NSRDS-NBS 61, Part IV Physical Properties Data Compilations Relevant to Energy Storage. IV. Molten Salts: Data on Additional Single and Multi-Component Salt Systems NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau’s overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation’s physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau’s technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation’s scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities’ — Radiation Research — Thermodynamics and Molecular Science — Analytical Chemistry — Materials Science. THE NATIONAL ENGINEERING LABORATORY provndes technology and technical ser- vices to the public and private sectors to address* national needs -and to solve national problems; conducts research in engineering and applied s¢ignce in support of these eftorts; builds and maintains competence in the necesSary discipfihes reqmred to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineering? — Mechanical Engineering and Process Technology? — Building Technology — Fire Research — Consumer Product Technology — Field Methods. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve efttectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U. S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers: ' Programming Science and Technology — Computer Systems Engineering. 'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. Some divisions within the center are located at Boulder, CO 80303. NATIONAL BUREAU OF STANDARD3 LIBRARY AUG 2 0 181 Physical Properties Data Compilations pot aec.- i, Relevant to Energy Storage. : IV. Molten Salts: Data on Additional Single and Multi-Component Salt Systems G. J. Janz and R. P. T. Tomkins* Molten Salts Data Center Cogswell Laboratory Rensselaer Polytechnic Institute Troy, NY 12181 * Present affiliation: New Jersey Institute of Technology, Newark, NJ 07102, and Visiting Professor, RPI. U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director Issued July 1981 Library of Congress Cataloging in Publication Data Main entry under title: Physical properties data compilations relevant to energy storage. (Nat. stand. ref. data ser. : NSRDS-NBS 61, IV ) “National Standard Reference Data System.” Bibliography: v. 1, p CONTENTS:—1. Molten salts; eutectic data—2. Molten salts: data on single and multi-component salt system—3. Engineering properties of single and polycrystalline sodium beta and beta” - alumina —4. Molten salts: data on additional single and multi-component systems. Supt. of Docs. no.: C 13.48:61 1. Energy Storage. 2. Fused salts. 3. Eutectics. 1. Janz, George J. IL. Series: United States. National Bureau of Standards. National standard reference data series ; NSRDS-NBS 61, 1V. QC100.U573 no. 61, pt. 1, etc. 602’.18s 77-10824 [TI165] [621.042] AACR1 NSRDS-NBS 61, Part IV Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 61, Part 1V, 870 pages (July 1981) CODEN: NSRDAP @ 1981 by the Secretary of Commerce on Behalf of the United States Government U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1981 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 Price $11. (Add 25 percent for other than U.S. mailing) Foreword The National Standard Reference Data System provides access to the quantitative data of phys- ical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President’s Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards. NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A num- ber of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users’ needs, the present state of knowledge, and existing data re- sources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities. The System now includes a complex of data centers and other activities in academic insti- tutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computa- tions of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in ex- perimental techniques. They are normally associated with research in the relevant field. The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermody- namic and transport properties, chemical kinetics, and colloid and surface properties. Reliable data on the properties of matter and materials are a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality con- trol, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau’s responsibility to support American science, industry, and commerce is vitally fulfilled. ERNEST AMBLER, Director II1 Preface This series of publications is aimed at providing physical properties data on materials used in energy storage systems. It was inspired by arequirement in the Department of Energy’s Division of Energy Storage Systems for materials property data needed by its contractors in the timely development of energy storage devices. As prime contractor for this program, the Lawrence Livermore Laboratory (LLL) has requested the Office of Standard Reference Data (OSRD) to manage the task of gathering the data, using its established network of data centers and other identified sources of expertise. The OSRD monitors the progress of work, reviews the results, and conveys the numerical data to LLL where the data are converted for entry into an automated data storage and retrieval system. Every effort is made to supply data which have been critically examined in light of the latest knowledge concerning theory and experiment. However it must be recognized that in a rapidly moving technology some of the data will be superseded rather quickly as new materials and techniques are introduced. Thus access to the data via computer terminal as well as publication in this series should help provide the practitioner with timely and useful data which he requires to solve his problems in energy storage. Funding for this series of projects from the Department of Energy, Division of Energy Storage, through the Lawrence Livermore LaboratorYy, is gratefully acknowledged. Previous publications in the series “Physical Proper- ‘ties Data Compilations Relevant to Energy Storage™: Janz, George J., Allen, Carolyn B., Downey, Joseph R., Jr., and Tomkins, R. P. T., Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts Eutectic Data, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 61, Part I, 244 pp. (March 1978). Janz, G. J., Allen, C. B., Bansal, N. P., Murphy, R. M., and Tomkins, R. P. T., Physical Properties Data Compilations Relevant to Energy Storage. II. Molten Salts: Data on Single and Multi-Component Salt Systems, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 61, Part I1, 442 pp. (Apr. 1979). Miller, G. R., and Paquette, D. G., Physical Properties Data Compila- tions Relevant to Energy Storage. IIl. Engineering Properties of Single and Polycrystalline Sodium Beta and Beta” - Alumina, Nat. Stand. Ref. Data. Ser., Nat. Bur. Stand. (U.S.), 61, Part I11, 19 pp. (June 1979). IV Contents Abstract. Systems Index . . . . . Introduction. .. Candidate Salt Systems. Fundamental Constants, Symbols, Units Treatment of Data Value Judgements. . Physical Properties Tables. Acknowledgements, References to Introduction. Tables to Introduction. . . Physical Properties Data Tables Page Ui W W W N O LT B RN o PHYs1cAL ProPERTIES DATA COMPILATIONS RELEVANT To ENERGY STORAGE IV, MoLTeEN SAaLTs: Data ON ApbiTioNAL SINGLE AND MuLTi-CoMPONENT SALT SYSTEMS % G. J. Janz and R. P. T. Tomkins Molten Salts Data Center, Cogswell Laboratory, Rensselaer Polytechnic Institute, Troy, New York 12181 The present work provides selected