ORKL 1653 o COP}’ NO - /‘;fiz‘f Contract No. W~T405, eng 26 Reactor Experimental Engineering Division ENTHALPIES AND SPECIFIC HEATS OF AILKALY AND ALKALINE EARTH HYDROXIDES AT HIGH TEMPERATURES by W. D. Powers G. C. Blalock DATE ISSUED OAK RIDGE NATIONAL LABORATORY Operated by CARBIDE AND CARBON CHEMICAIS COMPANY A Division of Union Carbide and Carbon Corporation Post Office Box P Oak Ridge, Tennessee ~2a ORNL 1653 Engineering INTERNAL DISTRIBUTIGHN 1. C. E. Center L7, 8. E. Beall 2. Biology Library h8. J. P. Gill 3. Health Physiecs Library 9. D. D. Cowen k-5, Central Research Library 50. W. M. Breszeale (consultant) 6. Reactor Experimental 51. R. A. Charpie Engineering Library 52. €. J. Barton T-11. Laboratory Records Department 53. E. 5. Bettis 12, Laboratory Records, ORNL Ry.T 54, J. P. Blakely 13. C. E. Larson 5%. G. C. Blalock 1k, W. B. Humes (K-25) 56. F, F. Blankenship 15. L. B, Emlet (Y-12) 5f. B. P, Blizard 16. A. M. Weinberg 58, E. G. Bohlmann 17. E. H. Taylor 59. J. 0. Bradfute 18. E. D. Shipley 60. M. A. Bredig 19. C. E. Winters 61. A. D. Tallihan 20. F. C. VonderLage 62. 8. I. Cohen 2l. R. C. Briant 63. C. P. Coughlen 22. J. A. Swartout 6h. G. A. Cristy 23. 8. C. Lind 65. M. C. Edlund 2k. F. L. Culler 66. W. K. Ergen 25. A, H, Snell €7. A. P. Frass 26. A. Hollaender 68. N. D. Greene 2T. M. T. Kelley 69. W. R. Grimes 28. W. J. Fretague T0. D. C. Hamilton 29. G. H. Clewett Ti. H. W. Hoffman 30. K. Z. Morgan T72. J. R. Johnson 31. T. A. Lincoln T3. ¥. Kertesz 32. A. 8. Householder Th. E. E. Ketchen 33. C. 5. Harrill T75. ¥. E. Lynch 34, D. W. Cardwell 76. W. B. MacDonald 35. D. 8. Billington Tie We D, Manly 36. E. M. King 78. L. A. Mann 37. d. A. Lane T9. L. G. Overholser 38, A. J. Miller 80. L. D. Palmer 39. R. B. Briggs 81-120. W. D. Powers 4O, A. S. Kitzes 121. M. W. Rosenthal 41, 0. Sisman 122. H. W. Savege 42, R. W. Stoughton 123, G. P. Smith 43, C. B. Graheam 124, C. D. Susano kh W. R. Gall 125, §. R. VanArtsdelen 45, H. F. Poppendiek 126. J. M. Ward L6, R. N. Lyon 127. M. J. Skinner EXTERNAL DISTRIBUTTON 128. R. F. Bacher, Californis Institute of Technology 129. M. D. Bends, Metal Hydrides, Inec. 130. E. G. Brush, Knolls Atomic Power Laboratory 131. 132. 133 134. 135. 136. 137. 138. 139. 140, 14 1h2. 143. 1hk, 1hs. 146, 1h7 148-391. J. M. T. B. J» L. L. P. W. 2. W. N. D. G. R. A. -3 Carter, Consultant, Moivrouia, California Douglas, National Bureau of Standards Dever, National Bureau of Standards Epstein, Knolls Atomic Power Laboratory Friend, International Nickel Company Harrison, National Bureau of Standards Hill, Duke University Lad, National Advisory Copmittee for Aeronautics H. Marcus, Wright Air Development Center (WCRTY-3) P. D. S. L. EC‘ M? W. J. D. D. W. F. H. R. E. N. Given Miller, Battelle Memorial Institute Simon, National Advisory Committee for Aeronautics Simons, Battelle Memorial Institute Smothers; University of Arkansas Williams, Naval Research Laboratory Zelezny, National Advisory Committee for Aeronautics Copson, International Nickel Company Skinner, International Nickel Company distribution as shown in TID-450C under Engineering Category DISTRIBUTION PAGE TO BE REMOVED IF REPORT IS GIVEN PUBLIC DISTRIBUTION e TABLE OF CONTENTS SUMMARY . cccveevvcovevssossacansans tesessatesreertasetasaens cesesevssnne INTRODUCTION . s v vevvennvansnnnncs R cecevevanas .o ALUMINUM OXIDE DETERMINATIONS. . civeeecececncsrsassnseasssoasnsones ceeeens CHEMICAL PURITY OF THE HYDROXTDES.ceceesvcsacssncssssscecosccsesssssoanse ENTHALPY AND HEAT CAPACITY.ceseccossseccccsssasvevnsssscecsiocanauseonsoss Sodium HydroXiGCossesesscessssrsssssosscscaeccansocoecsossrnsassess Potassium HydroxXideeocosessoscsosscsssesccssssceeccosscsconcnovssnso Lithi'lm HydroxidEOOCOOCGOOGOQOO0.’..0.0eoo@cat.fiflt..QGBQOOO...ODO Lithiunl“SOdim Hy'dl'OXide Eutectic.eei..!Qcfi-a1’..&.0.06090#0..0.000 Strontium HydroxXide.isesosssssescesveacsnsscrconscessssssnsossnsnes Barium Hydroxide..scesoesesoscssesscssssscsocsscsscscrsnnassnnces DISCUSSION OF RESULTSQ.OO."OQOQOOCOIOCCIDlt.l.l‘....'.‘.‘&....'..‘.ll. REFEENCESOO......OBQOO..Ol.........'.b.'.'0.'."Ge.l."..‘..l...l‘."l APPENDIX - EXPERIMENTAL ENTHALPY TEMPERATURE DATA FOR THE INDIVIDUAL mROXmE SMIES.D..O“ODRO.G‘.'b..'....OD...0....?'.0.'.'