (Centistokes) 600 8.1 T00 5.2 800 3.6 Exponential Form (centipoises) _¥Denotes experimental values Other values : i Bk % ‘v’, A‘- - : 2 Op 1b. /ft-hr) £t /hr 1100 20,3 1300 12.1 1500 8.0 given are calculated or estimated. -36- " ",y P Mixture Component Mol i Wt. 2 Avg. M.W. Iiquidus Temp. 258 KF 17.6 13.65 107.7 545%¢ (1013°F) NaF 35.1 9.47 ZxF), k.8 69.55 ), 2,5 7.3k DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3,92 LIQUID (p = gm/ce, T = °¢) o* = 3.65 - 0.00080T (Ref. 18) LIQUID (p = 1bs/ft3, T = °F) o* = 228.7 - 0.0277T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10°) 2.59 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID . - ¥ Enthalpy (cal/gm) ] B,-H,04 Heat Capacity (cal/gm C) cp* = Heat Capacity at 300°¢ (572°F) c, = 0.19 LIQUID Enthalpy (cal/gm) . Hy-B 0% = Heat Capacity (cal/gm “C) cp* = Heat Capacity at 700°C (1292°F) c, = 0.26 HEAT OF FUSION (cal/gm) | H -H ¥ = THERMAL CORDUCTIVITY X (BTU/hr £t °F) VISCOSITY SQ QCentigoises) (Centistokes) Op (1b. /£t-hr) fte/hr 600 8.1 1100 20.3 700 5.1 1300 12.1 800 3.5 1500 8.0 Exponential Form (centipoises) *¥Denotes experimental values. Other values given are calculated or estimated. .. *@f?fi y‘}‘-_'.; _-g -37- o Hixture Component Mol g Wt. fi Avg. M.W. Liquidus Temp. 26 KF 14.0 7.28 111.6 540°C (1004°F) NaF 36.6 13,76 ZrF), 45.6 68.27 UF,, 3.8 10.69 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) L.02 LIQUID {p = gm/cc, T = °C) p = 3.82 - 0.00091T LIQUID (p = lbs/ft3, T = °F) o = 239.5 - 0.0315T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.87 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID ' - * = Enthalpy (cal/gm) . Hy-B,0, Heat Capacity (cal/gm “C) c ¥ = Heat Capacity at 300°C (572°F) c, =0.18 LIQUID - * = Enthalpy (cal/gm) . Bp-H .0, Heat Capacity (cal/gm ~C) cp* = Heat Capacity at 700°C (1292°F) e, =0.25 HEAT OF FUSION (cal/gm) H -B* = THERMAL CORDUCTIVITY X (BTU/hr £t °F) VISCOSITY 29 (Centipoises) (Centistokes) O (1b. /ft-hr) ft?/hr 600 8.2 1100 20,6 T00 5.3 1300 12.6 800 3.7 1500 8.5 Exponential Form (centipoises) ¥Denotes experimental values. Other values given are calculated or estimated. -’fih ! e -38- - * e Mixture Component Mol fi Wt. fi Avg. M.W. Liquidus Temp. 27 NaF 46 16.7% 115.5 510°¢ (950°F) ZrF), 50 72.39 UF), L 10.88 DENSTITY SOLID AT ROOM TEMPERATURE (gm/cc) 4,17 LIQUID (p = gm/cc, T = °C) b = 3.97 - 0.00093T LIQUID (p = 1bs/£t3, T = °F) p = 248.9 - 0.03221 MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.79 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID - ¥* = Enthalpy (cal/gm) . Bp-E 00 Heat Capacity (cal/gm C) cp* = Heat Capacity at 300°C (572°F) e, = 0.18 LIQUID - * = Enthalpy (cal/gm) . Bp-E 0, Heat Capacity (cal/gm ~C) cp* = Heat Capacity at 700°C (1292°F) c, =025 HEAT OF FUSION (cal/gm) H -H ¥ = THERMAL, CONDUCTIVITY O , K (BTU/hr £t "F) 0.6 (solid sphere and slab)(Ref. 45) VISCOSITY SQ (Centipoises) (Centistokes) Op (1b. /£t-hr) fta/hr 600 8.9 1100 22.3 700 5.7 1300 13.6 800 3.9 1500 9.0 Exponential Form (centipoises) *¥Denotes experimental values. Other values glven are calculated or estimated. -39- O L a3 Mixture Coggonent Mol fi Wt. fi Avg. M.W. Liguidus Temp. 28 NaF 48 18.82 107.1 515°¢ (959°F) ZrF), 52 81.18 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3.99 LIQUID (p = gm/cc, T = °C) p = 3.79 - 0.00090T LIQUID (p = 1bs/ft3, T = °F) 0 = 237.6 - 0.0312T MEAN VOLUMETRIC COEFFICIERT OF LIQUID EXPANSION (ll./O Cx th) 2.86 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID - ¥* = Enthalpy (cal/gm) ] Hp-B,00 Heat Capacity (cal/gm ~C) cp* = Heat Capacity at 300°¢C (572°F) e, =0.19 LIQUID N - ¥* = Enthalpy (cal/gm) . - Hp-Hpo, Heat Capacity (cal/gm “C) e ¥ = Heat Capacity at 700°C (1292°F) c, =0.27 HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/nr £t °F) VISCOSITY _°_C (Centigoises) !Centistckes ) Of Slb. /ft-hr) ft2 hr 600 8.5 1100 21.5 700 5.3 1300 12.5 800 3.5 1500 - 8.0 Exponential Form (centipoises) ¥Denotes experimental values. Other values given are calculated or estimated. ~40- Mixture Component Mol fi Wt. fi Avg. M.W. Liguidus Temp. 29 NaF 42,2 15,49 114.3 570% (1058°F) ZrF), 57.8 84.51 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 4.06 LIQUID (p = gm/cc, T = °¢) o = 3.86 - 0.00092T LIQUID (p = lbe/rt3, T = °F) p = 242.0 - 0.0319T MEAR VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.87 ENTHALPY, HEAT CAPACITY ARD HEAT OF FUSION SOLID - ¥* = Enthalpy (cal/gm) ] B -Hyo, Heat Capacity (cal/gm “C) cp-x- = Heat Capacity at 300°C (572°F) c, =0.19 LIQUID - * = Enthalpy (cal/gm) Bp-H,0, Heat Capacity (cal/gm °C) e ¥ = Heat Capacity at 700°C (1292°F) c, =0.26 HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY °_C (Centipoises) (Centistokes) Op (1b. /ft-hr) f t2/ hr Exponential Form (centipoises) ¥*Denotes experimental values. Other values given are calculated or estimated. Mixture Component: Mol f wt. Avg. M.W. Liquidus Temp. 30 NaF 50 19.01 110.5 500°¢ (968°F) ZrF), L6 69.62 UF,, 4 11.37 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 4.09% (Ref. 10) LIQUID (p = gm/cc, T = %) 0 = 3.95 - 0.00093T LIQUID (p = 1bs/et3, 7= °F) o = 246.4 - 0.0322T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.8k ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (340°-500°¢C) Enthelpy (cal/gm) Bp-Hoo* = -12.6 + 0.215T (Ref. 4) Heat Capacity (cal/gm °C) cp* = 0.22 Heat Capacity at 300°C (572°F) c ¥ = 0.22 LIQUID (540°-894°¢) Enthalpy (cal/gm) Hy-H0o* = 2.1 + 0.3178T - 4.28 x 107 77° Heat Capacity (cal/gm °C) c* = 0.3178 - 8.56 x 1077 Heat Capacity at 700°C (1292°F) c ¥ = 0.258 HEAT OF FUSION (cal/gm) | Hp -Hg* =57 THERMAL CONDUCTIVITY K (BTU/br £t °F) 0.5 (Solid slab) (Ref. 45) 1.3 (Liquid) (Ref. 14) VISCOSITY °c (Centipoises) (Centistokes) O (1b. /ft-hr) £t°/hr 600 8.5% (Ref. 20) 2.52 1100 21, 3% 0.1009 700 5, L% 1.65 1300 12.8% 0.0625 800 3, 7# 1.16 1500 8., 5% 0.0430 850 3, 0% 1.02 O Exponential Form (centipoises) p = O.O981e3895/ TK PRANDTL NUMBER 4.k at 1100°F, 2.5 at 1300°F, 1.6 at 1500°F ELECTRICAL CONDUCTIVITY (ohm-cm)™> 0.87 at 1100°F, 1.16 at 1300°F, 1.45 at 1500°F SURFACE TENSION (dyneg/cg‘l‘ 157 at 55000, 132 at 65000, 115 at 73000 Res (Ri§° 15) ¥Denotes experimental values. Other values given are calculeted or (esgbfm%:ed. / -4 e Mixture Coggonent Mol fi Wt. fi 31 NaF 50 20.08 DERSITY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gm/cc, T = °C) LIQUID (p = 1bs/ft , T = °F) _ ol Avgo -Hch Liguidufl TBEE. 104, 6 510°C (950°F) 4.11* (Ref. 22) i fi 3,79 - 0.00093T (Ref. 23) 237.6 - 0. 