data with value judgements for an additional set of 107 salt systems of interest as candidate materials for thermal energy storage sub-systems, for electrochemical energy storage systems, and in electrochemical aluminum production. The physical properties assessed are: melting points; phase diagrams; eutectic compositions; density; surface tension; viscosity; electrical conductivity; diffusion constants for ions; heat of fusion; heat capacity; volume change on fusion; vapor pressure; thermal con- ductivity (liquid and solid); and cryoscopic constant. The status of corrosion studies in the form of annotated bibliographic summaries, and salient observations on safety and hazards are also reported. A summarizing series of tables is provided as index to the data-gaps status for this set of candidate materials. Key words: Corrosion; data compilations; electro- chemical aluminum production; electrochemical energy storage materials; molten salts; physical properties; safety and hazards; thermal energy storage materials; thermal properties; thermodynamic properties; trans- port properties. *Present affiliation: New Jersey Institute of Technology, Newark, NJ 07102, and Visiting Professor, RPI. Fluorides MgF2 5 CaF2 . BaF2 . A1F3 [} Chlorides BaClZ. §plfides LiZS L] lesz. LiZS4. KZS. L] KZS2 . K,S;, . AlZSS' Crzolites L13A1F6 Na.,AlF 3 K Al1lF 6 3 6 ° Hydroxides LiOH ., NaOH . KOH, . Nitrates Mg (NO;) 2 (3 Ca(N03)2 Nitrites LiNOZ. NaNOz. KNOZ c Single Salt Systems Systems Index Page . + +139 5 0 o o A Multi-Component Salt Systems Fluoride-Fluoride L_iF‘NaF- . . ° LiF-XF ., . . . LiF-NaF-KF ., ., LiF-CaF.2 o« o o LiF-Ban o o+ o LiF'A1F3 ° . ° NaF-MgF2 o o . NaF"CaFZ ° (3 . NaF-BaF2 o NaF-AlF3 R KF-AlF3 - Chloride-Chloride LiCl'NaClo ° LiC1-MgCl, . . LiC1-BaCl, . NaCl-MgCl, . . NaCl-BaCl2 . KCl-MgClZ. . KCl-CaClZ. 5 o KCl-BaClZ. . e KC1-NaCl-CaCl, KC1-NaCl-MgCl MgCl,-CaCl,. . MgCl,-BaCl,. KC1-MgC1,-CaCl, Nitrate-Nitrate LiNO3-NaNO3 . LiN03-KN03 . NaNOS-Ca(NOS)2 KNO 5 - Mg (NO5) 5 - 9 Page « 173 « 183 - 192 . 205 . 213 . 220 . 232 . 238 . 247 . 254 . 270 - 280 - 287 « 295 - 304 . 317 . 328 . 344 . 354 . 363 . 371 . 379 . 387 . 396 . 402 . 409 418 . 433 . 441 Nitrite-Nitrite LiNOZ-NaNOZ. . . NaNOZ-KNO2 . e Hydroxide-Hydroxide NaOH-KOH ° . ° Cryolite-Cryolite N33A1F6 Fluoride-YZ LiF-LiOH . . . . Chloride-YZ LiC1-LiOH, LiCl-LiNO3 . LiCl-LizCOS. . NaCl-NaZCOS. . . NaCl-KZCO3 NaCl-NaOH, . . NaCl-NaNO; . . . NaCl-Na,S0,. . NaCl-K,80, . . . KC1-Na,CO; . . KC1-K,CO05. . . . KC1-K,80,. . . . Carbonates-Y2Z LiZCOS-LloH. . . L12C03 LiZCO3 4 ¢ NaZCOS-NaOH. . COS-KOH' . . "L12804o ° -KZSO K, KZCOS-Ll SO 20 48" = Cryolite-YZ Na3A1F -LiFo 3 6 Na3A1F6-NaF. 5 o N33A1F6-KF o o N33A1F6-BeF2 o o N33A1F6-MgF2 S Na3A1F6-CaF2 . NasAlFé-Ban . . Na A1F6-A1F 3 3 - L Page 447 - 453 461 467 477 . 483 489 . 495 502 . 510 - 517 - 524 - 533 « 540 - 545 552 - 559 568 575 582 . 590 . 598 . 604 - 611 622 . 632 640 647 655 667 675 Na3A1F6-NaC1 . NaSAlFfi-BaClz. N33A1F6-B203 . o N33A1F6-A1203. . K3A1F6-A1203 o e L13A1F6-A1203. . Hydroxide-YZ LiOH-LiNO 3 [ ] - L] NaOH-NaNO3 .« KOH-KNOS e e e Nitrate-YZ NaNOs-NaNOZ. . . NaNOS-KNO2 . . NaNOS-KNOS-NaNO2 Sulfide-YZ Li,S-Sulfur. . 2 KZS-SU].fUT . . + Carbonate-Hydroxide-YZ * NaZCO -NaQH-NaCl . 3 [Cryolite-alumina]-YZ [NasAlF 6 273 [NasAlFfi-AIZOSI-CaF [NasAlFfi-Al 0:]1-AlF 273 [NaSAlFé-AIZOSI-NaCI [Na,AlF 3 6 [N33A1F6-A1203]-Sio -A1,0;1-LiF. -A1203]-L13A1F . 796 . 801 . 806 . 816 . 823 . 830 . 839 . 846 . 853 INTRODUCTION ~and rocket propellants; chemical warfare agents,...) This communication reports critically * disposal of used photo- evaluated data for an additional list of graphic wastes (film) (with some 107 molten salt systems. This work silver recovery) was undertaken for the NBS-LLL Data Banks for Energy Research [1=3] and provides a - - ] data base on molten salts that are candi- ggnifige§2§;2%ig§ ggeifieaEZiZ'geze 1n§%uded date systems particularly for thermal systems Gt energy storage and for electrochemical energy storage. For tHe preceding publica- tions see [4-6]. Critically evaluated data were reported for some 49 single and multi-component salt systems in Part II Candidate Salt Systems [5]. This data base is extended from 49 The criteria for selection of Candi- to 157 candidate salt systems in the date materials, and the generalized list of present work. "likely'" systems for the selection of specific candidate systems are in tables I.1 and I.2, respectively. The present candidate systems in this task have been B limited to (anhydrous) inorganic salts . eng $E$§g¥a§£0§§§§u3£§?5 within the (table I.2-A,B); for the salt hydrates P ’ (table I.2C), see Cantor [ref. 7]. The (i) soilae amel dhernall enerEy sequence of systems in the data tables follows an anion classification as used for molten salts data elsewhere [5,8,9]. Within each anion family, the systems are arranged by cations as in the periodic chart of elements. There are some excep- tions (e.g., sulfur, while not a salt, is included as a component of the alkali metal polysulfides). storage subsystems util- izing inorganic salts in the PCM mode (phase-change- materials) (ii) high temperature (molten carbonate) fuel cell systems The cumulative 1list of candidate salt systems summarized in table I.3, is arranged alphabetically by metallic element of the salt system to provide a facile entry to the data compilations reported in the preceding and the present publications. An underscored entry indi- cates that the data for that system are in the preceding publication in this series [5]. The alphabetical listing (by element) has the feature of cross-indexing, so that the data for multi-component systems can be readily accessed by reference to the cumulative list in table I.3. (iii) high temperature (molten carbonate) coal gasifica- tion processes (iv) super-batteries systems (the sodium-sulfur and the lithium-metal sul- fide battery concepts) (v) high temperature heat transfer fluids (e.g., Hi-tec) (vi) molten electrolytes for high temperature electroplating of refractory metals (e.g., The following considerations were used in the selection cf the candidate salt the Flinak electrolyte systems. <05 CRIMGEHMI [PAR0) Molten carbonates - In working systems (vii) molten electrolytes for (fuel cells, coal gasification, sulfur emissions scrubbing, heat storage subsys- eeals (oudh 65 alvmiamm tems,..) additional_compouqu are formed in production from molten trace amounts, and increasing concentra- cryolite) tions. Knowledge of the properties of carbonates with such additives 1s essential in evaluating the paramneters contributing electrowinning of light Closely related research areas are to the overall process(es). applications encountered in environmental areas, Vviz: The list was extended from pure carbo- nate systems to include a selection of disposition of sulfur (oxides) such systems, e.g., NapC0z-NaOH, NapCO3- in stack gases NaCl, Li,C03-K,50,, NapC03z-NaCl-NaOH,. .. disposal of hazardous wastes Molten polysulfides - The lithium and without atmospheric pollution potassium series of polysulfides were added (e.g., "aged'" high explosive to extend the coverage from sodium polysulfides and sulfur to additional systems of interest in '"super-battery" type R & D projects. PCM candidate materials - The multi- component systems included in the present list extend the coverage to priority 1 and priority 2 type systems (see: table 2, A and B) with due consideration to the factors of