. Sodium Hydroxide.eseecssoosesossescosssosesosescscasssoosnersscaces Potassimum HydroXide..seeeeeetersrcoasssoscesessscsssascnsasssssassnes Tithium HydroXide.ieessevseessassssescocsccsscsscsssosscascsessescse Lithium-Sodium Hydroxide EubtectiCeesecosecesosssssvsecsccsesscosnces Strontium HydroXide.csoeeeesssessscesossnsesvssscscscossoscsssonses Barium HydroxXidG.secesscosrccoeescssesescncsnonsecssssssssscorssccses 11 11 14 15 18 13 23 “5a ENTHALPTES AND SPECIFIC HEATS OF ALKALT AND ALKALINE EARTH HYDROXIDES AT HIGH TEMPERATURES SUMMARY The enthalpies and heat capacities of'lithium, potassium, strontium, and barium hydroxides in the liquid and solid state have been determined with & Bunsen Ice Calorimeter; sodium hydroxide and the lithium—sodium hydroxide eutectic in the liquid state were alsoc studied. Esfimates of thé heat of - fusion have been mede. General empirical equations have been developed which represent the enthalpy and heat capacity of the hydroxides in the liquid state. INTRODUCTION Samples of the hydroxides heated to constant and uniform tefiperatures were dropped into Bunsen ice calorimeters. The differences in the heat contents of the samples at constant pressure between the furnace temperature “and 0°C were measured by @bserving the change in volume of the ice-water | ‘mixture in the calorimeter. The enthalpy was thus obtained directly. The derivative of the enthalpy with respect to temperature yielded the heat capacity. The design of the apparatus has been described fully elsewhere {1). It wes a modification of the device used by the National Bureau of Standards (2). Ease of construction and simplicity in use were the prime objectives in the design. b Briefly, the apparatus consisted of two parts, the furnace and the calorimeter (Figure I). During this investigation the furnaces were changed from 12 to 24 inch long units. The longer furnaces gave more reproducible results than did the 12 inch furnaces. The samples were contained in tapered metal capsules. They were sealed by heliarc welding in an inert gas filled dry box to avoid any possible contamination with water and carbon dioxide. The temperatures of the samples were measured by platinum, pletinum-rhodium thermocouples. The capsules were dropped into the calorimeter by electrically Tusing a short length of wire on which they were suspended in the furnaces. The calorimeter was of the Bunsen type in which the heat liberated by the sample was absorbed by an ice-water mixture. The change in volume measured by & system of burets gave the amount of heat liberated (one ml. change in volume is equivalent to 8785.7 cal. as calculaited from the density of ice and water and the heat of fusion)(1)(2). The calorimeter was surrounded by flaked ice except for the alundum tube through which the sample dropped from the furnace. Freezing of the copper water lines between the buret as- sembly and the calorimeter was experienced when the flaked ice was in direct contact with the copper tubing. A steel shell was made which eliminated this trouble by providing an air gap between the ice and the calorimetler through which the copper tubing passed. The total heat measured by the calorimeter was the sum of the heat liberated by the sample and capsule and the heat leakage from the surroundings into the calorimeter down the alundum ftube through which the sample dropped. The contribution of the capsule was found from the enthalpy temperature -7 NICKEL RODS TO 140 VOLTS -rrrmmmmemrerrmeomee THERMOCOUPLE — s UNCLASSIFIED Owg. 220685 SHEET ASBESTOS SHIELD-—aJi1]l: SIL~O~CEL INSULATION =1 SAMPLE CAPSULE ——~—._ [ ALUNDUM FURNACE CORE-D.[Y: . v h o e T T o _NKQ-‘“;E' = - { - SRS e T e T T Y IR AL TR ARy 042" N BURETTE ASSEMBLY el = 4 INCHES 3 ! ; 4 v i e L Sis , e e S e bl LR Byl CVTRTTE A A Ji z:\,v"’\fii\n_éfi ; 330 T 240 g X k :“a?fw‘fé Ryl i‘«fl S AR UL ALUNDUM TUBE(‘\” FURNACE ASSEMBLY o ™~ YR L T Ty S T £ R N i ARy R iy iy s i"fih gl e "3?&5 zg% 4 i CORK e | . o |’ - AIR - —i @ ) 1 LUGITE CALORIMETER ———fg8h ™ fl - SHELL Al Y = (. | R |CE ~WATER MIXTURE ———1# ‘ = COPPER RECEIVER—~——__ R 22 B — | N - ‘.":T-.:-/ s g ; - (N iy b : = , i 7 Y P (,4 SO . ‘ ” c;} e 0w & & & " % ot T ¢ % S e I gkt DRAIN sl e BT g fifu* ; J 3 3 CALORIMETER ASSEMBLY - Fig.'l.‘Schemu’fic Diagram of Bunsen lce Calorimeter 8. relationship of empty capsules; the heat leskage was determined from the heat leakage nmeasurements made before the capsule was dropped and after equilibrium was established. At SOOOC the heat liberated by the sanple and cspsule was of the order of 15000 calories, 50 to 70% of which came from the sample. The heat leakage from the surroundings was 100 to 200 calories for the hour in which the measurements were made. The linear dependence of enthalpy on temperature of the samples wss calculated by least squares; the scatter of the dats was large enough so that representing the data by a higher power relation was not warranted. Thus the reported heat capacities are not tefiperature dependent. The standard devi- ation of the heat capacity was calculated. This was used to determine the 95% confidence limits on the reported heat capacity. At the start of this investigation the only high temperature data reported in the literature were those for sodium hydroxide (3). The preliminary