0322T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c X 10 ) 2.96 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (5K°-488°C) Enthalpy (cel/em) Heat Capacity (cal/egm °C) Heat Capacity at 300°C (572°F) LIQUID (546°-899°C) Enthalpy (cal/gm) Hest Capacity (cal/gm °¢) Heat Capacity at 700°C (1292°F) HEAT OF FUSION (cal/gm) H&-H 0% = HT-E o ¥ HL”HS* | il 0.1 + 0.1798T + 2.69 x 107 °T° (Ref.}) 0.1798 + 5.38 x 10°°T 0.196 -5.3 + 0.3508T - 5.39 x 10°°T¢ 0.3508 - 10.79 x 107 THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY % (Centipoises) (Centistokes) 600 8.4*% (Ref. 24) 2.60 700 5.2% 1.66 800 3.45% 1.15 Exponential Form (centipoises) ELECTRICAL CONDUCTIVITY (ohm-cm)’l ¥Denotes experimental values. éww > R = 0.0709e 0.275 61 % (1b./ft-hr) £t°/hr 1100 20.9% 0.1033 1300 12, 3% 0.0627 1500 7.9% 0.0L416 4168/T°K 0.64 at 1100 F, 1.05 at 1300 F, 1.47 at 1500 °F (Ref. 13) Other values given are calculated or estimated. * -43- Mo g Mixture Component Mol % Wt. 4 Avg. M.V. Liquidus Temp. 32 NaF 52 21.39 102.1 515°¢ (959°F) ZrF), 48 78.61 DENSTTY SOLID AT ROOM TEMPERATURE {gm/cc) 4, 10%Ref. 22) LIQUID (p = gm/cc, T = °C) | p = 3.72 - 0.00089T LIQUID (p = 1bs/ft3, T = °F) o = 233.2 - 0.0309T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 101‘) 2,87 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) By -Hjoo* = Heat Capacity (cal/am °C) / c * = Heat Capacity at 300°C (572°F) cz = 0.20 LIQUID Enthalpy (cal/gm) Hy,-Byo* = Heat Capacity (cal/em °C) c * = Heat Capacity at 700°C (1292°F) c, = 0.27 HEAT OF FUSION (cal/gm) H -Hg* = THERMAL CONDUCTIVITY K (BTU/nr £t °F) VISCOSITY Eg (Centipoises) (Centistokes) O (1b. /fL-hr) ft?/hr 600 T.9 1100 20.1 700 4.8 1300 11.4 800 3.35 1500 Te7 Exponential Form (centipoises) *Denotes experimental values. Other values given are calculated or estimated. e 1'Ill.i bk Mixture Cogganent Mol g Wt. fi 33 NaF 50 14.86 ZrF), 25 29,58 UF, 25 55.56 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUD (p = gm/cc, T = °C) LIQUID (p = 1bs/£t3, T = °F) m’ s Avg.T (Ref. k) Heat Capacity at 300°C (572°F) e ¥ = 0.25 LIQUID (582°-900°C) Enthalpy (cal/gm) Hp-H0o* = -20.1 + O.U3LNT - 7.h2 x 10”772 Heat Capacity (cal/gm °C) cp* = 0.4314 - 14,85 x 107°T Heat Capacity at 700°C (1292°F) cf = 0.327 HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/br £t °F) VISCOSITY 29 (Centipoises) (Centistokes) O 1b. /ft-hr 22 /hr 600 12,0% {Ref. 34) 4,03 1100 30, 3% 0.1626 700 T.0% 2.42 1300 16.5% 0.0915 800 b, 5% 1.61 1500 10.2% 0.0586 o Exponential Form (centipoises) p = 0.05856”6h7/T K *Denotes experimental values. Other values given are calculated or estimated. -75- _— Mixture Compoment Mol % Wt. % Avg. M.W. Ligquidus Temp. 8% NaF 81 51,71 65.8 750°¢ (1382°F) ZrF), 19 48.29 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3,40 LIQUID (p = gm/cc, T = °¢) LIQUID (p = 1be/£t3, T = °F) p = 3022 - OaOOOBlT p = 201.9 - 0.0281T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/00 X 1oh) 3.06 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) B -H 00 = Heat Capacity (cal/gm °C) c*m Heat Capacity at 300°¢ (572°F) c, = 0.23 LIQUID Enthelpy (cal/gm) Ep-H,0* = Heat Capacity (cal/gm °¢) c %= Heat Capacity at 700°C (1292°F) cp = HEAT OF FUSION (cal/gm) H -E* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY fg (Centipoises) (Centistokes) - °F (1b. /2-hr) ftazhr Exponential Form (centipoises) #Denotes experimental values. Other values given are calculated or estimated. ,76- - CEg e Mixture Component Mol fi Wt. i Avg. M.W. w 8y NaF o7 29.62 38,3 338%¢ (640°F) LiF 35 23.72 BeF,, 38 h6.66 DENSTITY SOLID AT ROOM TEMPERATURE (gm/cc) 2,25 LIQUID (p = gm/cc, T = °¢) o* = 2,22 - 0.00041T (Ref. 35) LIQUID (p = 1bs/£t3, T = °F) o* = 139,0 - 0.01L2T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°¢ x 10%) 2.09 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cel/gm) Bp-Hyoo* = Heat Capacity (cal/em °C) c * = Heat Capacity at 300°C (572°F) c, = LIQUID Enthalpy (cel/gm) Bp-Hy0q* = Heat Capacity (cal/gm °C) c_¥* = Heat Capacity at 700°C (1292°F) o = HEAT OF FUSION (cel/gm) H -Bg* = THERMAL CONDUCTIVITY XK (BTU/hr £t °F) VISCOSITY 2§ §Centigoises! QCentistokes! 600 7.8% (Ref. 35) 3.91 T00 L, h5% 2.27 800 2.8% 1.48 Exponential Form (centipoises) pn = 0.0338e ¥Denotes experimental values. 't 0,42 0.59 °r_ 1b. /ft-hr) f£t°/hr 1100 19.8% 0.1586 1300 10.5% 0.0858 1500 6, 3% 0.0530 4738 /T°K Other values given are calculated or estimated. - Mixture Component Mol f 85 NaF 26.5 LiF 34,0 BeF, 37,0 UF“)_L 2.5 -TT- Wt % 2h.62 19,52 38.50 17.36 DERSITY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p LIQUID (p gn/cc, T = °¢) 1bs/et3, T = °F) p* p* T Avg. HoWo Liguidus TeEEo 5,2 360°C (680°F) 2,54 2.33 - 0.00018T (Ref. 35) 145.7 - 0.00624T n MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPARSION (1/00 X 1oh) ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) Heat Capacity (cal/gm °C) Heat Capacity at 300°c (572°F) LIQUID Enthalpy (cal/gm) Heat Capacity (cal/gm °C) Heat Capacity at 700°C (1292°F) HEAT OF FUSION (cal/gm) K (BTU/nr £t °F) 600 700 800 *Denotes experimental values. H&'Eb°ci P P Bp-H00* c * P P It 0.37 n 0.51 B R - THERMAL. CORDUCTIVITY (Centipoises) (Centistokes) 9.0% (Ref. 35) 4.0k 4 ,95% 