economy and safety, and to the desired thermal properties (see: table 1, A). The hydroxides and their mixtures, nitrate-nitrite mixtures, the ternary nitrite-nitrate system (Hi-tec), are examples of systems thus added. Cryolite and related systems - In the industrial production of aluminum, the molten electrolyte is a mixture of NazAlFg and Al203z with smaller amounts of CaF, and AlF; as additives. The candidate list has thus been extended to include a selection of such systems, e.g., AlFS, Can, Ban, Mng, Naz A1F and mixtures, e.g., LiF-NaF, NaF-AlF., Na3A1F6-A1203... Additional systems - Various molten salt systems, notably fluorides, and nitrate-nitrite mixtures have seen appli- cation in diverse areas, such as: refractory metals plating; metal treat- ment, heat transfer fluids,..., and the candidate 1list was extended accordingly. The KNO3z-NaNOz-NaNO; and LiF-NaF-KF systems, widely known as '"Hi-tec" and "Flinak" respectively are examples of systems thus included in this work. 6, Fundamental Constants, Symbols, Units The fundamental constants and glos- sary of symbols and units are in Tables I.4 and I.5, respectively. Treatment of Data Statistical Analysis of Data The recommended data values were selected based on the estimates of pre- cision and uncertainty of the data survey- ed in the literature. The Percent Depar- ture also provided a guideline. The Percent Departure is defined as: Percent Departure = ”Compared value''-""tabulated value" 100 ""tabulated value" Here '"compared value'" and ''tabulated value'" refer to the literature value and the value recommended in the present work. Both the '"compared value'" and the ""tabulated value" were calculated from statistical derived equations since the results had to be interpolated to common temperatures and common compositions. Where the data sets from two or more stud- ies were merged to provide the data base for the recommended values (either to extend the temperature range, or to fix the confidence level) this has been noted in the data tables. Unless otherwise noted, all values were recalculated to the Kelvin temperature scale and are thus reported throughout. N All calculations were made on the digital computer facilities at Rensselaer Polytechnic Institute. The data set of the recommended study were recalculated by a one-dimensional analysis, using the method of least squares, to establish equations indicating the variations of the physical quantities with temperature at the experimental compositions. If the data base was sufficient, calculations using a two-dimensional analysis, with a stepwise multiple regression routine were under- taken. In this way a physical property- temperature-composition matrix was devel- oped. A result of this analysis is that 1t enables intercomparisons of property values at either common temperatures or at common compositions. One-Dimensional Analysis The criterion for choosing the equation of best fit in the one-dimension- al analysis was the standard error of estimate. This was defined by N % (ve - Y)z S =] n - q where y, = the experimental value at each temperature, y = the value calculated from the least squares equation at the same temperature as y.,, n = the number of experimental data points, and q = the number of coefficients in the least square equation (2 for linear, 3 for quadratic). The standard error of estimate was computed from the residuals in the least-squares routine. Two-Dimensional Analysis The computer programs consisted of the four routines, STPRG, CORRE, LOC and MSTR; the latter two are storage routines which have no effect on the accuracy of the results. In addition a subroutine STOUT was used to print the results of each regression step and the subroutine MATRIX, for printing a matrix of numerical values from the thus derived equation. The abbreviated Doolittle method was used to select the variables entering the regression and for calculation of coeffi- cients. The independent variable included in each step of analysis was selected by computing the reduction of sums of squares of each variable. The variable causing the largest reduction was added to the equation and deleted from the table of sums of squares. The coefficients, intercept, and statistical parameters for the new equation were computed and print- ed. This procedure was repeated until the maximum proportion of sums of squares to the total reduced was less than a limit set by the programmer. The independent variables used in the initial selection were chosen from a gen- eralized procedure, which generated 30 combinations of input variables using powers, reciprocals, logarithmic and exponential quantities. It was found that the procedure cgonsistently selected the equation (T + C) so that the work- ing program used nine independent varia- bles. After the final equation was produced, it was transferred to the MATRIX routine, which recalculates values at rounded compositions and temperatures, within specified boundary conditions. 1In the presentation of the matrix, due cogni- zance is taken of the experimental range of investigation and of the phase rela- tionships for the system so that values are always '"interpolated'" rather than "extrapolated'". The final step in the procedure involves the residual analysis (giving the deviations of the original values from those computed for the '"best- fit" equations). In the programs used (vide infra), a summary of significant parameters is printed by the computer at each step in the regression analysis. These are: the sum of the squares reduced, S;i; the ratio Sj/D where D is defined below; and the cumulative sum of these variables, Scum @nd P_ .. These quantities give an indication of the effect of each variable in the final equation. The programmer's limit on P was always in the range 0.0001 < PCum < 0.001. The standard error in the estimated y values adjusted for degrees of freedom, is then given by: where D = J(yj - y)z, yi = experimental values, y = average of a11 experimental values, and q = the number of independent variables in the equations., An F value analysis of variance was used to determine if a particular model was acceptable. Tables of F values indi- cate that values greater than 2.0 are acceptable for the routine used here. In all cases values of F were greater than 1000. The F value is defined as: P o= Scum/q (D - S_ )/ -q-1) where Scum’ q, D, and n are defined above. Value Judgements Precision Estimates of precision were based on standard error of estimate analysis. The standard error of estimate is the end result of a statistical analysis of the numerical data, and the statistical anal- ysis depends on various factors, such as the number of the data points, the nature of the concentration dependence and the temperature dependence of the particular physical property. The precision is the standard error expressed as a percent value. As a general guide, about 60% of the results lie within the estimate of precision, 95% within three times the value. Where the preceding approach weas not possible, we refer to the published error estimates of the original authors. Accuracy Accuracy estimates were based on assessments of experimental details including method of measurements, techni- ques, analytical characterization of chemicals, and intercomparisons with results from the same and/or different laboratories. The accuracy estimates are more subjective than the estimates of precision. For eutectic melting