5 - . - - - - ® - e ol a rvYeon JI_'_"'!'I' ‘ ;l'o.-.-l.l'l ___-h.."_.: I_.'_-\_- - .J'o'\-l..}-! s '--'-';'-LL".‘J } ITMPBPNT COLLECTI i } U avidn iy L irl : : MEG RESEAGH 4uld GEVELGPHENT REPGRR, TR - coemity-Gonet 3 4456 D3I4Tb4Y 7 4 ;,.-"_"-u. =BTk r " . . 'z .\'.;-r- Nl ‘_: A \ = =T . # FIE A v, A SUMMARY OF DENSITY MEASUREMENTS ON MOLTEN FLUORIDE MIXTURES AND A CORRELATION FOR PREDICTING DENSITIES 71 OF FLUORIDE MIXTURES S. |. Cohen T. N. Jones -‘— Crasgivication Cuanaen To By AUTHORITY (}r;-.@,.- e BT:M = CENTRAL RESEARCH LIBRARY DOCUMENT COLLECTION LIBRARY LOAN COPY DO NOT TRANSFER TO ANOTHER PERSON '{ = 1 i s : i ; ; oy If you wish someone else to see this document, send in name with document and the library will arrange a loan. T OPERATED BY i CARBIDE AND CARBON CHEMICALS COMPANY A DIVISION OF UNION CARBIDE AMND CARBOMN CORPORATION (T3 POST OFFICE BOX P CAK RIDGE. TENNESSEE OAK RIDGE NATIONAL LABORATORY @ - oRag.-1702 This document consists of 38 pages Copy y'of 222 copies Series A Contract No W-T405-eng-26 Reactor Experimental Engineeraing Division A SUMMARY OF DENSITY MEASUREMENTS ON MOLTEN FLUORIDE MIXTURES AND A CORREIATION FOR PREDICTING DENSITIES OF FLUCRIDE MIXTURES S I Cohen T N Jones DATE ISSUED JUL 19 1954 OAK RIDGE NATIONAL LABORATORY Operated by CARBIDE AND CARBON CHEMICALS COMPANY A Divaision of Union Carbide and Carbon Corporation Post Office Box P Oak Ridge, Tennessee | ll\\l\\\lllU\\\I\Htl\\\\\ll\\l\\\\l\\\\“\\l\\\l\—\\m 3 4yu5k 03yq9kL44 7 N 5 1 2 5 b5 INTERNAL DISTRIBUTION C E Center Biology labrary Health Physics Labrary Central Research Library 6 Reactor Experimental Engineering Library 7-15 14 15 16 17 18 19 20 21 22 23 2l 25 26 27 28 29 30 31 32 35 34 25 36 o7 38 59 40 41 42 L3 4 HaoQmorpdrpqgmEHUODOQPPHHRQ@QER PPHOGEZAHQOEHEHPQHO \ \n \N s U e OF glml_—iobdethm:g"Ubdtd g rrEEZREnnnnerNHg g F E P D M P Laboratory Records Department Laboratory Records, ORWL R C Larson Emlet (K-25) Murray (Y-12) Weinberg Taylor Shipley Winters Vonderlage Jordan \ Swartout Lind Culler Snell llaender Kelley Fretague Clewett Morgan Lincoln Householder Harrill Billington Cardwell King Lyon LaneJ/Y Stoughton Graham Gall Poppendiek Beall Gill Cowen Breazeale (consultant) Charyle Ergen Blizard 56 57 58 59 60 61 62 63 6k 65 66 67 68 69 70 71 QUuHEggRERoddyHraoaQE SfQaRgoEHdRErEamuEngaoaroeamdEsagERYerqgare / ORNL 1702//f ’ Chemistry-Gendral é - Calllhan{ K91lhg, z Trice?” Fraas Busgsard LaVerne Bettis Meen Cristy Cottrell Savage Coughlen Adamson Mann Nessgle Bradfute Cohen Greene Hamilton Hoffman Lynch Palmer Powers Rosenthal Jones