2,24 3.05% 1.41 Exponential Form (centipoises) VISCOSITY °F (ib./ft-hr) £t°/br 1100 22.7% £ 0.1631 1300 11.7% 0.0848 1500 6.9% 0.0506 R = 0.0261e5°9h/T0K Other values given are calculated or estimated. -78- | Mixture Component Mol % Wt. % Avg. M.V. Iiquidus Temp. 86 LiF 35 10,87 83,6 4459 (833°F) NaF 32 16.08 ZrF), 29 58.02 UF), L 15,03 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3,87 LIQUID (p = gm/cc, T = °¢) o = 3.66 - 0.00088T LIQUID (p = 1bs/£t3, T = °F) o = 229.L - 0.0305T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/00 X 10“) 2.89 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID } - * = Enthalpy (cal/gm) . Bp-B,00 Heat Capacity (cal/gm C) cp* = Heat Capacity at 300°C (572°F) ¢, = 0-21 LIQUID Enthalpy {(cal/gm) Hp-Hoo* = Heat Capacity (cal/em °C) cp* = Heat Capacity at 700°C (1292°F) e, = 0.29 HEAT OF FUSION (cal/gm) H -E* = THERMAL CONDUCTIVITY K (BTU/br £t °F) VISCOSITY fg (Centipoises) (Centistokes) Op (1b. /£t-hr) fta/hr 500 20.5% (Ref. 36) - 6.37 1100 26, 6% 041357 600 10.5% 3.35 1300 15. 4% 0.0811 700 6.4 5% 2.12 1500 10.5% 0.0572 800 4. 55% 1.5k Exponentisl Form {centipoises) ’ + ¥Denotes experimental values. Other values given are calculated or estimated. _79- Mixture Component Mol % Wt. % Avg. M.W. Liquidus Temp. 87 RbF 48 35,08 143.0 425°%¢ (797°F) Zth 48 56.13 UF), L 8.79 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) k.19 LIQUID (p = gm/cc, T = °c) = 4.00 - 0,00093T LIQUID (p = lbs/ft , T =°F) = 250.7 - O. 0322'1‘ MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPAESIOH (1/00 X 10 ) 2.78 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (142°-398°¢) Enthelpy (cal/em) | B Hpog* = <32+ 0, 1490T + 3.2 x 107772 Heat Capacity (cal/gm °C) cp* 0.1490 + 6.5 x 10™°T (Ref. 37) Heat Capacity at 300°¢c (572°F) e, *= 0.169 LIQUID (L458°-880°C) Enthelpy (cal/gm) Hy-H o * = -9.8 + 0.2844T - 5.4 x 10™77° Heat Capacity (cal/em °c) cp* = 0.2844 - 10.8 x 10~°T Heat Capacity at 700°C (1292°F) e = 0.209 HEAT OF FUSION (cal/gm) H -E* = 35 THERMAL CONDUCTIVITY XK (BTU/nr £t °F) | 1.0 (Liquid, constant gap) (Ref. 45) VISCOSITY % (Centipoises) (Cemtistokes) °p (1b./ft-pr) £t°/hr 600 7.1% (Ref. 38) | 2.11 1100 17.8% 0.084L4 700 I, 65% 1.41 | 1300 11.0% 0.0537 800 3. 5% 1.03 1500 T.6% 0.0382 Exponential Form (centipoises) p = 0.1169559O/TDK PRANDTL NUMBER 3.9 at 1100°F, 2.3 at 1300°F, 1.5 at 1500°F *Denotes experimental values. Other values given &re calculated or estimated. -80- oy Mixture Component Mol fi Wt. % 88 NaF 64 62.88 LiF 5 3.0k BeF,, 31 34.08 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gm/cc, T = °C) LIQUID (p = 1bs/£t3, T = °F) MEAN VOLUMETRIC COEFFICTENT OF LIQUID EXPANSION (1/°C x 10%) Avgo Mt W. Lig uidua TEEE- 42.8 5559 (1031°F) 2,44 p* = 2,39 - 0.00050T (Ref. 3) p* 149.7 - 0.0173T ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID . - ¥ = Enthalpy (cal/gm) ] BB 00 Heat Capacity (cal/gm “C) c_* = Heat Capacity at 300°C (572°F) c, = LIQUID Enthalpy (cal/gm) . Ep-Hj0* = Heat Capacity (cal/gm °C) c * = Heat Capacity at 700°C (1292°F) e, = HEAT OF FUSION (cal/gm) B -Ho* = THERMAL CONDUCTIVITY K (BTU/nr £t °F) VISCOSITY 29 (Centipoises) (Centistokes) 600 Tc l** 3°39 800 3. h¥ 1.71 Exponential Form (centipoises) *Denotes experimental values. **Aggxage values, Refs. 3 and 39. 2.45 0.37 0.51 Op 1b. /Pt-hr ££2 /hr 1100 17.8%* 0.1364 1300 11.3%% 0.0887 1500 To O¥% 0.0636 po= 0,138e3“35/T0K Other values given are calculated or estimated. Q -81- \ N“:?;" 3 Mixture nggonent Mol fi wt. fi Avg. M.W. Liguidus Temp. 89 NaF 63.5 63,12 42,2 535°c (995°F) LiF 7.5 4,62 BeF, 29.0 32.26 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 2,4k LIQUID (p = gm/cc, T = °¢) p* = 2.38 - 0.00051T (Ref. 3) LIQUID (p = lbfl/ft3; T = °F) p* = 149.1 - 0.0177T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c x 10°) 2.52 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) B-H,00* = Heat Capacity (cal/gm oC) cp* = Heat Capacity at 300°C (5T72°F) ey, = 0.57 LIQUID Enthalpy (cal/gm) He-H0o* = Heat Capacity (cal/gm °c) c ¥ = Heat Capacity at 700°C (1292°F) cp = 051 HEAT OF FUSION (cal/gm) E -E* = THERMAL CONDUCTIVITY K (BTU/nr £t °F) VISCOSITY % (Centipoises) (Centistokes) °r (1b./re-br) £to/mr 600 7.0% (Ref. 3) 3.37 1100 17. 4% 0.1340 700 L. 6% 2.28 1300 10.9% 0,086k 800 3, 5% 1.67 1500 7.6% 0.0620 O Exponential Form (centipoises) 1 = 0.1215543/T°K ¥Denotes experimental values. Other values given are calculeted or estimated. " ae b - SR TR a ‘ Wiaeid 5 -82- Mixture CQEgonent Mol fi Wt. fi Avg. M.W. Liguidas Tegg. 90 NoF 49 45,00 46,2 555°C (1031°F) KF 15 17.95 BeF2 36 37.05 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 2.38 LIQUID (p = gm/cc, T = 9¢) p = 2.30 - 0,00038T LIQUID (p = 1bs/rt3, T = °F) p = 14k.0 - 0.0130T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10 ) 1.86 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthelpy (cal/gm) Bp-Ho00* = Heat Capacity (cal/gm °¢) cp* = Heat Capacity at 300°C (572°F) c, = 0.35 LIQUID Enthalpy (cal/gm) Bo-H 0% = Heet Capacity (cal/gm °C) cp* = Heat Capacity at 700°C (1292°7) c, = 0.8 HEAT OF FUSION (cal/gm) B -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY °c (Centipoises) (Centistokes) °F (ib. /2t-br) £to/hr 600 8.0% {Ref. 40) 3.86 1100 20,1* 0.1555 700 5.0% 2.46 1300 11.9% 0.09357 800 3. 4% 1.70 1500 T.9% 0.0634 O Exponential Form (centipoises) p = 0.08711%008/T K ¥Denotes experimental values. Other values given are calculated or estimated. 