point data, the values are reported without limits of accuracy. This is largely because the experimental details (i.e., cooling/heat- ing curves) are insufficient for accuracy estimates. ‘ The various measurement techniques encountered are summarized in Table I.6. The range is considerable and shows some aspects of the complexities and diffcul- ties in this part of the task, 1.e., firming up accuracy estimates. Descrip- tions of experimental details, particular- ly for molten salts studies, may be found in recent surveys [6-13], and it 1is sufficient to note some particular points encountered in the present task. The most widely used techniques appear to be: Archimedean (density), maximum bubble pressure (surface tension), capillary and oscillating sphere (viscosity), ac bridge (electrical conductance), chronopoten- tiometry (diffusion), drop calorimetry (heat of fusion; heat capacity), dila- tometric (volume change on fusion) mass spectrometry-Knudsen cell (vapor pressurej, hot wire (thermal conductivity), and heats of fusion (cryoscopic constants). The accuracy estimates based on these appear reasonably sound. Concerning electrical conductivity, it is now apparent that the quartz capil- lary dipping cell technique may lead to values as much as 3-5% too high at temperatures greater than 900°C [13]. Relative to viscosity measurements, extreme care must be given to features of experimental design/technique if the damped oscillation method (oscillating sphere) is to be used with confidence. It is apparent that the recommended viscosity values for NaCl may be as much as 50% too high at 900°C, even though the technique, as conventionally used, should be capable of an accuracy better than +5% [13]. Phystical Properties Tables Values are reported throughout on the Kelvin temperature scale,with the excep- tion of the melting point data. The Celsius scale was retained for melting points for ease of reference to source materials, Information has been included relative to two aspects that do not lend themselves readily to critical assessments, namely Corrosion and Containment, and Safety and Hazards. For these two, the information is reported simply as an annotated bibliography so as to provide ready access to the source literature. The data status for the 157 salt systems is summarized in table I.7 in bar-graph format. An open field indicates no information found, i.e., a data gap. Some exceptions to this generalization are as follows. The phase diagram field for one- component systems has been left open in general although the liquidus-solidus transition is known, i.e., it is charac- terized by a single temperature, namely the melting point temperature. When pressure - melting temperature is variant (at nominal pressures) a phase diagram has been included (e.g., sulfur). For certain systems, such as the cryo}lte multi-component systems, the in- vestigations were directed only to the properties of density, surface tension, viscosity, and conductance, largely from the viewpoints of the liquid state proper- ties of this 'molten electrolyte and cur- rent efficiencies. While the open fields for the remaining properties do indicate that no information was found in these areas, the data gaps do not appear to be significant relative to the physical properties of cryolitic electrolytes for aluminum electrolysis. It should be noted also that heats of fusion measurements for multi-component systems are meaningful normally only at points of fixed composition, such as stoichiometric compounds and/or eutectic compositions and/or minimum melting solid solutions. An open field for this property thus indicates a significant data gap if it is apparent from the liquidus- solidus equilibrium (i.e., the phase diagram) that one or more of the preceding features occur in this system. A ready insight into the data status/ data gaps for the salt systems is given from table I.7. The use of table I.3 (one-component, multi-component systems I.D. # index) together with table 1.7 (data status/data gaps - systems I1.D. # index) provides a useful and facile guide to the data compilations of this series [i.e., ref. 4 and present work]. Aeknowledgements We acknowledge with pleasure pre- publication results from various colleagues during the course of this work. ? Technical typescript was by Candace Bornt and Elizabeth Schoonmaker. For statistical analysis and computer pro- gramming, we acknowledge the assistance of Robert McNamee, Eric Boskin and Mark Chudzicki. Lisbeth A. Wilcox contributed significantly to preparation of final copy. L. H. Gevantman, Office of Standard Reference Data, National Bureau of Standards is thanked for continued interest throughout the course of this work. This work was made possible, in large, by financial support from DOE - Division of Energy Conservation, Data Management Group, Lawrence Livermore Laboratory, and the Office of Standard Reference Data, National Bureau of Standards. [1] [2] [3] [4] [5] [6] [7] 10. References to Introduction Hampel, V. E., Data Management Group, Lawrence Livermore Labora- tory, Univ. California, and Gevantman, L. H., Office of Standard Reference Data, National Bureau of Standards. Hampel, V. E., Henry, E. A., Kuhn, R. S., and Lyles, L., "dcquisition, Storage, Retrieval, Display and Utilization of Computerized Data in the LLL Data Bank of Physical and Chemical Properties", Proc. 5th International CODATA Confer- ence (1976), Pergamon Press, N,Y, (1978). Hampel, V. E., and Quick, T. M., "Research Leading to the Produc- tion and Early Use of Numeric Data Banks of Materials Proper- ties and Systems Analysis'”, (Project Summary); Proc. 2nd Ann. Thermal Energy Storage Contrac- tors' Information Exchange Mts. ORNL-Conf-T10955 (1977); NTIS, U. S. Dept. Commerce, Springfield, Va. NSRDS-NBS-61, Part 1., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data’, (G. J. Janz, et al.), U. S. Gov't Printing, Office, Washington, (March, 1978). NSRDS-NBS-61, Part II1., "Physical Properties Data Compilations Relevantfto Energy Storage. II. Molten Salts: Data in Single and Multi-Component Salt Systems", (G. J. Janz, et al.), U. S, Gov't Printing Office, Washington (April, 1979). NSRDS-NBS-61, Part 1I1., "Physical Properties Data Compilations Relevant to Energy Storage. III, Engineering Properties of Single and Polycrystalline Sodium Beta and Beta"-Alumina"”, (G. R. Miller and D. G. Paquette), U. S. Gov't Printing Office, Washington (June, 1979). Cantor, S., "Thermophysical Proper- ties and Behavioural Characteris- tics of Phase-Change Materials’, (Project Summary); Proc. 2nd Ann. Thermal Energy Storage Contractors' Information Exchange Meeting; ORNL-Conf-T10955 (1977); NTIS, U. S. Dept. Commerce, Springfield, Va. [8] [9] [10] [11] [12] [13] Janz, G. J., et al., Molten Salts Data, Vol. 4, Pt, 2; J. Physical and Chemical Ref. Data, 4, 871 (1975). B Janz, G. J., "Molten Salts Handbook", Academic Press, N.Y. (1967). Bockris, J. O'M., White, J. L., and MacKenzie, J. D., "Physicochemical Measurements at High Temperatures’, Butterworths, London (1959). Corbett, J. D., and Duke, F. R., in "Techniques of Inorganic Chemis- try", Vol. 1, Wiley-Interscience, N. Y. (1963). Bailey, R. A., and Janz, G. J., in "The Chemistry of Non-Aqueous Solvents", Vol. 1, Academic Press, N. Y. (1966). Janz, G. J., "Molten Salts Calibra- tion Quality Data, J. Physical and Chemical Ref. Data, 9, in press (1980). N Tables to Introduction Table I.1. Criteria for