Manly Smith Cathcart Robinson Mills Grimes Blankenship gD ————MIXTURE 250 (3 92) MIXTURE 12 (2 45)—r——===x 20 “-'='-='—--_< P==———-=—M|XTURE 100 MIXTURE 14 (2 59) (253) 10 0 300 400 500 600 700 800 900 1000 Fig 3 Densities of Fluoride Mixtures (g/cc) vs Temperature (°C)(Numbers in Parentheses are Calculated Room Temperature Densities) TEMPERATURE (°C) 1100 -Ll— LIQUID DENSITY (q/cc) -18- S ORNL-LR—-DWG 579 1o 20 30 40 50 60 70 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) ! Fig 4a Liquid Density at 600°C vs Calculated Room Temperature Density LIQUID DENSITY (g/cc) 4 4 -19= ORNL—LR—-DWG 580 10 20 30 40 50 60 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) Fig 4b Liquid Density at 700° C vs Calculated Room Temperature Density 70 LIQUID DENSITY (g/cc) «20- . ORNL-LR-DWG 584 10 20 30 40 50 60 70 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) Fig 4¢ Liquid Density at 800° C vs Calculated Room Temperature Density LIQUID DENSITY (g/cc) 10 Rk o -21- L ORNL~-LR—~DWG 582 10 20 30 40 50 60 70 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) Fig 4d Ligqud Density at 900° C vs Calculated Room Temperature Density F B am— ORNL-LR-DWG 583 LIQUID DENSITY (g/cc) 0 {0 20 30 40 50 60 70 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) Fig 5 Liquid Density vs Calculated Room Temperature Density (Composite of Figures 2a 2b 2¢ 2d) INTERCEPT OF DENSITY- TEMPERATURE CURVE a 10 -23- ORNL—-LR-DWG 584 B3t 0 10 20 30 40 50 60 70 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) Fig 6 Intercept of Density- Temperature Curve ( a ) vs Calculated Room Temperature Density 0 010 b ro 0 00Of SLOPE OF DENSITY-TEMPERATURE CURVE 0 o001 2. s —24- ORNL-LR-DWG 585 0 10 20 30 40 50 60 70 CALCULATED ROOM TEMPERATURE DENSITY (g/cc) Fig 7 Slope of Density— Temperature Curve( b )vs Calculated Room Temperature Density el _— % - temperature densities, as well as compositions, molecular weights and molecular volumes, for all the fluoride mixtures that have been formulated 1n the ANP program (References 13 and 14) and Table 4 lists the predicted densities in terms of equation 7 for all of these mixtures as well as the experimentally determined formulae to 1llustrate the agreement Cubical coefficients of expansion at 700°C of the liquids calculated from this correlation are inversely proportional to density and vary from 3 60 x IO'A (1/°C) for s mixture having a room temperature density of 2 0 (gm/cc) to 2 37 x 107H (1/°C) for a mixture having a room temperature density of 5 5 (gm/cc) % B2 £ W W o =1 O W 10 11l 13 14 15 16 - 26 - REFERENCES Melvin