re- sults of the heat capacity research on the several hydroxides at Oak Ridge National Laeboratory have been reported in a series of memoranda (4)}; some of these were obtained using 12 inch furnaces. Recently the National Bureau of Standards has reported data for sodium hydroxide (5) which are compared to the results previously determined at ORNL. _9.. ATUMINUM OXIDE DETERMINATIONS - Enthalpy and specific heat determinstions have been made for pure aluminum oxide. It has been proposed as a high temperature calorimetric standard by the Bureau of Standards (6). One hundred and three determi- nations at OREL over the temperature fange of 400-900°C (average tempera- ture 664°C) agree with the NBS results within 3.3% for the enthalpy and 1.3 for the heat capacity as shown in Table I. TABILE I ENTHALPY AND HEAT CAPACITY OF ALUMINUM OXIDE ORNL, NBS % Deviation He 000 2 (cal./gm) 126 122 3.3 Hgooo - Hoop 214 209 2.4 cp at 664°c, (cal./gm. °C) 0.29% + 0.013 0.2901 1.3 CHEMICAL PURITY OF THE HYDROXIDES Pure hydroxides of low water and carbonate content were used in this investigation. A summary of the analytical data is shown in Table II. The low total alkalinity of the lithium hydroxide and of the stromntium hydroxide after use was due to the corrosion of th@ metal capsule and consequent metallic impurities. These particular cspsules were used at higher temperatures more often than the other capsules analyzed. Most of the capsules were run until the hydroxide leaked through the capsule {in most cases at the ~10- welded joint). Final analyses were msde only on samples which had not ruptured. The error due to the sclution of metal in the hydroxide is believed to be within the error of the determination as any reaction products between the sample and the capsule would have enthalples and heat capacities approxi- mating the original materials. No significant change of enthalpy was noted after prolonged use of the capsules at high temperatures. TABLE IT1 ANALYSIS OF MATERTAIS Material NaOH KOH LiOH LiOH Sr(CH)o Ba(OH), NaOH Capsule YW YV 21 ZN ZK ZR Capsule material Nickel Nickel 1Inconel TInconel Inconel Inconel Original Analysis (% by Wt.) %4 Total Alkalinity 99.97 100.00 * * 99.80 100.4 % Metal Carbonate .13 .12 b7 143 Final Analysis % Total Alkalinity 99.46 o8 .68 96.6 09.73 gh,1 99,81 % Metal Carbonate .28 e 57 105 .28 .19 .30 *¥No original analysis was made on this material. The purity of the lithium hydroxide is of the same order of purlty as the other hydroxides. A typical analysis is 99.90% total alkalinity, 0.1% LisCOx. -11- SODIUM HYDROXIDE The individual results of the enthalpies of sodium hydroxide are listed in the appendix and plotfied in Pigure II. Capsule YW was run in the 24 inch furnaces, the others in the 12 inch furnaces. The enthalpies obtained by thé different furnaces agreed within 5% of each other. The enthalpy and hest ‘ capacity of liquid sodium hydroxide are represented by the following equations: i Hp - Hoog = 65.8 + 0.4o4T 0.49 + 0.02 “p where H is the enthalpy in cal./g. T is the temperature °¢ cp is the heat capacity in cal./g. ©C No attempt was made to determine the properties of the solid phases because of the insufficient data in that region. The results obteined by "NBS for the liquid and solid phases are plotted 1in Figure II together with the results of this investigation obtained below the melting point. POTASBTUM HYDROXTDE The individual results of the enthalpies of potassium hydroxide are listed in the appendix and plotted in Figure IIT. Capsule YV was run in the 24k inch furnaces, the others in the 12 inch furnaces. The enthalpy and heat | capacity of liquid potassium hydroxide are represented by the following equations: 500 400 — ORNL E —f 2 g A i’ A 300 x NBS = J 4 < = a — = L 200 A A H . A OA 100 4 v 0 | ! i 0 200 400 600 800 UNCLASSIFIED Dwg. 22066 | a—12in. FURNACE 0—24in. FURNACE Fig.2. Temperature vs. Enthalpy for Sodium Hydroxide TEMPERATURE (°C) 1000 _Zl_ ~ ENTHALPY (cal/gm) UNCLASSIFIED Dwg. 22067 500 7 400 300 0=24 in. FURNACE a=-1Zin FURNACE 200 100 { 200 400 600 TEMPERATURE (°C) 800 Fig. 3. Temperature vs. Enthalpy for Potassium Hydroxide 1000 _8[- -1~ 52.5 + 0.354T H Hp - Hpog Cp i 0.35 + 0.02 The heats of t:ansition of the two solid states of potassium hydroxide (@2 at 249°C) and the heat of fasion (400°C) msy be roughly estimated from the data below the melting point. A linear relationship between the enthalpy and temperature was calculated for the low temperature form from 0YC to the transition point. A mean healt capacity between the @ form and the liquid was used for the B form. The enthalpy points at 379°C and asbove for the B form were considered subject to error since they were near the melting point. The following equations were