the selection of candidate materials A. (For thermal energy storage systems (PcM)? and for electrochemical energy storage (ESB) 1. Thermodynamic properties 2. Chemical properties (1) suitable melting point (1) safety (1i1) high heat of fusion (ii) stability (1iii) congruent melting (iii) non-corrosive to container materials (iv) small volume change on melting (v) high thermal conductivity (vi) heat capacity (vii) density 3. Economy (viii) surface tension (1) inexpensive (11) availability B. Additional considerations for electrochemical energy storage (ESB) (1) electrical conductivity (iv) cryoscopic constant (11) diffusion constants for ions (v) emf series of metals (iii) transport number for ions (vi) reference electrodes (vii) thermodynamic activity coefficients a(PCM); phase-change materials; b(ESB); electrochemical storage batteries Table I.2. Likely candidates 1list (salt systems) A, Systems utilizing single salts (I.IIa and I.IIb) I, Cations lithium sodium potassium magnesium calcium barium IT1. Anions a chloride bromides nitrates iodides carbonates sulfates polysulfides phosphates fluorides thiocyanates hydroxides vanadates nitrites borates sulfides tungstates chromates formates acetates B. Systems utilizing mixtures of salts (a) Eutectics (2 or (b) Eutectics (2 or (c) Eutectics (2 or more salts from I.IIa) more salts from I.IIb) more salts from I.IIa, I.IIb) C. Systems utilizing salt hydrates Congruently melting salts with water of hydration 10 Table I.3., VList of candidate salt systems [The underscored system numbers identify the systems that were in the first list of candidates (see: ref.5)]); the system numbers not underscored identify the systems in the second list of candidates (i.e., this work)] Al - KC1 94 K - Licl 89| k. AlF a5 ALCl, 9 3776 ) MgCIZ 98 o AlZO3 140 - KC1 31 - - Na;AlF, 139 - LiCl 29 - - Na(Cl 91| x_.co v - NaCl 30 273 el - KC1 120 - NaCl-KC1 36 - Ban 52 - KOH 126 o e I - Li,CO, 13 ALF. 53 — ) > MaglllEa 134 - Li,50, 127 P N ©er 3¢ Na,CO = Na - LiF 81 2-"'3 Ll - Na,C0,-LicO 4 - Na ALF 135 2~Y3 3 41 3 6 Be _—— - NaCl 114 - NaF 35 Bel’-‘2 - KC1 NaALF 131 6 - ALCL, 3 Al,0, 51 - BaCl2 94 - KzALlF, 140 3Ea o CaCl2 93 - LizAlF, 141 - X,CO 120 - Na AlF, 139 | CaCl, 8 273 - - K,S0 121 - Na,AlF _-ALF 154 BaCl, 100 2°74 376 3 ) - KC1 93 - LicC1 27 - Na;AlF,-CaF, 153 — - LiCl-cacCl 37 - Na AlF,-Li AIF, 156 - KC1-MgCl, 99 2 1 3 6 3 6 - MgCl .’ - Na,ALF_ -LiF 152 - KC1-NaCl 95 2 3745 - LiC]- - MgCl,-CacCl 99 - Na ALF -NaCl 155 LiCl-KC1 37 2 2 - - Na,Co 119 - Na,ALF_-Si0 157 MgCl, 97 2~V : ° : - NacCl 28 - NacCl 32 8 - NaCl-AlCl., 36 AlZS3 64 5 36 CaFZ 51 - NaCl-CaClZ 9§ - N R B - LiF 79 aCl-LiCl 38 - NaCl-MgC1 147 B,0;-NagAlF 138 - NajAlF, 133 z - NajAlF -Al1,0, 153 Ba - NaF g3 | XF 3 - ALF, 86 BaCl2 54 Ca(NO 72 - LiF 77 - CaCl, 100 (NO3) , - NaNO. 103 - Na AlF, 130 11 Table 1.3. List of candidate salt systems - Continued NaF 34 Li - LiC1-LirI 40 NaF-LiF 78 - LiOH 109 LiLALF 65 - Na ALF 128 A1,0, 141 o KNO. 15 - NagALF -Al 152 Na;ALF, 108 6 KOH 144 - NaF 76 . NasA1Fg-AL,0, 156 L1N03 102 - NaF-KF 78 Mg (NO;), 104 Li,C04 10 NaNO3 45 LiNO3 13 . K,CO; 43 N NaNO;-LiNO 46 - KNO, 102 K,S0, 124 NaNO-NaNo 148 ‘ - LiC1 111 LiCl 112 NaNo, 147 _ - LiOH 142 LiOH 122 Li,S0, 123 - NaNO.-KNO 46 KNO, = Na,Co, 42 3 2 Nao, 6 LiNO, 73 - NaNo, 105 LiC1 4 KOH 70 AlC1, 29 K,CO4 126 BaCl, 89 | LioH 68 KNO 144 3 KC1 27 - Li,C04 122 NaOH 107 KC1-CaCl, 37 - LiCl 110 KC1-NaCl 38 - LiF 109 K, SO 18 i 2 = L1,C0, 112 - LiNO4 142 L12CO3 124 LiF 35 Li,S0, 47 LiF-LiBr 39 Li,50 16 KC1 121 LiF-LiI 40 - K,C0, 127 NaCl 118 LiOH 110 - X,S0, 47 Na,50,-Li,S0 48 LiNO, 111 - K,S0,-Na 48 MgCl2 88 . Lizc03 123 K,S 58 NaCl 87 - NaCl 49 59 K38, 60 : 1 K,S4 L = | Li,S 55 61 8 K,S, AlF4 : Li,s, 56 62 K,S¢ By 80 Li,S, 57 63 K286 CafFy P Lis 149 k.S 150 KF 77 L 2%x LiCl-LiBr 39 - LiF-LiC] 39 12 Table I.3. List of candidate salt systems - Continued LiALF 108 | NaF 2 LiI 26 LiF 128 AlF3 85 - LiF-LiCl 40 MgF, 132 BaF, 84 NaCl 136 Can 83 Mg NaF 129 KF 63 MgCl, 7 KF-LiF 78 - BaCl, 98 | Na,cCO, 11 MgF, 82 - CaCl, 99 X,CO4 44 LiF 76 - KC1 92 13 K,C0;-Li,CO4 41 Na ALF, 129 = KCl'C&ClZ 99 KC1l 119 - KCl-NaCl 96 . Li,C0, 42 | NaNO 14 - LiCl1 88 T NaCl 113 Ca(N03)2 103 - NaCl 90 NaOH 125 KNOS 45 MgF, 50 . KNO .- LiNO; 46 - Na AlF, 132 | NaCl S KNOS-NaNO3 148 - NaF 82 ALCL, 30 KNO2 146 BaCl2 91 NaCl 116 Mg (NO 71 CaCl 32 ek e N NaOH 143 - KNOS 104 K2C03 114 NaNO2 145 kC1 28 Na KCl-AlCl3 36 - | NaNQ 74 KCl-CaCl2 95 NaSAlFé 66 LiNO2 105 KC1-LiCl 38 = AlF3 135 KNO3 147 KC1-MgCl, 147 ‘ - AlZO3 139 KNO2 106 KZSO4 118 - AlZOS-AlF3 154 NaNO3 145 LiCl 87 - Al,0.-CaF 153 NaNO.-KNO 148 2737252 Li,50, a9 373 = AlZOS-LisAlF6 156 MgCl, 90 - A1203-LiF 152 NaOH 69 N33A1F6 136 = A1203-NaCl 155 KOH 107 NasAlFé-AIZO3 155 - A1203-5i02 157 ) NaZCOS 125 N32C03 113 - B,0, 138 | NaCl 115 NaOH 115 - BaCl, 137 NaCl-Na,CO. 151 NaOH-NaZCO3 151 © BaF2 134 NaNO3 1453 NaNO3 116 - Bel’-‘2 131 NaZSO4 117 - Can 133 NaZS 20 - KF 130 13 Table 1.3. List of candidate salt systems - Continued S Si NaZS2 21 = 2= Sulfur 19 | Sio Na,$S 22 2%3 S5 - S - KZSx 150 Na3A1F6 Alzo3 157 NaZS4 2] ) lesx 149 - NaZSx £ NaZS5 24 NaZSx [NaZS-Sulfur] §8 NaZSO4 17 - K,S0,-Li,S0, 48 - NacCl 117 14 Table I1.4. Fundamental constants Symbol Name Values 23 < JL N, Avogadro constant 6.022045 (31) x 10" "mol F Faraday constant 9.648456 (27) x 10% ¢ mo1”1 e Electron charge 1.6021892 (46) x 107 1° ¢ R Gas constant 8.31441 (26) J K-}T01—}1 1.98719 (6) cal K "mol Fundamental constants from: CODATA Bulletin No. 11 (Dec. 1973) In each case the digits in parentheses following a numerical value represent the standard deviation of that value in the decimal places indicated for its final digits 15 Table I.5. Symbols and units Symbol Physical quantity Units a Thermodynamically defined activity dimensionless A Pre-exponential factor as in text C Concentration mol $% Cp Heat capacity cal K tmo171 D Diffusion coefficient cm?s™1 E Energy of activation cal mol ! AHE Heat of fusion kcal mol ™1 kf Cryoscopic constant K mol-1 kg_l K4 Equilibrium dissociation constant atm Ml Apparent molecular weight g mol—l pVap Vapor pressure mm Hg t Temperature (Celsius) °C T Temperature (Kelvin) K T, Melting temperature °C TO Ideal glass transition temperature K VS Molar volume of solid cmsmol_1 AVf Change in molar volume on fusion cmsmol-1 (AVf/VS)% Percent molar volume change dimensionless X Mol fraction dimensionless Y Surface tension dyn cm” L n Viscosity Cp or poise K Electrical conductance ohm™ ! cm? A Thermal conductivity cal Cm-lsth—l p Density g e For conversion between SI and other units: 1 mN s m 1 mN m_ 4.184 J mol~ 133.3 Pa 16 For conversion of thermal conductivity: multiply by: l cp = 1 mPa s to 1 dyn cm™ mW m” 1K1 4. 1 -1 cal mo1™? wom 1kl 4. 1 torr = 1 mm Hg J em 1s7 g1 4. kcal m thr 11 3. BTU £t ‘hr tF7! 2. 