Tobias, S I Kaplan, S J Claiborne, ORNL CF 52-3-230 S I Keplan, ORNL CF 51-8-97 J Cisar, ORNL CF 51-11-78 J J S Cisar, ORNL CF 51-11-198 Cisar, Personal communication F I I I I Redmond, T N Jones, ORNL CF 52-11-105 Cohen, Cohen, Cohen, Cohen, S I Cohen, ANP Physical T T T T T N N N N N Jones, ORNL CF 535-7-125 Jones, ORNL CF 53-10-86 Jones, ORNL CF 53-8-217 Jones, ORNL CF 53%-12-179 Jones, Memo to be 1issued Properties Group, ORNL CF 53-3-261 C J Barton, ORNL CF 53-10-78 C J Barton, Personal commmications Katz and Rabinowitch, "The Chemistry of Uranium," NNES VIII-5, p 366 Henglean, F A , Z Elektrochem , Vol 30, p 5, 1924 ‘g‘) TABIE 1 TABIE 2 TABLE 3 TABIE L APPENDIX Experimental Density-Temperature Data Constants used in Calculating Room Temperature Densities Calculation of Room Temperature Densities Comparison of Predicted and Experimental Density- Temperature Data TABIE 1 EXPERIMENTAL DENSITY-TEMPERATURE DATA Cubical Coefficient LIQUID DENSITY (gm/cc) of Expa.nstonz Composition 600°C T00° 800° 900°C 1/9¢ x 10 Reference 2 4 00 3 89 3 78 3 67 2 96 2,12 2a 3 88 5 T7 3 66 5 55 2 92 5,12 12 2 10 2 02 194 1 88 3 61 11 14 2 11 2 02 1l 93 b 46 4,12 19 3 13 3 48(600°¢c) 5,12 21 2 96 2 80 5 51(800°C) 5,12 25 3 23 3 1k 5 05 2 96 2 90 5,12 258 3 17 5 09 5 0l 2 95 2 59 5,12 31 3 23 3 14 3 05 2 96 2 96 6,12 33 3 98 3 99 6,12 40 3 27 3 21 3 16 171 7 L3 4 60 b L7 I 3h 2 83 8 L 3 38 5> 27 3 16 3 36 9 L6 5 9l 579 3 67 5 07 10 100 2 03 1 97 192 2 71 11 2‘Ven.lue is for TOOOC unless otherwise noted The calculated range of cubical expansion coefficients 1s from 3 6 x 10-%* 1/°C to 2 4 x 10°% 1/0C The few experimental values which fall outside of this range probably do so because they are based on early or incomplete sets of data - 29 - TABLE 2 CONSTANTS USED IN CAICULATING ROOM TEMPERATURE DENSITIES Molecular Room Molecular Component Weight, Temperature Volume, M Density, Mi/p, (gn/mo1) o (cc/mol) (gm7CC) IaF 25 9 2 30 11 26 NaF 42 2 79 15 05 BeFo W7 1 98 23 T4 KF 58 1 2 48 23 43 ZrF), 167 2 L 43 37 Th UF), 310 1 6 703u 46 88 RbF 104 5 3 557 29 38 PbFo 2hs 2 8 24 29 75 ThF), 308 1 6 702 45 99 UF3 295 1 8 956 32 97 3Reference 15 hReference 16 OValue for UF, Value for ThF), not available GDerlved from X-ray data All other values taken from Lange's Handbook of Chemistry, Eighth Edation a -0 - C TABLE 3 CAICUIATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES N M,, molecular wt of M, £, component Mol Wt of Mixture _ i=1 £;, mol % of that PRoom Temp = Mol Vol of Mixture = N vhere, "1’ compfnent (Ml/pi)fl pi, demsity at room 1=1 temperature of that component