4 Mixture Component = Mol fi Wt. fi Avg. M.W. Liquidus Temp. 91 NeF 53 38.86 57.3 500°¢ (1094°F) LiF 35 15.85 ZrF, 8 23.36 UR, 4 21.93 | DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) L, LIQUID (p = gm/cc, T = °C) 0 = 3.22 - 0.00081T LIQUID (p = lbs/ft3, T = °F) o = 201.9 - 0.0281T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/00 X 10“) 3,06 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID - ¥* = Enthalpy (cal/gm) ] Hy-Bq0, Heet Capacity (cal/gm C) cp* = Heat Capacity at 300°C (572°F) e, = 0.2 - LIQUID - %* = Enthelpy (cal/gm) . Bp-Hy00 Heat Capacity (cal/gm “C) c * = Heat Capacity at 700°C (1292°F) c, =0:33 HEAT OF FUSION (cal/gm) H -Hg* = THERMAL CONDUCTIVITY K (BTU/br £t °F) VISCOSITY fg (Centipoises) (Centistokes) Op (1b. /£t-hr ££° /hr 600 10.5 1100 26.6 700 6.45 1300 15.4 800 4.55 1500 10.5 Exponential Form (centipoises) *Dendtes experimental values. Other values given are calculated or estimated. - Mixture Component Mol % Woe % Avg. M.VW. Liquidus Temp. 92 NaF 49.5 40.61 51.2 415°¢ (779°F) BeF, '48.0 4,06 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 2.56 LIQUID (p = gm/cc, T = °¢) o = 2.46 ~ 0.00042T LIQUID (p = 1bs/ft3, T = °F) o = 154.0 - 0.0146T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10) 1.9% ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID - * = Enthelpy (cal/gm) ] Bn-E 00 Heat Capacity (cal/gm ~C) cp* = Heat Capacity at 300°C (572°F) c, = 0.3 LIQUID -~ % m Enthalpy (cal/gm) . Ep-Ho0, Heat Capecity (cal/am °C) co¥ = Heat Capacity at 700°C (1292°F) e, = 0.47 HEAT OF FUSION (cal/gm) H -Eg* = THERMAL CORDUCTIVITY K (BTU/hr £t °F) VISCOSITY 2g (Centipoises) (Centistokes) Op (1v. /£t-hr) ft?/hr 600 13.7 1100 34.6 100 Te3 1300 17.3 800 bk 1500 9.9 Exponential Form (centipoises) *Denotes experimental values. Other values given are calculated or estimated. S E P TR AT -85- alle- ‘ Mixture Component Mol % Wt. fi Avg. M.W. Liquidus Temp. 93 LiF 50 12,66 102.4 - 550% (1022°F) ZrF, 46 75.08 UF, b 12.26 DENSITY SOLID AT ROOM TEMPERATURE'(gm/cc) 4,12 LIQUID (p = gm/cc, T = %) o = 3.92 - 0.00092T LIQUID (p = 1bs/ft3, T = °F) p = 245,7 - 0.0319T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (l/oC x 107) 2,81 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID . - * = Enthalpy (cal/gnm) ] Bn-H 0, Heat Capacity (cal/em C) cp* = Heat Capacity at 300°C (572°F) c, =0.20 LIQUID - * = Enthelpy (cal/gm) . Bp~E 0, Heat Capacity (cal/gm “C) cp* = Heat Capacity at 700°C (1292°F) c, =0.28 HEAT OF FUSION (cal/gm) 'HL-HS* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY 2 39 (Centipoises) (Centistokes) Op 1b. /ft-hr) £t~ /hr Exponential Form (centipoises) *Denotes experimental values. Other values given are calculated or estimated. - -86- L Mixture Component Mol fi Wwt. fi Avg. M.W. Liquidus Temp. ok KF 50 ok, 51 118.5 ZrF) 46 64.89 UF, 4 10.60 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3.83 LIQUID (p = gm/cc, T = °C) p = 3.61 - 0.00087T LIQUID (p = 1bs/ft3, T = °F) o = 226.3 - 0.0302T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (l/oC X 10“) 2.90 ENTHALPY, HEAT CAPACITY ARD HEAT OF FUSION SOLID Enthalpy (cal/gm) By-H,0.* = Heat Capacity (cal/gm °C) cp* = Heat Capacity at 300%¢ (572°F) ¢, = 0.17 LIQUID Enthalpy (cal/gm) Hy-B,0.* = Heat Capacity (cal/gm °C) ¢ * = Heat Capacity at 700°C (1292°F) ¢, = 0.2k HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSTTY °c (Centipoises) (Centistokes) °p (1b. /ft-hr) ftg/hr Exponential Form (centipoises) *¥Denotes experimental values. Other values given are calculated or estimated. s e Mixture Component Mol % Wt. % Avg. M.W. Liquidus Temp. 95 | RbF 50 36.87 141.7 500°C (9%2°F) ' Zth 46 54,27 UFh 4 8.86 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 4,18 LIQUID (p = gm/cc, T = °¢) o = 4.00 - 0.00093T LIQUID (p = 1bs/£t3, T = °F) o = 250.7 - 0.0322T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.78 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) B-By00* = Heat Capacity (cal/gm °C) c * = Heat Capacity at 300°¢ (572°F) cp = 0.14 LIQUID : Enthalpy (cal/gm) Ep-H,o* = Heat Capacity (cal/sm °C) cp* = Heat Capacity at 700°C (1292°F) c, =0.20 HEAT OF FUSION (cal/gm) H -H* = THERMAL CORDUCTIVITY K (BTU/hr £t °F) VISCOSITY °c (Centipoises) (Centistokes) °F 1b. /ft-hr ££2/hr 600 7.05% (Ref. 38) 2.06 1100 17.9% 0.0837 700 h,35% 1.31 1300 10 b* 0.0501 800 2.95% . 0.91 1500 6.6% 0.0338 0 Exponential Form (centipoises) p = 0,05579“081/T K ¥Denotes experimental values. Other values given are calculated or estimated. -88“ 1‘31:‘”.;\:_, LT Mixture Component Mol % Wt. % Avg. M.V. Liquidus Temp. 96 NeF 53 56.66 39.3 535°C (995°F) LiF 2k 15.83 BeF,, 23 27.51 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.43 LIQUID (p = gm/cc, T = °C) o = 2.34 - 0.00039T LIQUID (p = 1bs/£t3, T = °F) p = 146.5 - 0.0135T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/00 X th) 1.88 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cel/gm) ET-Hboc* = Heat Capacity (cal/gm °C) cp* = Heat Capacity at 300°C (572°F) c. =0.38 LIQUID F Enthelpy (cal/gm) Bp-H 0* = Heat Capacity (cel/am °C) e * = Heat Capacity at 700°C (1292°F) e, = 0.5 HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSTTY °c (Centipoises) (Centistokes) OF 1b. /ft-hr) f£t°/br 600 5.9% (Ref. L40O) 2.80 1100 14 .8% 0.1121 700 b.1x 1.98 1300 9. TH* 0.0749 800 3.0% 1.47 1500 6.9% 0.0543 o Exponential Form (centipoises) p = 0,15733168/T K ¥Denotes experimental values. Other values given are calculated or estimated. -89- iy Mixture = Component ‘Mol % Wt. % 97 " NaF L9 55.70 LiF 36 25,22 BeF, 15 19.08 DENSTITY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gm/cc, T = °C) o LIQUID (p = 1bs/ft3, T = °F) 0 Avgo . H-W. it MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPARSION 37.0 20’4’7 ; '::“"?";fi. } . Liguidus TEER' 597°¢ (1107°F) 2.37 - 0.00039T 148.4 - 0.,0135T (1/° x 10%) 1.87 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) Hy-Ho00* Heat Capacity (cal/gm °C) e * Heat Capacity at 300°C (572°F) e LIQUID Enthalpy (cal/gm) BB ,04* Heat Capacity (cal/gm °C) e * Heat Capacity at 700°C (1292°F) ¢ HEAT OF FUSION (cal/gm) H -E * THERMAL CONDUCTIVITY K (BTU/hr £t °F) — —— 0.39 0.55 VISCOSITY °¢ (Centipoises) (Centistokes) F 600 5,65% (Ref. 41) 2.65 1100 700 3.95% 1.89 1300 800 2.95% | 1.4k 1500 | 5 /2 Exponentiasl Form (centipoises) R = 0-173830 3/TK glbo !fi‘hrz 14.0% 9.