calculated Br(a) - Hyoo = 0.32T Hp(B) - Hyop thgo(a) - nggo(a) = 2k Hygoo{liquid) - Hyno(B) = 40 i 20.2 + .5%57 These agree within the experimental error of previously reported values of the heat of transition (7), 27 cal./g. and heat of fusion 32.6 cal./g. (7) (8). LITHIUM HYDROXIDE The individual results of lithium hydroxide are listed in the appendix and plotted in Figure IV. All the capsules were run in the 24 inch furmaces. UNCL ASSIFIED | | Dwg. 22068 1000 l i 1 T et Q 800 o E L 8 600 & -4 s i T = o Z 400} - 200 i i 600 800 TEMPERATURE (°C) Fig. 4 Temperature vs. Enthalpy for Lithium Hydroxide 1000 _S{"“ 16~ The enthalpy and heat capacity of the liquid lithium hydroxide are represented by the following equations: Hp - Hyoo = 64 + 0.923 ¢p = 0.92 + 0.0k i The enthalpy and heat capacity of the solid are represented by the following equations: HJII - HOOC "“5 + Om627 °p 1 0.63 + 0.0L The heat of fusion at 473°C 1s 210 cal./g. EUTECTIC OF LITHTIUM AND SODIUM HYDROXIDES The individual results of the enthalpies of lithium-sodium hydroxide eutectic (27 Mole % LiOH) are listed in the appendix and plotted in Figure V. All capsules were run in the 24 inch furnaces. The enthalpy and heat capacity of the liquid mixture are represented by the following equations: Hp - Hyop = 4.3 + 0.599T °p il 0.60 + 0.02 The melting point is at 218° + 5°C. There is also a tramsition point at 180° + 5°C. Because of the small amount of data no estimate is made of the heat of fusion. ENTHALPY (cal/gm) UNCL ASSIFIED Dwyg. 22069 600 - ¥ O 0O £ oo Fo & 400 300 .-Ll.-. 200 100 200 400 800 TEMPERATURE (°C) -8O0 Fig. 5. Temperature vs. Enthalpy for Lithium — Sodium Hydroxide Eutectic =18~ STRONTIUM HYDROXTDE The individusl results of the enthalpies of strontium hydroxide are listed in the appendix and plotted in Figure VI. All the capsules were run in the 2l inch furnaces. The enthalpy and the heat capacity of the liguid are represented by the following equations: i 1 EI‘ =~ HOOC - 1305 + O-all‘l"T cp = 0.31 + 0.02 The enthalpy and heat capacity for the solid from 272°C to 470°C are represented by the following equations: ~17.6 + 0.2397 Wi 3 B i 0.24 + 0.0k The heat of fusion is 43 cal./g. at 510°C. BARTUM EYDRCXIDE The individual results of the enthalpies of barium hydroxide are listed in the appendix and plotted in Figure VII. Capsules ZB and ZC were run in 12 inch furnaces, capsules ZP, ZR, ZX and ZY in the 2h inch furnaces. The enthalpy and the heat capacity of the liquid are represented by the following equations: Il Hyp - Hyog = 11.7 + 0.195 “p B 0.195 + 0.02 UNCLASSIFIED -6[.— Fig. 6. Temperature vs. Enthalpy for Strontium Hydroxide Dwg. 22070 280 ; z ! . 8 o S o % B O o ‘ 3o 240 8- 200 E 2160 g 8 g% > ( - 3 le = b ted A - 80 40 0 | | © 200 a0 . 80 800 1000 TEMPERATURE (°C) 200 160 ENTHALPY (cal/gm) - n Q @ O 40 UNCLASSIFIED TEMPERATURE (°C) Fig. 7. Temperature vs. Enthalpy for Barium Hydroxide Dwg 22071 ; ! ’ s 77 - 4 A s ° 3 A= 12in. FURNACE o - 24in. FURNACE _ @ 048 A 0 0 —— r oo S f | o & i s 1 i 200 400 e00 800 1000 uo z.. «2] - The enthalpy and heat capacity for the solid from 150°C t0:395°c are - represented by the following equations: il Hyp - Hpog Cp = 0917 t 0002 The heat of fusion is 24 cal./g. at 395°C. Seward (9) reported 20 cal./g. DISCUSSION OF RESULTS It is of interest tq Tind general relationships between the enthalpies ~and heat capacities of the various hy@roxidesa For most.of the:solid elements : the heat capacity at constant volume is equal to 3R or 6 cal./°C per gram - atom. The more modern tfieories of Einstein and Debye have the same value as. & limit which is reached at normal temperatures for most elemenmts (10). At | constant pressure the heat capacities are found to Ee greater, being about 6.4 cal./OC per gram stom (Dulong and Petit's law). The Debye equation also - predicts correctly the heat capacity of some compounds, these being the . compounds that crystalizé in the cubic system. The equation may be modified to predict compounds that do not crystalize in the cubic lattice. In 1865 Kopp suggested that the molar heat cafiacity of & cdmpound is approximately equal to the sum of the atomic heat capacities of its constituefit elements. _ In the case of liquid compounds which have no definite group of atoms or - radicals such as the sulfate or hydroxide ion it has been found empirically -20- that each atom contributes approximately 8 cal/OC to the molar heat capacity of the compound (11). Molar hest eapacities for the hydroxides were found 0 be 6.86 cal/CC per atom for the alkali hydroxides and 7.20 cal/OC per atom for the alkaline earth hydroxides. Groups of atoms would be expected to lower the molar heat capacity of the compound. Molar heat capacities for the hydroxides were found to be 11.0 