Mol Wt Mol Vol of of Mixture Component f, Mf, Mxture (M;/p1)f3 Mixture PRoom Temp 1 BeFo 12 5 6 75 2 2 85 19 92 3 17 NaF 76 319 11 44 UF), 12 37 7 5 63 2 NaF W6 5 19 5 121 O 7 00 25 98 L 66 KF 26 0 15 1 6 09 UFy, 27 5 86 &4 12 89 Pa NaF L8 2 20 2 114 3 7 25 25 25 4 53 KF 26 8 15 6 6 28 UF)y 25 0 78 5 11 72 3 BeFp 60 0 28 2 85 8 14 24 25 03 3 43 NaF 25 0 10 5 3 76 UF), 15 0 47 1 7 03 L NaF 35 1 7 167 6 5 27 31 06 5 4O KF 20 11 6 4 69 UF), 45 141 3 21 10 5 NaF 60 25 2 135 O 9 03 23 84 5 66 PbF2 23 56 4 6 84 UF), 17 53 L T 97 6 NaF 30 12 6 46 1 L 52 21 12 2 18 BeF2 65 30 6 15 43 KF 5 29 117 . - 31 - ¥ TABIE 3 (Con't ) CALCULATION OF ROOM TEMPERATURE DENSITIES OF FIUCRIDE MIXTURES Mol Wt Mol Vol of of Mixture Component fi Mify Mixture (M,/p,)fj; Mixture PRoom Temp 7 NaF 50 21 126 8 T 53 26 28 L 83 KF 20 11 6 b 69 UF}, 30 gl 2 1k 06 8 NeF 100 L2 2 797 9 BeFo 100 W7 1 987 10 [T 100 25 9 2 307 11 KF 100 58 1 > 4,87 12 NaF 11 5 L 8 b1 2 173 16 81 2 45 (Flinsk) KF 42 0 2l L 9 84 I1F 46 5 12 0 5 o 13 NaF 53 20 3 128 7 98 25 52 5 02 RbF 20 20 9 5 88 UFY 27 84 8 12 66 1k KF 43 5 25 3 bk 9 10 19 17 36 2 59 (Flinak) LiF Ly 5 11 5 5 01 NaF 10 9 L 6 1 64 UF), 11 3 5 52 15 NaF 29 5 12 4 50 3 b by 21 5% 2 3 BeFp 64 0 30 1 15 19 KF b9 28 115 UF), 16 50 75 16 NaF 34 0 1 3 68 0 5 12 22 76 2 99 BeFo 57 5 27 0 13 65 UF), 85 267 3 99 7Ta.ken from Lange's Handbook of Chemistry, Eighth Edition 3 N -32 - TABIE 3 (Con't ) CAICUIATION OF ROOM TEMFERATURE “DENSITIES OF FLUOCRIDE MIXTURES fi“f Mol Wt Mol Vol of of Mixture Component fj M,fy Mixture (Mj/p3)fy Mixture PRoom Temp 17 NaF 47 0 19 7 50 O 7 07 20 12 2 49 BeFo 51 0 24 0 12 11 UF), 20 63 ol 18 NaF 45 O 18 9 96 5 6 T7 20 80 L 64 LiF 33 0 85 5 T2 UFY 22 0 69 1 10 31 19 NaF 5 0 21 108 2 75 29 49 3 67 KF 51 O 29 6 11 95 ZrF), 42 0 70 2 15 85 UF), 20 63 ol 20 NeF 50 21 104 2 75 29 16 3 57 KF 52 0 30 2 12 18 ZrFl 43 0 71 9 16 23 21 NaF L 8 20 112 1 72 29 83 3 76 KF 50 1 29 1 11 Th ZIF), 513 691 15 59 UF), 38 11 9 1 78 22 KF 46 0 26 T 122 9 10 78 31 53 3 90 ZrF), 50 0 83 6 18 87 UF), 40 12 6 1 88 23 KF 41 8 o 3 42 9 9 79 16 99 2 53 NaF 11 4 L 8 172 1a1F 46 2 12 0 5 20 THF), 06 1 8 o8 2L KF 18 0 10 5 102 5 L 22 27 00 3 80 NaF 36 0 15 1 5 42 ZrF), 46 0 76 9 17 36 ] - 33 - % TABIE 3 (Con't ) CAICUIATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES Mol Wt Mol Vol of of Mixture Component f, M,f, Mixture (My/p1)f; Mixture PRoom Temp 25 KF 17 4 101 109 9 4 08 27 70 3 97 NaF 34 7 14 6 5 22 ZxF) Lk Th 2 16 76 UFy, 55 11 0 1 64 25a NaF 35 1 14 7 107 7 5 28 27 48 3 92 KF 17 6 10 2 L 12 ZrF), 4 8 T4 9 16 91 UFy 25 79 117 26 