* 6.9% ¥Denotes experimental values. Other values given are calculated or estimmted. -90- Mixture Component Mol fi Wt. Avg. M.W. Liquidus Temp. 98 NaF 56 b9 .23 47.8 505°C (941°F) LiF 21 11.39 BeF, 20 19.67 DENSTITY SOLID AT ROOM TEMPERATURE (gm/cc) 2.82 LIQUID (p = gm/cc, T = °¢) o = 2.72 - 0.00048T LIQUID (o = 1bs/t3, T = °F) o = 170.3 - 0.0166T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.03 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) . Hy-B 0% = Heat Capacity (cal/gm “C) cp* = Heat Capacity at 300°¢ (572°F) c, = 0.3 LIQUID Enthalpy (cal/gm) Bp-Hyo.* = Heat Capecity (cal/gm °C) cp* = Heat Capacity at 700°C (1292°F) c, = 0.45 HEAT OF FUSION (cal/gm) H -H* = THERMAL, CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY fg (Centipoises) (Centistokes) Op (1b. /ft-hr) fte/hr 600 7.3* (Ref. 41) 3.0 1100 18.4y* 0.1215 700 by, 6% 1.94 1300 10.9% 0.0737 800 3,1% 1.3k 1500 T.1% 0.0492 o Exponential Form (centipoises) p = 0.0757eh012/T K ¥Denotes experimental values. Other values given are calculated or estimmted. €5 L .. i 4 -91- Mixture Component Mol % Wt. % Avg. M.W. Liquidus Temp. 99 NaF 63.5 23 20 114.9 607°c (1125°F) ZrFy, 18.0 26.20 UF), 18.5 50.58 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 4,59 LIQUID (p = gm/cc, T = °¢) o = 4,46 - 0.0010T LIQUID (p = 1bs/ft3, T = °F) o = 279.5 - 0.0347T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPARSION (1/08 x 10h) 2,66 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID . - ¥ = Enthalpy (cal/em) . Bp-H 00 Heat Capacity (cal/gm ©) cp* = Hest Capacity at 300°¢ (572°F) c, =0.16 LIQUID - * = Enthelpy (cal/gm) . I Heat Capacity (cal/gm “C) CP* = Heat Capacity at 700°C (1292°F) c, =0.22 HEAT OF FUSION (cal/gm) H -H ¥ = THERMAL CONDUCTIVITY K (BTU/br £t °F) VISCOSITY °c (Centipoises) (Centistokes) °F 1b. /ft-hr) £t°/hr Exponential Form (centipoises) *¥Denotes experimental values. Other values given are calculated or estimated. 02 ol Mixture Component Mol i wt. fi Avg. M.W. L:lguidus_ Teg. 100 IiF 60 48,08 32.3 652°¢ (1206°F) NaF 1O 51.92 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.53 LIQUID (p = gm/cc, T = °¢) p* = 2.42 - 0.00055T (Ref. 16) LIQUID (p = 1bs/ft3, T = °F) p* = 151.7 - 0,01917 MEAN VOLUMETRIC COEFFICTENT OF LIQUID EXPANSION (1/°C x 10%) 2.71 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION soLIp (112°-572°¢C) Enthalpy (cal/gm) Hy-H, 0% = -0.1 + 0.3191T + 9.9% x 10771° Heat Capacity (cal/gm °C) cp* = 0.3191 + 19.87 x lO'ST (Ref. 42) Heat Capacity at 300°¢C (572°F) e *= 0.379 ) LIQUID (688°-898°¢) | | Enthalpy (cal/gm) Hfi”nb°c* = -78.5 + 0.9249T - 24.62 x 10'5T2 Heat Capacity (cal/gm °C) c * = 0.9249 - 49.23 x 10”7 Heat Capacity at 700°C (1292°F) eF = 0.580 | | HEAT OF FUSION (cal/gm) H -Eg* = 170 THERMAL CONDUCTIVITY K (BTU/nr £t °F) VISCOSITY | °¢ (Centipoises) (Centistokes) % (b./rt-br) £tS/hr 700 3,2% (Ref. 25) 1.58 1300 7.6% 0.0597 800 2. 35% 1.19 1500 5. 4% 0.0439 ' 0 Exponential Form (centipoises) p =0, 11635225/'1' K ¥Denotes experimental values. Other values given are calculated or estimated. =g -93- Mixture Component Mol % Wt. fi Avge M.W. Liquidus Temp. 101 LiF 57.6 5k .2k NaF 38.4 36,97 UF), 4,0 28.79 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gm/cc, T = °C) o= LIQUID (p = 1bs/ft3, T = °F) o = MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION 43.6 645°c (1193°F) 3,08 2,95 - 0.00077T 185.0 - 0.0267T (1/°c x 104y 3.21 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (97°-594°¢) - * = Enthalpy (cal/gm) ] H -H 04 Heat Capacity (cal/gm C) cp* = Heat Capacity at 300°C (572°F) ¢, *= LIQUID (655°-916°¢) - * = Enthalpy (cel/gm) ] Hy-Hqo, Heat Capacity (cal/gm ~C) e * = Heat Capacity at 700°C (1292°F) cp* = HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY 3g (Centipoises) (Centistokes) 700 3¢5 800 296 Exponential Form (centipoises) 0 + 0.227T + 17 x 107°T° 0.227 + 33 x 107°T (Ref. k) 0.%26 -68.9 + 0.531T Q.53 0.53 56 O 1b. /£t-hr) £t< /hr 1300 8.4 1500 6.0 ¥Denotes experimental values. Other values given are calculated or estimated. G4 -_— Mixture Component Mol fi wt. 2 Avg. M.W. Ligquidus Temp.. . 102 LiF 50 20.85 42.1 492°¢ (918°F) KF 50 69.15 | DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 2,43 LIQUID (p = gm/cc, T = ¢) p = 2.46 - 0.00068T LIQUID (p = lbs/£t3, T = °F) o = 154.3 - 0.0236T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c X 10“) 3.40 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION soLID (107°-466°¢) -5_2 Enthalpy (cel/gm) By-H,0* = -2.3 + 0.2817T + 3,82 x 10T Heat Capacity (cal/gm °c) °p* = 0.2817 + 7.6h x 10777 (Ref. 4) Heat Capacity at 300°¢ (572°F) ek = 0.305 LIQUID (532°-893°C) - . Enthalpy (cel/gm) Hy-Ho* = -23.8 + 0.5839T - 10.28 x 10777 Heat Capecity (cal/gm °cC) c *= 0.5839 - 20.56 x 10T Heat Capacity at 700°C (1292°F) cp¥ = 0.4k HEAT OF FUSION (cel/gm) H -B* = 93 THERMAL CONDUCTIVITY K (BTU/nr £t °F) VISCOSITY °¢ (Centipoises) (Centistokes) Op (1b. /ft-hr) £t°/br 600 4,75 1100 12.1 700 2.9 1300 6.9 800 1.95 1500 b4 Exponential Form (centipoises) ¥Denotes experimental values. (ther values given are calculated or estimated. b -95- g R Mixture nggonent Mol 5 Wt. fi ‘,.Avg. M.W. Liguidus TeEE. 103 LiF 48 23,55 52.9 560°¢ (1040°F) KF 48 52,70 | UF, y 23,75 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.85 LIQUID (p = gm/cc, T = °C) p = 2.75 - 0.00073T LIQUID (p = lbs/ft3, T = °F) b = 172.5 - 0.0253T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 3.2k ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION soLID {127°-465°C) Enthalpy (cal/gm) By-H,0* = 0.1 + 0.234T + 4.9 x 10717 Heat Capacity (cal/gm °C) e * = 0.23k + 9.7 x 1077 (Ref. k) Heat Capacity at 300°C (572°F) c ¥ = 0.263 LIQUID (563°-882°¢) Enthalpy (cal/gm) Bp-Hpoo* = -82.4 + 0.657T - 19.7 x 