cal/°C per ion for both classes of hydroxides. In Figure VIII the comparison between the enthalpies of the different hydroxides on the mean gram atom basis is shown. The hydroxides form two groups, the alkalies and the alkaline earths. TFor the alkall hydroxides the molar enthalpy may be represented by - = + 08 By - Eoo, = N(795 + 6.86T) (1) and for the alkaline earth hydroxides by gT - §000 = N(10 + 7.20T) (2) where N is the number of atoms per molecule H is the enthalpy in cal./gram mole T is the temperature % In Table III are shown the calculated and observed heat capacities of the liquid hydroxides and their deviation together with the deviations between the observed and calculated enthalpies at various temperatures. H‘f”' Hepg (cal /mean {grom atam) 8000 7000 6000 5000 4000 3000 2000 1000 UNCL ASSIFIED Dwg. 22072 200 400 TEMPERATURE (°C) 600 800 Fig. 8. Comparison of Hydroxides (Enthalpy per Mean Gram Atom) 1000 wSZ— ) TABLE IIX CALCULATED AND OBSERVED HEAT CAPACITY AND ENTHALPY BASED ON MEAN GRAM ATOM (Equations 1, 2) Heat Capacity cal./g. mole °C Caleculated Observed Deviation LiOH 20.6 20,1 % NaOH 20.6 19.8 -l KOH 20.6 19.9 -3 Sr{0H)o 36.0 38.2 6 Ba(CH), 36.0 33,4 -7 Deviation of Observed Enthalpy L400OC 600°¢ 800°¢ 1000°¢C LiOH ——— 1% 2% 3% NaOH ~1% -2 -2 -2 KOH 3 1 0 -1 Sr(0H)o ——— -2 0 1 Ba{OH)o 6 2 0 -2 In Figure IX the comparison between the enthalpies of the different hydroxides on the mean gram ion basis is shown. There is no difference between the alkali and alkaline earth hydroxides. The enthalpies of all the hydroxides may be expressed as B, - gooc = N' (710 + 11.07) | (3) where N' is the number of ions per molecule. In Table IV are shown the observed and calculated heat capacities of the liquid hydroxides and their deviations together with the deviations between observed and calculated enthalpies at various temperatures. 14,000 I { ' 12000 L 10,000 8,000 / . 0 S ' 6,000 i, NeoH—d | f=srion, . 4000 K OH-= FBalOH), 2000t / 0 S ’ } - | 200 - 400 600 800 1000 Ho—- HOC‘C {cal/mean gram ion) UNCL ASSIFIED Dwg 22073 TEMPERATURE (°C) Fig. 9. Comparison of Hydroxides (Enthalpy per Mean Gram lon) =26 - TABLE IV CALCULATED AND OBSERVED HEAT CAPACITY AND ENTHALPY BASED ON MEAN GRAM ION (Equation 3) Heat Capacity cal./g. mole °C Calculated Observed Deviation LiOH 22.0 22.1 o NaOH 22.0 19.8 ~10 KOH 22.0 19.9 -10 Sr(0H)p 33.0 38.2 16 Ba(OH)5 33.0 33.4 1 Deviation of Observed Enthalpy 400°¢ 600°¢ 800°¢ 1000°¢C LiOH ——— 19 1% 1% NaoH 3% -1 -3 “ly KOH 7 2 -1 -3 Sr(0H)o - -3 1 L Ba(0H)2 0 1 1 1 Both methods satisfactorily correlated the enthalpy and heat capacity of the liquid hydroxides. The first set of equations (based on the equal contribution of each atom to(the specific heat) gives better values for the specific heat. However the hydroxides are divided into two groups. The second method (based on the equal contribution of each lon) gives an overall picture without subdividing the hydroxides into groups. -27- The heat capacity Qf the eutectic mixture of lithium and sodium hydroxide is additive, i.e., it is the sum of the.product'of the indivi&uali heat capacities and mole fraction. The enthalpies are not additive, however. The observed enthalpy is lower indicating a heat of solution af the order of 20-30 calories per gram of solution. TABLE V Observed Calculated cp (cal,/g.,Gc) 0.60 0.59 HSOOO - HOGC (cal./g.) 51+LI-- ) 573. Bgopo - Hgop (c8l./g.) 525, 550. (1) (2) (3) (&) (5) (6) (7) (8) (9) (10) (11) ~28. REFERENCES R. F. Redmond and J. Lones, ORNL Report 1040, August, 1951 Defoe C. Ginnings and Robert J. Corruccini, J. Research N.B.S. 38 583 (1947) Terashkevich and Vishnevskii, Jour. Gen. Chem. (U.R.S.8.) 7:3 2175(1937) W. D. Powers and G. C. Blalock NaOH ORNL CF 51-11-195 November 30, 1951 KOH ORNL CF 52-3-229 March 31, 1952 LiOH ORNL CF 52-11-104 November 15, 1952 L10H-NaOH ORNL CF 53-5-103 May 18, 1953 Sr(0H)o ORNL CF 55-2-8% February 9, 1953 Ba(OH), ORNL CF 52-4-186 April 30, 1952 Thomas B. Douglas and James L., Dever, N.B.S. Report 2301, February, 1953 Defoe C. Ginnings and Robert J. Corruccini, J. Research N.B.S. 38 593 (1947) F. D. Rossini, D. D. Wagman, W. H. Evans, S. levine, I. Jaffe Selected Values of Chemical Thermodynemic Properties N.B.S. Circular 500, February, 1952 Ralph P. Seward and Kenneth E. Martin, JACS 71 3564 (1949) Ralph P. Seward, J.A.C.S. 67 1189 (1945) Samuel Glasstone, Thermodynamics for Chemists, D. Van Nostrand (1947) page 121 K. K. Kelley, Contributions to the Data on Theoretical Metallurgy X High Temperature Heat-Content, Heat-Capacity and Entropy Data for Inorganic Compounds, Bureau of Mines, Bulletin 476 (1949) -29- SODIUM HYDROXTDE INDIVIDUAL ENTHALPTES Capsule Calorimeter Temperature Hy - Hpyog Hyp - HOOC Diff. o¢ cal./g. ' ' Obs. Calc. Obs-Calc YW 1 220 T7 YH 4 231 93 YH b 233 97 YH 3 235 95 YH 3 236 106 YH 1 239 98 YH 1 2ho 127 W 1 268 118 YH 1 281 122 YH 3 295 189 W 1 296 149 YH 2 303 178 YH 3 304 171 YH 1 309 192 YH 1 311 189 YH 2 31k 187 YH 3 326 259% ; YH L 342 238 235 3 YH 5 35k 258 241 -3 YH 2 361 243 2hl -1 YI k 376 247 251 =4 YH 4 280 249 253 -l YH 1 386 25% 256 =3 Yo 1 386 281 256 25 YH 4 389 256 258 -2 YH b 390 256 258 -2 YH 3 591 260 259 . 