184 x 10° 184 x 102 Thermal conductivity (liquid, solid) hot wire - absolute and modified hot wire Table I.6. High temperature experimental techniques Density Cryoscopic constants Archimedean freezing point lowering (dilute solution) dilatometric freezing point depression flotation (phase-rule) maximum bubble pycnometric from heats of fusion Vapor pressure Surface tension maximum bubble Wilhelmy slide plate pin detachment capillary rise sessile bubble pendant drop manometry (sickle or spoon gauge) dew point boiling/reduced pressure vapor transpiration Knudsen effusion Mass spectrometry and Knudsen effusion concentric cylinder - absolute and transient optical plane - absolute and transient radial heat flux linear heat flux flat plate - steady state comparative method others Diffusion Viscosity capillary oscillating sphere oscillating cylinder falling sphere Heat of fusion Heat capacity Electrical conductance dc bridge ac bridge transformer bridge isothermal calorimetry drcp calorimetry differential-scanning calorimetry (DSC) phase-rule (freezing point data) solution calorimetry Volume change on melting gas manometry dilatometric pellet expansivity chronopotentiometry linear sweep voltammetry dc polarography oscillographic polarography faradaic impedance chronoamperometry rotating disc electrode porous frit electrophoresis wave-front interferometry capillary 17 panuyjuoo quelsuod ordoosofi) 97 £3TATIONPUOD TeRWASYL °GT (372W) AJTATIONPUOD Tewiayl *#T aanssaad aodey °g¢7 (juaoaad) uoisny uo 3aZueyd swWNTOA °7T (sanssaad jueisuod) A3roeded jeoy °TIT uorsny 3o 1edH ‘0T SUOT 10] SJUP3SUOD UOISNIIId °§ spaezel pue A3ojeg °g JUaWuUIP3IUOD PUE UOTISOII0) L K31TATIONPUO) TEOTAINTE 9 AITSODSTA °*G UOTSUB] 9JEBJIANS ‘Y (37ow) L3Tsuaq ‘¢ (snprfos-snpInbiT) weaderp oseyq °¢ aanjeiadwal SuraTol I = = = Z| vl x| =| & = | = | & = | = - > ol = = = = ={| = [ |w» ® P o ]l el S| o | K~ = | w [ (OO IS P — o | oo o e e Ml |k | =< deg ®eieq [T N N N Nl e, vl s of| = | = a |~ NS o al o = o o | e % wn (%] w wn ) (@] %] W w o o o (@] e = = b = = =) BTTIeAY ®lE(g oo ~ w N el s] ol o w |w w |o o |w N N m TaeT Emy ] o~ TN W w = AdVHHNS SALVLS VIVd swalsfg 931epPIpPUB) SITES UDITOW — ‘ON ~Ul €¢C CZ| T¢| 07| 6T | BTJLT | 9T ST | ¥TI| €T| ¢T| TIT| OT} 6 8 L Y S 7 t A L°1 91qel 18 panuyjuod quelsuod oFdoosoLi) °9T L3TATi0oNnpuUod TRWIAYL °GT (37ow) AITATIONPUOD TeWIASYL “HT danssaad zodepy g7 (3us213d) uorsniy uo d3ueyd wWNJoA °ZT (9anssaad juejsuod) A3Toeded IedH T uorsny jo 1edH 0T SUOT 10J SJUBISUOD UOTSNIITIA "6 SpieZel pue K319Je§ °'g juluureljuod pue UuoTsS0a110) °L A31TAT3IONpUO) TEDTIIDOTH 9 AJTS0OSTA °GC UOTSUd] 2DeFINS ‘Y (31ow) A3rsusg ‘¢ (snpTT1os-snpInbIT) weidelp dSelid °7 : 2anjeisdwel BUTITIW °T £ = (ol N I ol I o =z M. o e P . - - » = = = = A = = = = s | S RIT P 2Ie R R|R (S || E]lalalalalele |z (@ [S) w w b~ O | = _ | ' I | n - L] e — — N T B O B dep eaeq T T : v_fl BY & o 5 | A a T o b & Z > > - 7 N O 4 °9TqeTTeAy ®eleq ll.u. = - ! ® = o = |~ = TR = T o o oI — O O w m e Z o o o || ! ~ | | ~ O ~ O a (o ~ = S | - alE 8] &l8 g S | (¥8) N . _ 2= s BE s AYVWHAS SNIVIS VIVd ~ w ~ e — Z I () w &= - swo31sAg 231epPIpuUE) SITES UDITOW 9Y Sl %7 €vyev { Tv|Ov | 6€| 8E | LE| 9€| SE| Y€} €€ C€| TE|O¢E 62 8¢} LT| 9T STy vz |° m ! ponuIjuod - /°1 9Iqe] 19 panuyauod Jue3Su0d 2TdodsSod1ny ‘97 £3TATIOoNpPUOD TRUAIYTL “*GT (379w) AITATIONPUOD TeWIdYL 4T oanssaad iodep ‘g7 (jua219d) uorsny uo 23ueyd S2WNTOA °ZT (2anssaad jue3suod) £37deded 3edy “TT uorsny jo 382 ‘0T SUOT 10J SJUBJISUOD UOTISNIITJd °6 spiezey pue Kjajes °g JUDUWUTEBIUOD puUP UOTS0110) A A1TATIONpUO) TEOTAIDRTA °9O AJTSOISTA °G UOTSUd], dOBJING Y (37ew) £3Fsuaqg °¢ (SNPIIOS~SNPINDI[) Weadelp osedq ‘¢ a2anjeiadual SUTITPH °T deg ®BlE(Q I—1 2TqeITeAY BlE(Q AdVHHNS SALVLS VIVd o = = ~ A = Z [ e w =z = w o] e o} wn ] =< w - =g w w > = =~ b = = = o = = s g i (@] = 0o R O wn P (o) (o) Pt P IS NS I [\ N r r [ (IR ) - ) o o i R o | == 5 ] I I [ n tn |wn w | »w w0 X o o (= ] ro o P w | = o mol" e o T I w N v v | w — {w ro N ) Ho = | mm o) o w £~ [NS] (S} (S0 S ) ~ o r ro w w | v o ol o &~ ~ =~ 1 69 89| 19 | 99| s9| 9| €9/ z9 ! To | oo | 65| 86 | £S5} 96§ 65| wS| €S} TS| IS} 0G| 6%7| 8%|LY ° fl SswalsAg 23BpPIpPUB) SITEBS U3ITOW panuriucd - £°1 91qel 20 penujijuod quelsuod 21doosodi)y ‘9T £1TATIONpPUOD TRPWIAYJ °CT (372w) AITATIONPUOD TeWIDYL “HT o2anssaad iodep “°gT (Juooaad) uofsny uo 28uByD LBWNTOA *7T (sanssaad juelsuod) A3roeded ey °IT uoTsSny Jo 3B2H ‘0T SUOT JOJ S]UB]ISUOD UOTISNIITA °6 spiezel pue 4A1ajes °g JUdWUTELIUOD puUB UOTS0110) °/ A3TATIONPUO) TEBOTIIBTE 9 A1TSO0OSTA °G UoTSU9], 9OBJINS °f (31om) A3fsuag ¢ (SnpTITOS-SNpPENbIT) welderp @seuyd ‘¢ aanjeradwal SUTITAW T = Sl |slele |l |efolel bl | mlmlejel xlz]elol == = o a |lo |o a | r "y " 1 | ol " "y Z | e w w | © mm des el®@ T T Ll T Ir TRl e e k]l sle [ olE | x]x|IS13 82|27 |4 09 o] = lw = Z | m |- W w ] ol L) P | T w ro N o o mfl_._ °TqeITEAV EIEQ “En 9 w 09 p foo o |w ! ! rm ! molm ry ! o w w = = o o o |o o w [N ro o w P ~o = ~ ~ I TN I T [ (e E D AYVHHAS SALYIS VIVQ - swa3sAg 23epIpPUB) SITERS UDITOR z6 T6 06| 68| 88| L8] 98| <8| %8| €8| z8| 18|08 | 6L 1 8L | 24| 9] se | wve LT} 0L} O 1 penutT3juod - L°T STqEL 21 panuTjuod Jueisuod d21dodsofi) °9T AITATIONPUOD TeEWIBYL °GT (37ow) AITATIONPUOD TeWIBYL “HT sainssaad 1odep °¢T (juso3ad) uoIsnjy uo 3aJueYd JWNTOA °ZT (3anssa1d juejsuod) A3foeded IedH “TIT uoTsSny jo 31BdH ‘0T SUOT 103] SJUEJISUOD UOISNIIEA *6 spiezey pue £33jes °g juswUIEBIUOD pUEB UOTSOII0) °/ A1TATIONPUO) TEOTIIOTH °9 LITSOOSTA °G EO..wm..fl@P Ioe] ..:._m ‘h (31ou) KL3fsusq °¢ (SnpT1oSs—-snpInb}]) wWeidefp 9seyq g sanjeasdwsl SUIITIN ' deg eiea T 9TqeITIEBAY BlE(Q lg AYVHHNS SNLVLIS VIVd = -~ b =~ N =z = = [ Al =4 v (@] ~ = o o ] =0 (o (o W b= = = o =z - 5 9] - = = O O = = O O O O M. . - S ] o oW o M. - ) 1 (0] 09 = = O O w) — — — = (@] O ry — (@] = =2 | w = b (@] = @] @] l 1 = I~ — | I | | = = I i janl o o = | o (@} = [e] = = =z 2 | | w) = ~ =z = 1 1 - o | (¥} () 09 O |w W () O (] (] ] fo to O -— ) () ) R = 5 . 1 = | 1 —~ ) | 1 | - 1 | O O W] W] m o O () () s e (e} &= o =~ = = ~ = =2 ™ () o O = = (9] O = =3 o 0O O = o g - fas] = fo o = = W] o | ) Y] 1 l = = w o o o e w O =)W o o b o) (9] O O = O fNo [ w w W > [ S] o ~— w w o = ] = = 0Q o = N [\S] ~ w () O N N o] O o] [\¢] = = = fed [N () 3] w”r. ¢t vrr|ett|zrifit [oTTpot |80T{ 0T |90T|s0T|v0T]c0T| 20| ToT| 00T| 66| 86 | L6 | 96 |56 [ve|c6| ¥ swalsAg 9231BPIpPUE) SITES UIITOW penutiuod - ,°] 9[qe[L 22 ponujjuod .;J Juelsuod 91dodsoki) ‘9T - K3TATIONpPUOD TBWIAYL °GT - (37ow) £3ITATIONPUOD Tewasyl ~yT 2anssaad Jodepy “¢T (jusniad) uofsnjy uo adueyd dwnyop 7T (9anssoad juejsuod) A3foeded 3Iedy ‘T uogsny jo iesd ‘0T SUOT JOJ SJuBlSUOD UOISNIITA °§ Spaezel pue A313aJjes °g JudwuILIUOD puBR UOTSOII0) °/ A3TAT3ONPUO) TEOTAIMWTEA 9 A3ITS0OSTA °C uoIsUd] 22eJINS ¥ (a7ow) A3ysusq ¢ (SnpITosS-snpInbyT) weidefp aseyq °g i aanjeiadwal ZuriToW T = z | = Z|l=z]1=|= Z | =z |= = =~ =~ | = & [ & ) W o o o o ] W W o ) [N [\ W (SO e SO A Y ) ) K - - R - < - O I N O o O R O I R 1 = e L e ~ = [P b w w o ol o |~ = = | = a |ao o 1< deg eaeq T T ST ST KSR I IR BT R N I R P O A T BT IR = PR T BOR I A IO Ay © (o)) | . (T S TR S T [ T T I | H- ~ | = = | 2w ) (] o =~ = = | STAPTTEAY umog = | = >l o | = Wi w =2 e |w o s |~ | n alrn o e e [=X N | ] p | oo m oW - n T | o v |~ = o o] a IS =2 e S ST R BN SR IR B gl e R N = “le 12 ig |° AAVRKHAS SNLVLIS VIvd N &~ e £ ~ swalsAg a1BpPTpPUB) SITES UDITON gcT| se1| 9T ° o ET| 9CTISETVET |CCTRECT |TET{ O0ET| 6CT{8CT|LCT]9CTSCT EcqecTICT j0CT 6TUSTT {LTIT|9TT ' ponuUIIUOD - /'] 9Tqe] 23 Jue3isuod d2TdodS0A1) °9T A3TATIONPUOD TEWIYTL °"GT (373w) LITATIONPUOD TeWADYL ‘4T aanssaid iodey g7 (Ju®213d) uolsny uo 28ueyd 3WNTOA °7T (21nssaad juelsuod) AIFdoeded Iedy “TIT uorsny jo 1edH ‘0T SUOT JOI SJUBISUOD UOTSNTITJ *6 splezey pue L39jeS ‘g JUBUWUTEIUOD puUB UOTSOLI0) °L £3TATIONpUO) TEITAIODTA °9 AJTSOOSTA °C UOTSUa ] wommhfim 'y (3Tom) A3fsuaq ¢ (SnpTToS-snpInbIT) Weidelp 3seyd °¢ aanjeiadwal BuriITaH T =z = :N [l W e [ = (o - = = 5 % - 7 Y Zlels |8 le el | %1J |on [l il o | w o =z = I o o |~ — > | =< deg eae(Q I—1 ey Slelals LS5l 71514 reay eas H-On (@ E O_W_ = — c =z [ t = = = [ [ o m wanma.