KF 14 © 81 111 6 3 28 27 78 L 02 NaF 36 6 15 4 5 51 vAJN 45 6 76 2 17 21 UF), 38 11 9 1 78 27 NaF 46 0 19 3 115 5 6 g2 27 67 Y 17 ZrF), 50 0 83 6 18 87 UFy, L 0 12 6 188 28 NaF 48 0 20 2 107 1 7 22 26 8h 3 Q9 ZYF), 52 0 86 9 19 62 29 NaF Yo 2 17 7 114 3 6 35 28 16 L 06 ZTF), 578 966 21 81 30 NaF 50 0 21 0 110 5 7 53 26 17 4 13 ZrF), 46 0 76 9 17 36 UF), 4 0 12 6 1 88 31 NaF 50 0 21 0 104k 6 7 53 26 Lo 3 96 ZxF), 50 O 83 6 18 87 32 NaF 52 0 21 8 102 1 7 83 25 95 3 93 ZrF), 418 0 80 3 18 12 L - 3b - TABIE 3 (Con't ) CAICULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES Mol Wt Mol Vol of of Mixture Component £, Mif, Mixture (M1/py )1, Mixture PRoom Temp 33 NaF 50 0 21 0 41 L T 53 28 69 L 93 ZrTFy, 25 0 41 8 9 L UFy 25 0 78 6 11 72 3l NaF 57 O 23 9 95 8 8 58 24 81 3 86 ZrF), 43 0 719 16 23 35 NaF 57 O 23 9 Wi ] 8 59 18 80 2 35 BeFo 43 0 20 2 10 21 36 NaF 55 0 23 1 57 6 8 28 20 12 2 86 BeFp 40 0 18 8 9 50 UFy, 0 15 7 2 3h 37 NaF 50 0 21 0 178 05 T 53 30 97 5 75 UF), 50 0 157 05 23 Ll 38 NaF 50 O 21 0 107 5h 7 53 26 59 4 ob ZrF), 18 o 80 26 18 12 UFy 20 6 28 ol 39 NaF 65 0 27 3 115 18 9 78 2 82 L 64 ZrF), 15 0 25 08 5 66 UF), 20 0 62 80 9 38 40 NaF 53 0 22 3 106 8 7 98 26 09 4 09 ZrF), 43 0 71 9 16 23 UF), Lo 12 6 1 88 iy NaF 63 0 26 46 105 95 9 48 2L 55 4 32 ZrFy, 25 0 41 8 9 44 UF}, 12 0 37 69 5 63 A § S s - 35 - : TABIE 3 (Con't ) CAICUIATION OF ROOM TEMPERATURE DERNSITIES OF FIUORIDE MIXTURES Mol Wt Mol Vol of of (f/ Mixture Component £, M T, Mixture (My/p, ) Mixture Room Te L2 NaF 6L 5 27 09 129 78 9 71 25 80 5 03 ZxF), 6 0 10 03 2 26 UF), 29 5 92 66 13 83 43 NaF 66 T 28 0 132 6 10 Ok 25 67 5 17 UF), 333 104 6 15 63 Wl NaF 55 5 22 5 109 8 8 05 26 20 4 19 ZxF), 40 O 66 9 15 10 - UF) 65 20 b 3 05 45 NaF 53 0 22 27 100 87 7 98 o5 72 3 9o ZrF), 47 0 78 6 17 Th 46 NaF 62 5 26 3 125 7 g9 41 25 85 L 86 ZrF), 12 5 20 9 L 72 _ UF), 25 0 78 5 11 72 W7 NaF 35 1 7 41 1 5 27 18 20 2 26 L1F 20 5 2 2 25 BeFo L5 21 2 10 68 C Test NaF 66 7 28 0 83 7 10 Ok 22 61 3 70 ZTF) 3% 3 55 7 12 57 50-99 (to be hydroxide mixtures) 100 L1F 60 0 15 5 32 3 6 76 12 78 2 53 NaF 40 0 16 8 6 02 101 IaF 57 6 14 9 43 6 6 49 14 15 3 08 NaF 38 4 16 1 518 UFY 1 0 12 6 1 88 _36 / TABIE 3 (Con't ) CAICULATION OF ROOM TEMPERATURE DENSITIES OF FLUORIDE MIXTURES Mol Wt Mol Vol of of Mixture Component £, M, T, Mixture (My/p, )E2 Mixture PRoom Temp 102 LiF 50 O 13 0 W2 1 5 63 17 35 2 43 KF 50 O 29 1 11 72 103 IiF 418 0 12 4 52 9 5 41 18 54 2 85 KF 48 0 27 9 11 25 UF), 4 0 12 6 1 88 10L RbF 57 O 59 6 70 T 16 75 21 59 3 27 IaF 43 0 11 1 L 8k 105 RbF 54 7 57 2 80 5 16 07 22 60 3 56 LiF Ll 3 10 7 L 65 UF), Ly 12 6 1 88 (07 T »207 (& 800T, RS r—— /;ZMC dee §fi?