1 T 4 394 255 260 -5 YL 1 398 250 262 =12 YW 1 Lot 262 267 -5 YW 1 421 264 274 ~10 YH 3 458 307 292 15 ™ 3 460 288 293 - -5 YH 2 72 302 299 3 YW 2 473 298 299 -1 W 1 W79 302 302 0 YI L L84 304 305 -1 *This measurement was not used in the least-squares analysis. =30~ SODIUM HYDROXIDE (Com't.) Capsule Caloxrimeter Temperature Hp - 00C Hp - HOOC Diff. O¢ cal./g. Obs. Calc. Obs~Calc YH I W86 319 306 13 W 1 500 309 313 -l YW 2 506 301 316 -15 YH 5 524 326 324 2 W 1 528 316 306 -10 YL 3 572 353 348 5 I 2 582 354 355 1 XJ L 588 359 356 3 YH L 59k 36k 359 5 YH 1 595 348 360 ~12 YH L 596 365 360 5 YW 1 600 361 362 -1 W 5 628 372 376 -1 YW 3 646 391 385 6 YW 3 673 105 398 T YH 2 680 408 402 6 YL 3 688 401 405 -4 YH 3 688 %10 105 5 YL 4 696 ol 409 -9 YH L 697 400 410 -10 YI 1 702 105 412 -7 YW 2 702 415 h12 3 YH 5 TOL 428 %13 15 YL 5 710 L31 416 15 YH 1 712 409 417 -8 W 3 T3k L357 1428 9 YH 5 760 456 W1 15 YL 5 761 52 i1 11 YH 1 763 106 Lh2 =16 YH 3 770 Yl Lu46 -2 YL 3 75 4l 3 448 -5 YW 2 784 455 453 2 YH 1 788 Wh6 h55 -9 YW L 808 LES W65 3 YW 5 826 479 Wk 5 YH 2 854 51% 487 26 YL h 875 489 498 -9 YH Y 876 hgo 498 -6 YW 5 891 535 506 27 -31- SODIUM HYDROXIDE (Con't.) Capsule Calorimeter Tempersture im - H - H Dirff. oc Hgal. /a.c e~ Foog Cbs. Calc. Obs-Cale. YH 1 896 490 508 -18 YL 1 90k 499 512 =13 YL 5 934 553 527 26 YL 3 9k3 538 531 T YH 3 Olh 535 532 3 YL 3 955 530 536 -6 YL 3 962 548 541 7 YL 1 969 543 Skl -1 YL 4 970 553 5 8 YH 1 o8k 528 552 -24 YH 4 584 560 552 8 L b 986 558 553 3 1L 1 990 sel 555 -3k ~32 POTASSTUM HYDRCXIDE INDIVIDUAL ENTHALPIES Capsule Calorimeter Temperature Oc YK 1 162 YK 1l 196 YK 5 212 YV 1 218 YK > 259 YV 1 269 YK L 272 YK I 27k YK h 277 YK 1 292 YV 1 208 v 4 379 YV 5 388 YK 2 388 IK 2 392 YV 1 592 IV 1 406 YK 2 418 YK 5 420 YV 1 Loo v 3 L6 pA' 2 450 YK 2 52 YV 1 L66 YV 2 hé7 YV 1 W5 YK > k95 YK 2 500 YK 1 512 YK 2 527 v 1 528 YU h 536 YU L 546 ¥V 2 5k8 v 2 557 YK 3 560 YV 2 568 YK > o2 YK b 572 Hyp - Haq cal./goc Obs. 54 63 Th 63 112 11k 112 111 111 112 122 14 0% 1h0%* 197* 104 % 157* 162%* 197 203 204 209 205 201 215 210 214 288* 235 23 250 23 223 2lgly 2359 251 257 olily 270 206% Hp - Hooc Calc. 52 6 68 70 107 110 111 112 113 118 120 200 201 202 210 212 212 217 218 221 229 2%k 239 239 oo 246 2h6 250 251 253 255 ¥This measurement wes not used in the least-squares analysis. Diff - Obs-Cale. =33- POTASSIUM HYDROXIDE (Con‘'t.) Capsule Calorimeter Temperature Hp - HOOC Hep ~;H000 biff. ' Obs~Cale YV 1 57k 246 256 ~-10 YV 5 62k 271 273 -2 YV 3 627 286 27k 12 YU 1 63% 278 276 2 YV 3 652 289 283 6 YK 2 663 150% YV 2 676 300 292 8 YU Y 681 296 293 3 YK 2 691 289 297 -8 YK 1 692 281 297 -16 YU 3 71k 305 305 0 YV 3 T1h 507 305 2 YK 4 726 314 209 5 YU 3 732 187* | YV 2 754 307 319 8 YU 1 765 311 323 -12 K k 769 331 325 6 YU 5 770 357 325 12 YK 3 TTh 300 306 -4 YK 3 781 337 329 8 YU 5 7oL 321 533 -12 YX 3 798 Bl 335 9 YU 3 802 339 336 3 YK 2 806 329 338 -9 YV 5 806 335 338 -3 TV L 81k 259 3h1 18 YK 2 820 33l 343 -9 YU i 8o 343 343 -2 YU 3 852 361 354 T YU 2 857 - %3 356 -00 YX 3 863 369 358 1l YU 3 865 370 359 11 YU 3 867 340 359 -19 YU 5 87h 342 362 -20 YU 2 878 %84 363 21 YU 3 880 36T 36k 3 YU 5 880 346 36k -18 YU 1 886 360 366 -6 v 5 886 375 366 9 YU 3 891 349 368 -19 YU 4 893 359 368 -9 *This measurement was not used in the least-squares analysis. -3k POTASSIUM HYDROXIDE (Con't.) Capsule Calorimeter Temperature Hp - Hyop Hp - HOOC piff. O¢ cal./g. Obs.-Calc. Obs. Calc., YU 3 89k 375 369 6 YU 3 900 236% YU L 907 579 373 6 YU 3 910 383 374 9 YU 4 910 372 37h ~2 YU 1 912 382 375 T YU b 916 379 77 2 YU Y 916 366 377 -11 YU 2 918 383 577 6 YU L 933 2ho¥ U b 953 409 590 19 YU 2 955 388 390 ~2 ¥This meesurement was not used in the least-squares analysis. -35- LITHIUM HYDROXIDE INDIVIDUAL ENTEALPIES Capsule Calorimeter Temperature By - Hyog By - Hyoq Diff cal./g. Obs-Cale Obs, Cale. ZI 3 124 82 7% 9 YS 3 12k 70 73 =3 Ys 3 142 92 84 8 ZI 3 149 87 8l 3 YS 3 164 103 98 5 YS 3 167 10k | 99 5 YS 3 168 109 100 9 zZI % 168 100 100 0 A 3 172 108 103 1 ZI 3 172 100 103 -3 YS 3 207 110 125 15 YS 3 210 120 126 -6 21 3 212 136 128 8 yAY 3 215 1h2 130 12 S 3 2hly 151 148 3 YS 3 254 48 154 -6 ZI 3 254 155 154 1 Z1 3 26%% 103 | | YS 3 288 201 175 26 zZI 3 292 195 178 17 Y5 3 302 164 18k ' -20 Ys b 306 165 187 -22 YS L 310% 31k YS 3 31% 178 191 -13 ZI 3 31k 183 192 -9 ZI 3 325 175 198 ~23 YS 1 336 