> > [ = e = |5 | & S1E|2® 8|8k |<|2 N o o \ " o o = o w P N N RdVHRHNS SNILVLS V1Ivd w (9%} =z ] [0 w (@] | | f w ) ~ - Swa31sAg 23IBPIPUB) SITEBS UIITOW OI T > J T9 09T [6GT BST |LST| 9STSST{ 7ST} €GT| 2GT| IGT| OSTHYT |I87T |L%T 90T |SHTiHvYT |EXT 1CHT |THT |JORTJ6CT 5 poONUTIUOD - /1 @T19el 24 Phtysical Properties Data Tables System 50 MgF, 1. Melting Temperature (Tm) Melting point: 1263° + 5°C References [1-8]. A Density (p) Measurement method: Archimedean technique (9] o = 3.235 - 5.24 x 10747 (50.1) precision: not estimated uncertainty: ~ Table 50.1. Density from equation (50.1) T p_3 T p_3 (K) (g cm ) (K) (g em 7) 1650 2.370 1900 2.239 1700 2.344 1950 2.213 1750 2.318 2000 2.187 1800 2.292 2050 2.161 1850 2.266 2100 2,135 References [9] 3. Surface Tension (vy) No Data 4, Viscosity (n) No Data 5. FElecetriecal Conductance (k) No Data 25 (50) MgF2 6. Safety and Hazards A. Hazard rating (1) Toxicity: 1inorganic fluorides are generally irritants (ii) Vapor pressure: at m.pt, 1263°C, < 0.5 mm. B. Disaster hazards (1) Molten salt bath "explosions': i.e., explosive generation of steam due to bulk water ''carry-over'" and/or equipment failure; i.e., explosive expansion of '"trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [10-15]. 7. Corrosion Table 50.2. Corrosion studies from primary research literature Studies (various molten fluorides) References Cr [20] Ni-Cr-Fe [18,21] INOR-8 [18,22-24] Al [25,26] Ni-Mo-Cr-Fe (Hastelloy) [19] Inconel [24] Corrosion: molten fluorides (survey) [28-30] Electro-chemical behaviour of oxide ions and related species . ) [31] in molten fluorides Electro-analytical studies in molten fluorides [16] Annotated corrosion biblio. [27,17] For studies specific to moltenMng, see [27,17]. For thermodynamic (theoretical) considerations, and some considerations of impurities in the melts, and "gettering" techniques, see [17]. References {16-31] 26 (50) MgF, 8. Diffusion No data 9. Heat of Fuston (AH;) Measurement method: drop calorimetry [32] Table 50.3. Heat of fusion [} AHf Uncertainty (kcal mol_l) 13.8 vk 27 References [32-34] 10. Heat Capacity (Cp) Measurement method: drop calorimetry [39,40] Table 50.4. Heat capacity (€ El -1 T range MgF, (cal K mol ) (K) Uncertainty 2 22.57 1536-1800 * ¢ (a) 298-1536 * Insufficient data for estimate 3 5.2 (a’cp = 16.93 + 2.52 x 10 °T - 2.20 x 10 °T (50.2) References [35-40] 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [41] Table 50.5. Volume change on melting (AVf/VS) Uncertainty 14.0% ~vot+ 8% References [41] 27 (50) MgF2 12. Vapor Pressure (pvap) Measurement methods: cited in table (50.6) Table 50.6. Vapor pressure, measurements, techniques, and uncertainties Vapor Pressure Measurements T range uncertainty (in Re f. Technique (K) vapor pressures) [42,43] Knudsen effusion, and 1413-1614(b) vt 3% torsion-effusion(a) [41] estimated from data base 1600-1940 + 157 [44] boiling pt - dynamic method 1930-2130 + 5% (aj torsion-effusion data set selected as recommended data base for this temperature range (b)melting point of MgF2 is 1536 K Equation: log p(mm) = A + B/T (50.3) precision: 1in table 50.7 uncertainty: 1in table 50.6 Table 50.7. Parameters of equation (50.3) and precisions Equation T range (K) A -B Precision [50.3 A] 1536-1614 9.6164 16488.0 V- [50.3 B] 1600-1940 9.5296 16410.8 v 20% [50.3 C] 1930-2130 9.6899 16762.3 o159 *for MgF2 (solid) in the range 1410 to the m.pt (1536 K), the vapor pressuré may be expressed by : log p(mm) = 12.002 - 20,1443/T (50.4); estimated precision and uncertainty are, ~ % 14% and ~ % 3%, respectively. Table 50.8. Vapor pressure from equations in table 50.7 T P T P (K) (mm) (K) (mm) 1536 | 0.076 || 1930 | 10.11 1540 | 0.081 || 1940 | 11.21 1560 | 0.111 || 1960 | 13.73 1580 | 0.152 1980 | 16.75 1600 | 0.205 |{| 2000 | 20.36 1610 | 0.237 || 2020 | 24.65 e e 2040 | 29.72 1620 | 0.25 2060 | 35.71 1650 | 0.38 2080 | 42.77 1700 | 0.75 2100 | 51.03 1750 | 1.42 2120 | 60.70 1800 | 2.59 2130 | 66.10 1850 | 4.56 1900 | 7.80 2533 | 760 1920 | 9.601 _ References [41-46] 28 (50) MgF2 13. Thermal Conductivity (liquid) (kz) No data 14. Thermal Conductivity (solid) (AS) No data 15. Cryoscopic Constant (k.) v Measurement method: «calculated from AH% [41] Table 50.9. Cryoscopic constant kg il Uncertainty (K mol "kg) 21.2 v+ 1% References [41] 16. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties", NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). Barin, I., and Knacke, O., "Thermochemical Properties of Inorganic Substances", Springer-Verlag, New York (1973). Janz, G. J., "Molten Salts Handbook'", Academic Press, N. Y. (1967). Gray, D. W. (ed.), "American Institute of Physics Handbook", 3rd Ed., McGraw-Hi11l Book Co., N. Y. (1972). Weast, R. C. (ed.) "Handbook of Chemistry and Physics", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides", ANL Rept. 5750 (1959) Argonne National Laboratory, I11. Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik", 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). Kirshenbaum, A. D., Cahill, J. A., and Stokes, C. S ., J. Inorg. Nucl. Chem. 15, 297 (1960) "Dangerous Properties of Materials'”, Sax, N. I ., Van Nostrand Reinhold Co., N. Y. (1969). 29 (50) MgF, [11] "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). (12] Vapor pressure, estimated; Janz, G. J. et al. (MSDC-RPI1,1980) [13] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board of Fire Underwriters Research Report No. 2 (1954). [14] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). [15] Janz, G, J., Tomkins, R. P. T., Downey, J. R. Jr., and Allen, C. B., "Safety and Hazards', Chapter in "Eutectic Data", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) (16] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). (17] Eichelberger, J. L., (Pennwalt Corpn.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry", ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va. (Dec. 1976). [18] Oak Ridge National Laboratory, Molten Salt Reactor Program, Semiannual Progress Report, ORNL-3708 (1964). [19] Koger, J. W., Corrosion, 30, 125 (1974). [20] Brasunas, A., Metal Progr., 62, 88 (1952). [21] Grimes, W. R., Blankenship, F. F., Keilholtz, G. W., Poppendiek, H. F., and Robinson, M. T., Proc. Sec. U. N. Inter. Conf. Peaceful Uses of Atomic Energy, Geneva, 28, 99 (1958). [22] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [23] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, 64, 149 (1967). [24] Manly, W. D., et al., "Construction Materials for Molten Salt Reactors", Ch. 13 in "Fluid Fuel Reactors”, Lane J. A., MacPherson, H. G., and Maslan, F., eds., Addison-Wesley Co. Inc. Publ. (1958). [25] Pizzini, S., Magistris, A., and Sternheim, G., Corrosion Sci., 4, 345 (1964). [26] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov, 119 (1973). [(27] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Hdbk., 1, 425 (1955). (28] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [29] Manning, D. L., and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [30] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [31] Manning, D. L., and Mamantov, G., J. Electroanal. Chem. (in press) (1978). [32] Janz, G. J., Kelly, F.J., and Pérano, J. L., Trans. Farad. Soc. 59(12), 2718 (1963). 