107°7° Heat Capacity (cal/gm °C) c * = 0.657 - 39.3 x 10777 Heat Capacity at 700°C (1292°F) e ¥ = 0.382 HEAT OF FUSION (cal/gm) H-E* = 68 at 500°C** THERMAL CONDUCTIVITY . XK (BTU/hr £t °F) 1.4 (solid_sphefe and slab)(Ref. 45) VISCOSITY fg (Centipoises) (Centistokes) °F 1b. /ft-hr g;fzgz 600 5,25 1100 13.2 700 3,2 1300 7.6 800 2.15 1500 5.0 Exponential Form (centipoises) *Denotes experimental values. OQther values given are calculated or estimated. **The major break in the enthalpy-temperature curve was at 500°C. -96- Mixture Component Mol 2 wt. fi Avg. M.W. Liguidus Temp. 10k LiF b3 15.77 70.7 475°¢ (887°F) RbF 57 8L.23 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 3,27 LIQUID (p = gm/cc, T = °C) o% = 3.30 - 0.00096T (Ref. 22) LIQUID (p = lbs/ft3, T = °F) p* = 207.1 - 0.0333T MEAN VOLUMETRIC COEFFICIENRT OF LIQUID EXPARSION (1/°c X 1oh) 3.65 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID (134°-420°¢) Enthalpy (cal/em) Bp-Hyo* = -1.1+ 0.1849T + 2.45 x 10777° Heat Capacity (cel/gm °C) et = 0.1849 + b9 x 10777 (Ref. 37) Heat Capacity at 300°C (572°F) e ¥ = 0.200 LIQUID (457°-878°¢) , Enthalpy (cal/gm) Hy-Hpo % = -22.9 + 0.3969T - 8.1 x 107°T Heat Capacity (cal/gm °C) c*= 0.3969 - 16.1 x 1077 Heat Capacity at 700°C (1292°F) e f = 0.284 HEAT OF FUSION (cal/gm) H -H* = 55 THERMAL CONDUCTIVITY K (BTU/br £t °F) | 1.2 (Liquid) (Ref. 43) VISCOSITY , _f‘_g (Centipoises) (Centistokes) Op (1b./f£;h;1 fta/hr 500 9.0% (Ref. 38) 3.19 1100 11 h* QT 550 6. 2% 2.2} 1200 8.2% 0.0ko1 600 4.5% 1.65 650 3, L* 1.27 0 Exponential Form (centipoises) p = 0.0212e1‘678/ TK FRANDTL NUMBER 2.9 at 1100°F *Denotes experimental values. Other values given are calculated or estimated. -97- Mixture Comgonent Mol fi Wt. fi .Avg. M.W. Liquidus Temp. 105 LiF 41.3 13,32 80,5 660°¢ (1220°F) RbF 5l .7 T71.06 | U‘Fu 4.0 15.62 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 3.56 LIQUID (p = gm/cc, T = °C) p = 3.36 - 0.0008L4T H LIQUID (p = 1bs/£t3, T = OF) o = 210.7 - 0.02917T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.57 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) B-E0u* = Heat Capacity (cal/gm °c) cp* - Heat Capacity at 300°c (572°F) e, = 0.18 LIQUID Enthalpy (cal/gm) Bp-Hy0* = Heat Capacity (cal/gm °C) e ¥ = Heat Capacity at 700°C (1292°F) ¢, = 025 HEAT OF FUSIOR (cal/gm) H -Hg* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSTTY °¢ (Centipoises) (Centistokes) °p (1b./ft-hr) £t°/hr Exponential Form (centipoises) *Denotes experimental values. Other values given are calculated or estimated. M o .-7-!‘::\,-,.-:. ; ‘ -98- Mixture Comgonent Mol fi Wt i Avg. M.W. Liguidus Temp. 106 LiF 4.7 20,23 52,2 560°C (1040°F) KF 40.3 8.85 NaF 11.0 L4, 86 UF), 4.0 ok, 06 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.90 LIQUID (p = gm/cc, T = °C) p = 2.80 - 0.00074T LIQUID (p = 1bs/ft3, T = °F) p = 175.6 - 0.0257T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c x 10“) 3.26 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) Hy-E 0 * = Heat Capacity (cal/gm °C) cp* = Heat Capacity at 300°C (572°F) c, = 0-27 LIQUID Enthalpy (cel/gm) BB 00" = Heat Capacity (cal/gm °C) c * = Heat Capacity at 700°C (1292°F) c, = 0.38 HEAT OF FUSION (cal/gm) B -Hg* = THERMAL CONDUCTIVITY K (BTU/hr ft °F) VISCOSITY 29 (Centipoises) (Centistokes) Op (1b. /£t-hr) fta/hr 600 5.35 1100 13.6 700 3.2 1300 7.6 800 2.15 1500 4.8 _ Exponential Form (centipoises) *Denotes experimentsal values. Other values given are calculated or estimated. e EERI S -99- e Mixture Component Mol fi Wt. fi Avg. M.W. Liguidua Temp. 107 NaF 11.2 9.TT 48.1 490%¢ (914°F) KF 41.0 49.52 LiF 45,3 24.39 UF), 2.5 16.32 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.7h LIQUID (p = gm/cc, T = °C) p = 2.67 - 0.00072T LIQUID (p = 1bs/£t3, T = °F) o = 167.5 - 0.0250T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°%C x 101‘) 3.32 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID - % = Enthalpy (cal/gm) . BB 00 Heat Capacity (cal/gm “C) cp* = Heat Capacity at 300°¢C (572°F) ¢ = 0.29 LIQUID Enthalpy (cal/gm) . Hp-H,0q% = Heat Capacity (cal/gm “C) cp* = Heat Capacity at 700°C (1292°F) ¢ = 0.41 HEAT OF FUSION (cal/gm) H -Hy* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY °c (Centipoises) (Centistokes) or (1b. /ft-hr) ££°/br 600 5.1% (Ref.12) 2.27 1100 12. 8% 0.0909 700 3.0% 1.38 1300 7.1% 0.0523 O Exponential Form (centipoises) u = o°02923h507/T K ¥Denotes experimental values. Other values given are calculated or estimated. Mixture Component Mol fi Wt. fi Avg. M.W. Liquidus Temp. 108 NaF 56,0 22,06 106.6 550%c (1022°F) ZrF), 37.5 58.80 UF), 6.5 19.15 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 4,16 LIQUID (p = gm/cc, T = °C) o = 3.97 - 0.00093T LIQUID (p = 1bs/gtS, T = °F) o = 248.9 - 0.0322T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPARSION (1/°C x 10%) 2.80 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) = B -E 0% = Heat Capacity (cal/em °C) cp* = Heat Capacity at 300°C (572°F) ¢, = 0.18 LIQUID Enthalpy (cal/gm) Hp-Hy0n* = Heat Capacity (cal/gm °C) e = Heat Capacity at 700°C (1292°F) ¢, = 025 HEAT OF FUSIOK (cal/gm) H -Hg* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY fg (Centipoises) (Centistokes) Op (1b. /£t-hr) fte/hr 600 8.5 1100 21.3 T00 5olt 1300 12.8 800 3.7 1500 8.5 Exponential Form (centipoises) ¥Denotes experimental values. Other values given are calculated or estimated. -y ~-101- - Mixture Component Mol fi Wh. 109 NaF 32 16.96 RbF 31 40.88 BeFé 31 18.38 UF, 6 2378 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) LIQUID (p = gm/cc, T = °¢) LIQUID (p = 1bs/ft3, T = °F) e P MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°c x 101*) e fi" AVE- M.W. Lig uidus TEEE. 7943 535°C (995°F) 3.29 0 3.20 - 0.00064LT 200.5 ~ 0.0222T ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID , - % Enthalpy (cal/gm) . BB 00 Heat Capacity (cal/gm "C) c_* Heat Capacity at 300°C (572°F) y LIQUID - * Enthalpy (cal/gm) . BB o0, Heat Capacity (cal/gm “C) c_* Heat Capacity at 700°C (1292°F) < HEAT OF FUSION (cal/gm) H -Hg* THERMAL CONDUCTIVITY Pas SR K (BTU/br £t °F) VISCOSITY 3§ (Centipoises) (Centistokes) Exponential Form (centipoises) *Denotes experimental values. — — 2.33 0.21 0.30 Op (1b. /ft-hr) £t5/hr Other values given are calculated or estimated. . o -102- Mixture Component Mol fi Wte Avg. M.W. Liguidus Temp. 110 NaF 61.7 37.2 69.6 715% (1427°F) KF 20.5 17.1 ZrF), 16.4 39.4 UFL“ lc"" 603 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3.27% (Ref. 22) LIQUID (p = gm/ce, T = °C) o = 3.15 - 0.00080T H LIQUID (p = 1bs/£t3, T = °F) p = 197.5 - 0.0277T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 3.19 ENTHALPY, HEAT CAPACITY AND HFAT QOF FUSION SOLID Enthalpy (cel/gm) Hy-H 0% = Heat Capacity (cal/sm °C) e * = Heat Capacity at 300°¢ (572°F) c, = 0-21 LIQUID Enthalpy (cal/gm) Hp-B 0p* = Heat Capacity (cal/gm °C) cp* - Heat Capacity at 700°C (1292°F) e, = HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/br £t °F) VISCOSITY fg (Centipoises) (Centistokes) °r 1b. /ft-hr ft2 hr Exponentiasl Form (centipoises) *Denotes experimental vfilues. Other values given are calculated or estimated. = ‘ g T S . . Mixture Component Mol f Wt. f Avge. M.W. Lignidus Temp. 111 LiF 71 27.86 66,02 BeFp2 16 11.39 ThFh 12 56.00 UF), 1 k.76 DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 3.71 LIQUID (p = gm/cc, T = “¢) p = 3.82 - 0.00082T LIQUID (p = 1bs/et3, T = °F) - 5 - 239.4 - 0.go8lp MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPARSION (l/OC x 10') 2.52 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) B -E0c* = Heat Capacity (cal/gm °C) cp* = Heat Capacity at 300°¢ (572°F) c, = 0.26 LIQUID Enthalpy (cal/gm) Bp-Ho0.* = Heat Capecity (cal/gm °C) e ¥ = Heat Capacity at 700°C (1292°F) ¢, = 0.37 HEAT OF FUSION (cal/gm) H -Ho* = THERMAL CORDUCTIVITY K (BTU/br £t °F) VISCOSITY °c (Centi?oises) (Centistokes) °F (1b. /ft-hr) ££2/nr 600 13.0 (Ref.22) 3.90 1100 33.9* 0.1628 700 T.1% 2.18 1300 16.9° 0.0835 800 b, 8% 1.51 1500 11.0% 0.0559 | 14666 /1K Exponential Form (centipoises) . = 0.0620e *Denotes experimental values. Other values given are calculated or estlmated. -k \ 104~ Mixture Component Mol fi We. fi Avg. M.W. Liquidus Temp. 112 LiF 50 35.53 36.5 350°¢ (662°F) BeF, 50 64 .47 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.08 LIQUID (p = gm/cc, T = °¢) p* = 2.22 - 0.00040T (Ref. 3) LIQUID (p = 1bs/£t3, T = °F) o* = 139.0 - 0.0139T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPARSION (1/°C x 10%) 2.06 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID - * = Enthalpy (cal/gm) ] B0, Heat Capacity (cel/gm “C) cp* = Heat Capacity at 300°¢C (572°F) ¢, = 0.46 LIQUID Enthalpy (cal/gm) . Hy-Hyoo* = Heat Capacity (cal/gm ~C) cp*_s Heat Capacity at 700°C (1292°F) c, = O 65 HEAT OF FUSION (cal/gm) H -H* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY °c (Centipoises) (Centistokes) Op (1b./ft-hr) £t°/hr 600 22.2% (Ref.3) 11.2 1100 56, Q¥ 0.487h 700 10. 7% 5452 1300 25,2% 0.2200 800 5.95% 3.12 1500 13.3#% 0.1184 6174 /T°K Exponential Form {centipoises) K = 0.0189% T/ *Denotes experimental values. Other values given are calculated or estimated. i -105~ e Hps Mixture Component Mol fi Wt. fi Avg. M.W. Liguidua Tewp. 113 NaF 50 47.19 4h.s 380°C (716°F) BeF,, 50 52.81 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.4t5% (Ref. 10) LIQUID (p = gmn/ce, T = °¢) p = 2.25 - 0,00040T LIQUID (p = 1bs/ft3, T = °F) o = 140.9 - 0.0139T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 2.02 ENTHALPY, HEAT CAPACITY AND REAT OF FUSION SOLID ' - * = Enthalpy (cal/gm) . Bn~Hy00 Heat Capacity (cal/gm “C) cp* - Heat Capacity at 300°C (572°F) e = 0.38 LIQUID Enthelpy (cal/gm) . Hy-B0.* = Heat Capacity (cal/gm °C) e ¥ = Heat Capacity at 700°C (1292°F) cy = 0.53 HEAT OF FUSION (cal/gm) H -Hg* = THERMAL CORDUCTIVITY K (BTU/hr £t °F) VISCOSITY | °c (Centipoises) (Centistokes) °F (1b./ft-hr) £t°/br 600 15.3%(Ref. Ll ) T.61 1100 38. 7% 0.3084 700. 8. 4% 4.26 1300 20.1% 0.163%4 800 5. 25% 2.72 1500 11.9% 0.0988 Exponential Form (centipoises) uo= o.oh9395009/T0K ¥Denotes experimental values. Other values given are calculated or estimated. A T on A -106- Mixture Component Mol fi Wt. fl Avg. M.W. Liguidus Tegg. 114 KF 50 55,28 52.6 4459 (833°F) BeFE 50 h‘h‘o 72 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.23 LIQUID (p = gm/cc, T = °¢) p = 2,18 - 0,00035T LIQUID (p = 1bs/ft3, T = °F) o = 136.5 - 0.0121T MFAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 16“) 1.81 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) BB 00* = Heat Capacity (cal/gm °C) e * = Heat Capacity at 300°¢ (572°F) e, = 0-32 LIQUID Enthalpy (cal/gm) Hp-H0o* = Heat Capacity (cal/gm °¢) et = Heat Capacity at 700°C (1292°F) e, = 0-45 HEAT OF FUSION (cal/em) H -Eg* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY °c (Centipoises) (Centistokes) °F 1b. /£t -hr) 600 15.3% (Ref.lkh) T-TT 1100 39.2% 700 6. 7% 3.45 1300 15, 7* 800 3.45 1.82 1500 7.6% 6976/T°k Exponential Form (centipoises) K = 0.0051Te 916/ ¥Denotes experimental values. Other values given are calculated or estimsted. S e T ' s . "107— a*:} ;'l‘"-""‘i"; Mixture Coggonent Mol i Wt. fi Avg. M.W. L:Lgu:ldua Temp. 115 RbF 50 68.98 75.8 400%c (7527 ) BeF, 50 31.02 | DENSITY SOLID AT ROOM TEMPERATURE (gm/cc) 2.85 LIQUID (p = gm/cc, T = °¢) p = 2.75 - 0.00050T LIQUID (p = lbs/ft3, T = °F) o = 172.2 - 0.0L730 MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10* ) 2.08 i ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION ' SOLID Enthalpy (cal/gm) | By-Hoo % = Heat Capacity (cal/gm °C) cp-l- - Heat Capacity at 300°C (572°F) c, = 0.22 LIQUID - Enthalpy (cal/gm) - Ep-Hjo % = Heat Capacity (cal/gm °c) cp* = Heat Capacity at 700°C (1292°F) e, = 0.31 HEAT OF FUSION (cal/gm) | H -E* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) VISCOSITY OC SCentip_oiseaz !Centistokes! | °F 1b. /ft-hr :E'ta hr —m —_—— i * 600 11. 