199 205 -6 YS 3 Bl 205 209 "t ZI 1 362 210 222 -12 S 1 365 216 224 -8 ZI 1 372 212 228 -16 Ys b 37h% 419 Z7 3 374 231 229 2 YS 4 386 24k 237 7 YS Y 393 236 21 -5 ¥s L 3Gk 240 2L 2 -2 - *This measurement was not used in the least-sguares analysis. -36- LITHIUM HYDROXIDE (Con't.) Capsule Calorimeter Temperature Hy - Hnogp Hp - HOOC Diff. g cal./g. Obs~Calc Obs. Calc. YS 3 396 245 243 2 ¥S 3 1Ol 260 248 12 ZW 2 408 250 250 0 YS L %10 251 252 -1 Z1 3 410 247 252 -5 AN L L3l 267 267 0 ZI 3 4o 256 271 -15 ZT L 445 270 274 -4 zZU 4 450 284 277 7 YS L 451 298 277 21 ZT b 456 276 281 -5 ZI 4 460 319 283 36 ZW L L62 289 281 5 ZT L h63 290 285 5 ZU L L6k 283 286 -3 21 Y W78 423 YS b kT9 466 ZT 3 480 333 ZU L 488 466 ZI L 490 505 ZU 3 493 540 YS L 4ol 520 7 2 496 492 ZT 5 517 557 541 -k U 3 53k 576 557 19 ZW 2 554 552 557 -25 Zd 2 534 557 557 -20 ZT 5 536 580 559 21 Zu D 538 570 559 11 Z3 5 5L 552 562 -10 ZT 5 551 560 571 -11 ZW Y 552 596 572 2k ZW 3 564 574 583 -9 4T D 570 599 588 1l W 5 571 586 589 -3 Zu 5 575 588 592 -k ZW 5 582 610 601 9 ZW 3 582 599 601 -2 ZT L 585 610 60k 6 Z 5 586 596 605 -9 -37- LITHIUM HYDROXIDE (Con't,) Capsule Calorimeter Temperature Hp - Hyop Hp - Hyop Diff. o¢ cal./g. Obs ~Cale Obs. Cale. ZT 2 595 614 611 3 zZT s 596 610 61k -l Z8 > 597 682* - ) ZT 2 508 611 616 -5 ZT 5 600 62l 618 6 ZU L 605 631 622 9 ZwW 2 605 606 622 -16 ZT 3 611 623 628 5 ZT 2 614 62k 631 -7 zu 3 61k 637 631 6 zu 2 622 63l 638 =l N 2 622 604 638 -3k Zu L 62k 643 640 3 ZU 3 640 659 655 k ZT 2 6l 653 658 -5 ZT 5 652 657 666 -9 2T 2 656 664 669 -5 A 3 666 671 679 -8 Zr 1 676, 719 £-88 31 ZU 2 678 682 690 -8 zZu 2 678 677 690 -13 ZW L 686 733 697 36 A L 686 707 697 10 2T 2 692 702 703 -1 ZU 2 694 69k T0h -10 ZT 3 71k 76h 723 43 7 5 724 72k 732 -8 ZW 5 129 TS5k 737 17 7 3 733 753 T40 13 Zy 3 137 T7L Thl o7 ZW 5 ThO 782 ThT 35. 7 1 Thh T4 751 -9 ZT 1 Tl 735 751 -16 Zu 2 Thé Th8 752 -l W 1 753 783 759 2 ZT 2 153 755 759 -l ZW 2 758 Th5 76k -19 ZT 2 802 799 8ok -5 zZu 2 807 790 809 -19 *This messurement was not used in the least-squares analysis. -38- LITHTUM HYDROXIDE (Con't.) Capsule Calorimeter Temperature - Hno Hn - Hao Diff. O¢ Hgal./g.c T - foce Obs-Calc. Obs . Calc. U 3 828 823 828 -5 ZT 3 828 818 828 -10 ZT 5 840 816 839 -23 7 L 85k gh2 852 -10 v 3 860 879 858 21 ZT 4 896 881 891 -10 Zu b 898 893 893 0 ZU 2 906 890 900 ~10 ZT 1 93l 930 926 L VALl 1 oLO 925 931 b -39 LITHIUM-SODIUM BYDROXIDE EUTECTIC INDIVIDUAL ENTHALPIES Capsule Calorimeter Temperature @ = I 1. - H Diff, ' °c E?al.jg?c o oec Obs«Calc - Obs. Cale. : A 3 202 86 Z0 3 210 95 ZN 3 21k 89 ZN 3 21k 99 Z0 3 215 92 Z0o 3 218 102 ZN 2 264 208 202 6 zZ0o 3 268 220 205 15 ZN 3 268 213 205 8 ZN 3 274 213 208 5 ZN 3 275 188 209 -21 Z0 3 278 220 211 9 ZN 3 282 21k 213 1 Z0 3 283 207 21k -7 Z0 3 289 216 217 -1 ZN 3 30L 23% 226 T ZN 3 305 - 225 227 -2 ZO 3 310 232 230 2 Z0 3 310 234 230 b Z0 3 312 226 231 ~5 ZN 3 312 207 231 i ZN. 3 315 229 255 -l ZN - 3 336 252 246 6 N 4 342 243 29 -6 Z0 L 3hly 255 250 5 ZM 5 346 260 252 8 ZN 3 35k 250 - 256 -6 Z0 3 366 260 264 -4 ZM 1 372 261 267 <% 7N 3 380 264 272 -8 ZN 3 382 269 275 -l M 1 382 275 273 2 Z0 3 387 275 276 -1 Z0 3 388 272 277 -5 70 3 392 275 279 ~h ZN 3 koo 290 281 6 ZN 3 408 289 289 0 ZM L 408 304 289 15 ~40- LITHIUM~-SODIUM HYDROXIDE EUTECTIC (Con't.) Capsule Calorimeter Temperature - H~o - H pDiff. o¢ Hgal.fig.c iz 0°¢ Obs-Cale Obs. Calc. Z0 1 410 295 200 5 70 3 415 20% 20% 0 Z0o l 423 306 298 8 78 4 426 302 300 2 ZN 1 426 302 300 2) Z0 5 470 328 326 2 Zo 1 L4 Bk 328 16 M 2 475 325 529 -6 ZN > 478 327 531 =l N 5 481 333 533 0 ZN 3 487 552 336 -b Z0 3 497 345 342 3 Z0 3 497 343 342 1 M 5 499 342 343 ~1 ZM 3 506 348 348 0 ZM 1 516 356 354 2 ZL 1 520 360 356 b ZM 2 536 359 366 ot 7M 5 542 380 369 11 ZL 5 546 37T 372 5 ZM 3 548 361, 373 -12 ZM 1 566 388 385 _ 5 7M™ L 584 387 394 -7 ZM 1 590 557* M 5 596 LoT 401 -6 M b 599 505% ZM 5 603 418 406 12 ZN 3 605 13 LOT 6 ZM 1 615 391 413 -19 70 3 62 417 418 -1 ZM 3 636 420 Yo7 -7 ZM I 646 429 %31 -2 ZM 1 646 425 431 -6 ZM 1 647 421 432 -11 ZM 5 652 426 435 -9 ZM L 655 h36 437 -1 ¥This measurement was not used in the least-squares analysis. Capsule BEEREERBREERRERRER ‘ LITHIUM-SODIUM HYDROXIDE EUTECTIC (Con't.) Calorimeter F S E R E SV OO O S R 0000 W B R e e =41~ Temperature O : 656 660 674 68l 686 70% 708 710 710 71k 721 722 72k 725 126 Thi. W7 751 754 766 770 778 787 789 798 813 814 834 848 850 852 853 B66 e Obs . 