/l/é J 7L %/07-“/ Foo £ - (}L&'?}( Jowin 195¢ A ———— o35 % Z W _ TARLE ]+ CAICULATED DENSITY-TEMPERATURE REIATIONSHIPS FOR ALL FLUORIDE MIXTURES COMPARISON OF CAICULATED RELATIONSHIPS AND AVATIABIE EXPERIMENTAL REIATIONSHIPS Composition M P (°C) Calculated Experimental Agreemen'b8 Reference Density Density 1 480 p =3 60 - 0 00087T 2 530 p =4 55 - 0 00102T p =4 70 - 0 00115T > 2% 2,12 2a, 558 p = 4 4O - O 00099T p = 4 54 - 0 00110T > 24 3,12 3 465 p =324 - 0 000827 4 708 p =560 -0 O0L16T 5 465 p =6 0L - 0 00122T 6 435 p =2 eg - O 00065T fo— 7 575 p =4 78 - 0 0010LT 8 9927 =1 9 8007 : 10 8707 11 88071 12 460 p =2 47 - 0 00068T p =253 - 0 00073T > 29 11 13 %90 p =505 -0 00108T 1k 452 p = 256 - 0 00070T p =2 65 - 0 00090T > 3% 4,12 15 433 p =240 -~ O 00067T 16 500 p = 2 87 - 0 00075T 17 p =2 49 - 0 00069T 18 506 p = 4 54 - 0 00101T 19 1405 p =3 46 - 0 00085T o =378 - 0 00109T 6% (600°c) 5,12 20 450 p =3 38 - 0 00084T 21 540 p =355 -0 00087T p =4 27 - 0 00163T >h% (800%) 5,12 22 605 p =3 69 - 0 00089T 23 450 p =252 -~ 0 0007T0T 2l 450 p =359 -~ 0 00087T 25 545 p =375 - 0 000907 p =378 - O 00091T >1% 5,12 25g, 545 p =371 - 0 00089T p =365 - 0 00080T >1% 5,12 26 540 p =3 82 - 0 00091T 274 510 p =% 97 - 0 00093T - TABLE 4 (Con't ) ’ 3 CAICUIATED DENSITY-TEMPERATURE RELATIONSHIPS FOR ALL FLUORIDE MIXTURES COMPARISON OF CALCUIATED REILATIONSHIPS AND AVAILABIE EXPERIMENTAL RELATIONSHIPS Composition M P (°) Calculated Experimental Agreement8 Reference Densaity Densaity 28 510 p=3T9 - 0 00090T 29 570 p =3 86 - 0 000927 30 520 p =395 -~ 0 00093T 31 510 p =375 - 0 00090T p =379 - O 00093T >1% 6,12 32 500 p =372 - 0 00089T 33 610 p =4 90 - 0 00107T p =509 -0 00159T > 5% 6,12 3h 490 p =3 65 - 0 Q0088T 35 360 p =2 40 - 0 00067T 36 >500 p =2 T6 ~ 0 00073T 37 715 p =616 - 0 001237 38 510 p =3 83 - 0 00091T 39 610 p =4 55 - 0 00102T 40 520 p =389 - 0 00092T p =3 60 - 0 00055T >2% 7 41 595 p = 4 15 - 0 00096T 42 650 p =505 -0 00107T 43 640 p =525 - 0 00111T p =551 -0 00130T >3 8 Wl 545 p =4 00 - 0O 00093T p = 4 Ok - 0 0O110T >3% 9 45 500 p =371l - 0 00089T L6 635 p = L4 83 -~ 0 00105T p =14 75 - 0 00120T >5% 10 W7 350 + 20° p =2 33 - 0 0006ET C Test 625 p = 3 49 - 0 00086T 100 652 p =252 -« 0 00069T p =2 42 - 0 00055T >1% 11 101 645 p =295 - 0 00077T 102 492 p = 2 46 -~ 0.00068T 103 >500 p =275 - 0 00073T 104 462 p =310 - O 00079T 105 4657 p =3 3 - 0 00084T 8Agreement or percent difference = Pexp =~ Pecalc % 100 y (Detedpined at 700°C unless 1/2 (pexp + Pcalc ) otherwise stated) ‘QE-