5 (Ref.22) h,69 1100 30.3, 01977 - T00 5, o¥ 2.17 1300 - 12.3 0.0821 800 2,75% 1.17 1500 - 6.1% 0.0417 6701 /ToK Exponential Form (centipoises) . = 0.0053ke ¥Denotes experimental values. Other values given are calculated or estimated. o | . ~108- g Mixture Comgonent Mol fi Wt. fi‘ Avg. M.W. Liguidus Temp. 116 K 79 82.30 55.8 730°%¢ (1346°F) BeF2 N 21 17.70 DENSTTY SOLID AT ROOM TEMPERATURE (gm/cc) 2.38 LIQUID (p = gm/cc, T = °¢) p = 2.32 - 0.00040T il LIQUID (p = 1bs/et3, T = °F) o = 145.3 - 0.0139T MEAN VOLUMETRIC COEFFICIENT OF LIQUID EXPANSION (1/°C x 10%) 1.97 ENTHALPY, HEAT CAPACITY AND HEAT OF FUSION SOLID Enthalpy (cal/gm) Hy-H 0% = Heat Capacity (cal/gm °c) cp* = Heat Capacity at 300°¢ (572°F) ¢, = 0-27 LIQUID Enthalpy (cal/gm) Hy-Hjo* = Heat Capacity (cal/gm °C) cp* = Heat Capacity at 700°C (1292°F) c, = HEAT OF FUSION (cel/gm) H -Eg* = THERMAL CONDUCTIVITY K (BTU/hr £t °F) L VISCOSITY 29 !Centigciseé!7 - {Centistokes) Op (1b. /Pt-hr) ftg/hr 800 2.2% (Ref.40) 110 1500 5.0% 0.0401 o Exponential Form (centipoises) 1 = 0.077063600/T K *Denotes experimental values. Other values given are calculated or estimated. -109- TEMPERATURE,°F 9501000 1100 1200 1300 1400 1500 1600 1700 1800 | | | | | | | ] 500 550 600 650 700 800 900 1000 TEMPERATURE, °C 800 850 900 950 1000 1100 1200 1300 | | | | | b TEMPERATURE, °K Flgure I. Viscosity Worksheet (This sheet of specially prepared graph paper has been included to facilitate interpolation and extrepolation of viscosity data). -110~ CONCLUDING REMARKS The summary of physical properties presented in this report has been compiled for the various technical groups within the AEP‘Project vho need it. Properties have been measured or predicted for a large portion of the fluoride systems thet have been of interest to the Project thus far. Tt is anticipated that more measurements will be made for new fluoride systems as they become attractive. In the meantime, however, in most cases the thermal properties of such new fluoride systems can be estimated satisfactorily for preliminary design purposes with the aid of the correlation relations that have been developed. For example; molten densities have been related uniquely to room temperature densities or molecular weight which can be calculated {see topicel report, ORNL 1702). The heat capacities were found to be inversely proportional fio the average molecular weight and directly proportional to the average number of atoms in the mixture {see topical report, ORNL 1956). | Topical reports on the viscosity and thermal conductivity research on fluorides are being prepared. Viscosities have been found to vary with molecular weight and also with molar volume along the lines indicated by the Batchinski relation. The thermal conductivities have been found to vary inversely with average molecular weight: In addition, liquid thermal conductivities have been proportioned into atomic and ionic contributions each of which has been separately correlated. ~111- - l. C. J. Barton, ORNL CF 55-9-78. 2. C. J. Barton, personal communication. 3. B. C. Blanke, MIM CF 55-11-1k. 4. W. D. Powers, G. C. Blalock, ORNL 1956, January 11, 1956. 5« M. Tobias, S. I. Kaplan, S. J. Claiborne, ORNL CF 52-3-230. 6. S. I. Kaplan, ORNL CF 51-8-97. 7. M. Tobias, ORNL CF 51-7-169. 8. S. I. Cohen, T. N. Jones, ORNL CF 55-4-32. 9. 'National Research Council--Bulletin 118, "Data on Chemicals for Ceramic Use™, 1949, 10. 8. I. Cohen, T. N. Jones, ORNL CF 53-7-126. 1. L. Cooper, S. J. Claiborne, ORNL CF 52-8-163. 12, S. I. Cohen, T. N. Jones, ORNL CF 56-5-33. 13. N. D. Greene, ORNL CF 54-8.6k. 14. S. J. Claiborne, ORNL CF 53-1-233. 15. J. Ciser, ORNL CF 51-11-78. 16. 8. I. Cohen, T. N. Jones, ORNL 1702, July 19, 1954. 17. J. Cisar, ORNL CF 51-11-198. 18. J. Cisar, personal communication. 19. 8. I. Cohen, T. N. Jones, ORNL CF 55-2-20. 20. S. I. Cohen, T. N. Jones, ORNL CF 56-4-148. 21. S. I. Cohen, T. N. Jones, ORNL CF 53-3-259. 22. S. I. Cohen, T. N. Jones, unpublished date. 23. R. F. Redmond, T. N. Jones, ORNL CF 52-11-105. 2k. S. I. Cohen, T- N. Jones, ORNL CF 55-12~128. 25. S. I. Cohen, ANP Quarterly Progress Report for Period Ending December 10, 1955, ORNL 2012, page 180. 26. S. J. Claiborne, ORNL CF 52-11-72, 27. 8. I, Cohen, T. N. Jones, ORNL CF 55-2-89. 26. S. I. Cohen, T. N. Jones, ORNL CF 55-3-137. 29, W. D. Powers, S. J. Claiborne, ORNL CF 54-10-139. 30. &. I. Cohen, T. N. Jones, ORNL CF 55-9-31. 31. S. I. Cohen, T. N. Jones, ORNL CF 55-3-61. 32. S. I. Cohen, T. N. Jones, ORNL CF 55-5-59. 33. W. D. Powers, G. C. Blalock, ORNL CF 56-5-68. 34. S. I. Cohen, T. N. Jones, ORNL CF 55-5-58. REFERENCES o 35- 36. 37. 38. 39. 40. h1. Lo, 43, Lh, k5. 46. b7, L48. 49. B. C. Se I. W. Do s. I. Se I Se T. S. I. W. D. W. Do S. 1. Wo D. K. K. Mines T. B. -112- Blanke, personal communication. Cohen, T. N. Jones, ORNL CF 55-7-33. Powers, G. C. Blalock, ORNL CF 55-11-68. Cohen, T. N. Jones, ORNL CF 55-11-27. Cohen, T. N. Jones, ORNL CF 55-8-21. Cohen, T. N. Jones, ORNL CF 55-11-28. Cohen, T. N. Jones, ORNL CF 55-12-127. Powers, G. C. Blalock, ORNL CF 56-5-67. Powers, S. J. Claiborne, ORNL CF 54-7-145. Cohen, T. N. Jones, ORNL CF 55-8-22. Powers, S. J. Claiborne, R. M. Burnett, unpublished data. Kelley, Oontributions to the Data on Theoretical Metallurgy, Bureau of Bulletin 476, 1949. Douglas, J. L. Dever, Thermal Conductivity and Heat Capacity of Molten Meterials, Part 1, The Heat Capacity of Lithium Fluoride From 0°¢ to 900°C, WADC 53-201, Part 1, October 1953. HO F. Poppendiek, ANP Quarterly Progress Report for Period Ending March 10, 1956, ORNL 2061, page 179. M. W. Rosenthal, H. F. Poppendiek, R. M. Burnett, ORNL CF 54-11-63.