430 Lz7 Ll Lyl 466 457 L62 463 453 473 475 478 L&2 Lk kol 478 475 502 495 521 503 500 532 525 508 543 538 567 586 568 553 586 532 %;HWC Cale. W37 4ho Wu8 ksl k55 L66 169 470 470 W72 476 L7 478 479 k79 490 hgp Lok 96 50% 506 511 516 517 523 532 552 Shly 553 554 555 556 563 11 Lo STRONTIUM HYDROXIDE INDIVIDUAL ENTHALPIES Capsule Calorimeter Temperature Hp - Haop Hp - HOQC Diff. °c Cal—/gs Obs~Calc Obs. Cale, ZJ 3 o272 50 W7 3 ZK 3 272 L5 7 -2 ZK L 554 Th 67 T ZJ L 359 67 68 -1 ZJ 3 364 69 69 0 ZK 3 368 Th 70 Y ZJ 3 37k 69 72 -3 ZK 3 376 69 T2 ~3 ZJ 1 390 T4 16 -2 ZK 1 398 76 77 -1 ZJ 2 406 73 79 -6 7K 2 408 76 80 I ZJ 2 408 76 80 -l 7K 2 408 78 8o -2 ZJ 1 416 85 82 3 ZK 1 416 83 82 1 zZJ 2 L25 85 8h 1 ZK 5 431 93 85 8 ZK 2 L3 88 86 2 ZJ 5 435 90 86 L ZK 4 451 82 90 -8 ZJ 2 61 gl 92 -1 7K 2 W62 9l 93 1 z2J L u66 90 gl -l ZK Ly 468 100 ol 6 ZJ L 470 96 95 1 ZJ 2 506 106 7K 1 512 111 ZX 1 518 120 ZK 1 518 119 zZJ 1 52% 125 7.J 2 5ol 137 ZK 2 52l 123 Z.J 1 535 156 155 1 ZK 1 538 160 156 L 7K 5 5hO 158 156 2 ZX 2 540 155 156 -1 2J 5 5h2 157 157 0 ZK 2 Sho 150 157 -7 43 STRONTIUM HYDROXIDE (Con't.) Cepsule Calorimeter Temperature Bp = Hoop Hp - Hyop Diff, o¢ cal./g. | Obs-~Calc Obs . Cale. | 5ho 162 157 23 2 5 ZK 2 552 16k 160 L ZJ 2 552 161 160 1 ZJ 2 566 169 164 5 ZJ L 570 170 166 b ZK 2 STh 173 167 6 ZK b 576 180 167 13 ZK 2 578 173 168 5 2J b 580 164 169 -5 ZK 5 582 166 169 -3 ZK b 584 168 170 -2 /] 2 586 175 . 171 L ZK 2 586 172 171 1 ZJ 2 587 170 171 -1 ZJ 5 590 163 171 -8 7K D 593 166 173 =7 ZK 2 594 77 173 b ZJ 2 596 168 17k -6 ZJ 2 604 174 176 -2 ZK 1 e 177 176 1 2J 2 606 179 177 2 23 1 607 170 177 -7 ZK 2 610 181 178 3 ZJ 1 611 181 178 3 ZK 1 612 184 179 5 ZJ 1 629 185 184 1 7K 1 633 188 185 3 ZK b 6357 186 187 -1 ZJ 4 650 182 191 -9 Zd L 656 195 193 2 ZK b 658 198 193 5 ZJ 1 667 199 196 3 ZX 1 670 203 197 6 ZK 2 676 190 199 -9 ZK 1 676 19k 199 -5 ZK - L 678 207 199 8 ZJ 1 680 192 200 -8 ZJ 2 681 192 200 -8 7.3 L 692 198 20k -6 bl STRONTIUM HYDROXIDE (Con't.) Capsule Calorimeter Temperature Hr - Hpop Hp - Hyon Diff. o¢ cal./g. Obs.-Calc. QObs. Calec. ZKX 2 692 165 20k 39 Z.J 2 693 192 204 -12 7K L 710 213 210 3 ZJ 2 712 208 210 -2 ZK 2 714 208 211 -3 zZJ I 716 213 211 2 Z.J 1 716 209 211 -2 ZK 1 726 213 215 -2 ZK 1 732 216 216 0 2J 1 734 220 217 3 ZJ 1 750 206 202 -16 Z2J 1 755 207 22l ~17 ZK Y 756 210 ool -1k ZK 1 760 219 225 -6 ZJ 1 163 210 226 -16 ZK 4 772 2y 220 15 Y 4 TTh 240 230 10 2J 2 781 226 232 L ZK 1 800 239 238 1 ZJ 1 804 241 2%9 2 2K b 810 2h5 2hl L ZK y 816 252 oh3 9 ZK 2 822 241 245 -4 23 L 822 23 2hs - ZJ 2 822 2ho 2h5 -3 ZK 2 822 245 L5 0 ZJ h 822 2hly 245 -1 ZK b 828 263 247 18 ZK 2 832 253 248 5 ZJ 2 838 25 250 by YA 4 838 250 250 0 ZX 1 8Lko 25 250 L ZJ 1 8l 260 252 8 ZJ L 850 261 o5k 7 7K L 858 265 256 9 zJ Jy 358 266 256 10 z2J 1 879 263 263 0 7K 1 883 266 264 2 ZJ 2 883 247 264 -17 5. STRONTIUM HYDROXIDE {Con't.) Capsule Calorimeter Temperature m ~ Hap - H.op Diff. °c Hgal, /g." o o~c Obs-Calc Obs. Calc. ZJ 1 890 259 266 =7 ZK 2 89k 255 267 -12 ZX 1 896 269 268 1 ZJ Yy 908 281 272 9 ZJ 2 910 270 272 -2 ZK 2 912 277 273 b ZK 4 91k 266 274 -8 ZK 1 91k 276 27h 2 L6 BARTUM HYDROXIDE INDIVIDUAL ENTHALPIES Capsule Calorimeter Temperature - H.o - Hoo Diff. : OS¢ HEal./g.C i1 o~C Obs-Calc Obs. Calc. - ZX 5 152 23 2l -1 zY 5 153 ol 2k 0 zZY 5 216 32 35 -3 ZX 5 218 36 35 1 ZP 3 220 34 35 -1 ZR 3 226 35 36 -1 zY 1 L8 45 %0 5 zr 5 253 39 41 -2 ZR 3 254 45 41 L ZX 1 257 L5 Y2 3 ZX b 277 46 L5 1 zZY by 281 L7 ) 1 ZP 3 31k 48 51 -3 ZR 5 522 k9 o2 -3 ZX 2 356 54 58 -l ZY 2 358 56 58 -2 7ZX 5 364 60 59 1 ZX 3 366 58 60 w? zZY 1 367 61 60 1 zZY 3 368 58 60 -2 ZxX 1 A2 62 61 1 VA4 5 391 64 64 G ZX 2 595 67 65 2 ZX 5 395 68 65 > ZX 3 396 66 65 1 Y 3 597 65 65 0 ZX 2 %15 78 , ZP it 415 70 zZY 2 416 75 ZX L 421 9l Zp 2 431 T9 ZY 4 436 o7 o7 0 72X 2 o 96 98 -2 ZR L LL6 103 29 4 ZC 2 470 99 103 -l ZB 2 h2 98 104 -6 Zp L h72 105 104 1 ZR L 488 109 107 2 Zp 1 50k 110 110 0 | - =h7- BARIUM HYDROXIDE {(Con't.) Capsule - Calorimeter Temperature - o - H. .o Diff. °c Hgal./g.c #2 = Fooc Obs-Calc L o Obs. Cale. | ZR 1 506 112 110 2 7B 1 512 108 111 -3 zZC 1 51k 109 112 3 ZB 1 516 109 112 -3 70 1 522 109 113 -1 ZB 5 54O 120 117 3 ZC 5 shé 119 118 1 ZC 5 552 119 119 0 7R 1 55l 115 120 -5 7P 1 554 120 120 0 ZB 5 565 115 122 -7 ZP 3 570 122 123 -1 A b 57k 127 123 I 2B L - 582 128 125 3 2y L 585 131 126 5 zY I 500 133 . 127 6 ZR 3 590 129 127 2 ze L 59% 125 127 -2 X b 593 133 127 6 7B 2 615 127 132 -5 Zc 2 618 127 132 -5 zZp 3 622 134 1%% 1 AL 3 634 135 135 0 ZB 3 637 136 136 0 Zc 3 60 139 136 3 ZB 5 6kt 142 138 4 7P 1 6L7 139 1358 1 ZR 1 648 136 1%8 -2 ZC 5 654 141 139 2 Zp 2 658 138 140 -2 zc 1 672 146 14 3 ZB 1 67 149 143 6 ZR 2 680 141 1l -3 ac b 719 155 152 3 ZB b 720 155 152 3 7B 3 770 167 162 5 ZB 5 776 158 163 -5 ZC 2 784 161 165 -l ZB 1 791 168 166 2 zZe 5 794 167 166 1 7R b 7oL 163 166 i =48~ BARTUM HYDROXIDE (Con't.) Capsule Calorimeter Temperature Hp - Hyop Hp - Hyop Diff. Op cal./g. Cbs-Cale Obs. Calc. zC 3 799 174 167 T ZB 2 834 169 17h ~5 ZB 5 842 181 176 5 ZR 5 8h2 176 176 0 ZC 5 867 17k 181 ~T7 Zc 1 87k 185 182 3 ZB L 908 182 189 -7