30 [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] (50) MgP2 Shomati, C. H. and Cohen, A. J., J. Amer. Chem. Soc. 77, 285 (1955) Kelley, K. K., U. S. Bur. Mines Bull. 393 (1936). Douglas, T. B., and Dever, J. L., J. Research Nat. Bur. Stds. 53[2], 81 (1954). Douglas, T. B., Trans. Amer. Soc. Mech. Eng. 79, 23 (1957). Wicks, C. E. .and Block, F. E., U.,S. Bur. Mines, Bull. 605 (1963). Kelley, K. K., U. S. Bur. Mines Bull., 476 (1949). Naylor, N. B., J. Am. Chem. Soc. 67, 150 (1945). Krestovnikov, A. N. and Karetnikov, G. A., Legkie Metally 3, 29 (1934). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). Hammer, R. R. and Pask, J. A., J. Amer. Ceram. Soc. 47(6), 264 (1964). Hammer, R. R., Ph.D. Thesis, Univ. California, Berkeley, Cal. (1961) Ruff, 0. and LeBoucher, L. Z. anorg. allgm. Chem. 219(4), 376 (1934). Gunther, K. G., Glastech. Ber. 31[1], 9 (1958). Douglas, T. B., Victor, A. C., and Beandoen, A, R., Chapt. 6 1in U.S. Nat. Bur. Stds. Rept. No. 6484 (1959). 31 System 51 Can Melting Temperature (Tm) Melting pecint: 1418° + 5°C [7] References [1-8]. Density (p) Measurement method: Archimedean technique [9] 4 p = 3.179 -3.91 x 10 "T (51.1) o precision: not estimated uncertainty: ~ * 1 Table 51.1. Density from equation (51.1) T P _4 T P _4 (K) (g cm 7) (XK) (g cm 7) 1650 2,534 2000 2.397 1700 2.514 2050 2.377 1750 2.495 2100 2.358 1800 2.475 2150 2.338 1850 2.456 2200 2.319 1900 2.436 2250 2.299 1950 2.417 2300 2.280 weferences [9,10] Surface Tension (v) No Data Viscosity (n) No Data Electrical Conductance (x) No Data Safety and Hazards A. Hazard rating (1) Toxicity: 1inorganic fluorides are generally irritants and toxic. (ii) Vapor pressure: at m.pt., 1418°C, ~ < 0.5 mm. B. Disaster hazards (1) Molten salt bath '"explosions'': i.e., explosive generation of steam due to bulk water ''carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [(11-16] 32 (51) CaP2 7. Corrosion Corrosion studies from primary research literature Studies References Cr [17] Ni-Cr-Fe [18,19] INOR-8 [19-22] Al [23,24]) Ni~Mo-Cr-Fe (Hastelloy) [25] Inconel [22,26] Corrosion: molten fluorides (survey) [32,26] Electro-chemical behaviour of oxide ions and related species [27-29] in molten fluorides Electro-analytical studies in molten fluorides [30] Annotated corrosion biblio. [32] For studies specific to molten CaFZ, see [26,32] For thermodynamic (theroteical) considerations, and some considerations of impurities in the melts, and "gettering" techniques, see [32] References [17-32] 8. Diffusion No data 9. Heat of Fusion (AH}) Measurement method: drop calorimetry [34] Table 51.3. Heat of fusion: AHf -1 Uncertainty (kcal mol ) 7.09 v+ 27 CaF2 (m.pt. 1414°C exhibits a solid-state transition -1 at 1151°C, for which AH = 1.14 4+ kcal mol References [33-35] 33 (51) Car 10. Heat Capacity (Cp) Measurement method: drop calorimetry [36,38] Table 51.4. Heat capacity C El -1 T range CaF2 (cal K mol 7) (K) Uncertainty (a) 293-1490 * 2 23.91 1691-~1791 * (a) 3 cp = 14.5610 + 8.4667 x 10 “T (51.2) Insufficient data for estimate References [36-39] 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [40] Table 51.5. Volume change on melting (AVf/VS) Uncertainty ] 8.0% v+ 10 References [40] 12. Vapor Pressure (pvap Measurement method: cited in table 51.6 rable 51.6. Vapor pressure measurements, techniques, and uncertainties Vapor pressure measurements T range Uncertainty (in Ref. Technique (K) vapor pressures) [41] torsion-effusion 1400-1850%* + 3% 40 i [40] established from + 207 data base = [42] boiling pt(dynamic) 2086-2210 + 5% *melting point of CaF2 is 1691 K Equation: log p(mm) = A + B/T ( 51.3) precision: in table 51.7 uncertainty: in table 51.7 34 (51) CaF2 Table 51.7. Parameters of equation (51.3) and precisions Equation T range (K) A -B Precision (51.3.4A) 1691-1850(a) 11.709 21,708 v 3,47 (51.3.B) 1840-2100 8.8853 | 16,738 v 207 (51.3.C) 2086-2210 9.3648 17,833 v 6.77% (a)for CaF, (solid) in the range 1400 to the m.pt. (1691 K), the vapor pressure may be expressed by: log p(mm) = 11.175-18,936/T(51.4); estimated precisions and uncertainties are v + 167 and ~ + 3% respectively. Table 51.8. Vapor pressure from equation (51.3) in table 51.7 T P T P (K) (mm) (K) (mm) 1691 0.074 1980 2.725 1700 0.087 2020 4,005 1720 0.123 2060 5.800 1740 0.171 || ==—==———==———==-- 1760 0.237 2090 6.796 1780 0.326 2110 8,187 1800 0.446 2130 9.829 1820 0.605 2150 11.76 1840 0.815 2170 14.02 ————————————— 2190 16.67 1870 0.867 2210 19.75 1900 1.201 1940 1.824 2786 760 References [40-42] 13. Thermal Conductivity (liquid) (Az) No data 14. Thermal Conductivity (solid) (ks) Measurement method: comparative technique: plate assembly [43] 2 modified parallel 3 6.2 A = 8.8152 x 10 - 0.3763 x 10 °T + 0.5331 x 10 °T (51.5) precision; not estimated uncertainty; ~ * 10% Table 51.,9. Thermal conductivity of solid from equation (51.4) - A x 10° . A x 10° -1 -1 -1 -1 -1 -1 (K) (cal cm s K ) (K) (cal em s K ) 270 0.0254 320 0.0223 280 0.0246 330 0.0220 290 0.0239 340 0.0218 300 0.0232 350 0.0218 310 0.0227 360 0.0218 The values reported by Charvat and Kingery [46] for polycrystalline calcium fluoride are about half as large. References [43-52] 35 (51) CaF2 15. Cryoscopic Constant (kf) Measurement method: calculated from AH% [40] Table 51.10. Cryoscopic constant kf Uncertainty (K mol-lkg) 62.6 N+ 17 References [40] 16. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S..Gov't Printing Office, Washington, D. C. (1971). Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties", NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganic Substances'”, Springer-Verlag, New York (1973). Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). Gray, D. W. (ed.), "American Institute of Physics Handbook”, 3rd Ed., McGraw-Hill Book Co., N, Y. (1972). Weast, R. C. (ed.) "Handbook of Chemistry and Physics”, 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides", ANL Rept. 5750 (1959) Argonne National Laboratory, Ill. Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik", 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). Kirshenbaum, A. D., Cahill, J. A., and Stokes, C. S 15, 297 (1960). . O, ;- Inorg. Nucl. Chemn. . Masbovetz, V. P., and Lundina, Z. F.,, Ukrain. Akad. Nauk. Inst. Proc., First All Union Conf. on Aqueous Solutions, 191 (1935). "Dangerous Properties of Materials”, Sax, N, I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H, E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). Vapor pressure, estimated; Janz, G. J. et al. (MSDC-RPI, 1980) "Potential Hazards in Molten Salt Baths for Heat Treatment of getgéSZS National Board of Fire Underwriters Research Report No. 5 o "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). 36 [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] (51) CaF2 Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectie Data", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Brasunas, A., Metal Progr., 62, 88 (1952). Grimes, W. R., Blankenship, F. F., Keilholtz, G. W., Poppendiek, H. F., and Robinson, M. T., Proc. Sec. U. N. Inter. Conf. Peaceful Uses of Atomic Energy, Geneva, 28, 99 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report, ORNL-3708, (1964). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, 64, 149 (1967). Manly, W. D., et al., "Comnstruction Materials for Molten Salt Reactors”, Ch. 13 in "Fluid Fuel Reactors'", Lane J. A., MacPherson, H. G., and Maslan, F., eds., Addison-Wesley Co. Inc. Publ. (1958). Pizzini, S., Magistris, A., and Sternheim, G., Corrosion Sci., 4, 345 (1964). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov, 119 (1973). ' Koger, J. W., Corrosion, 30, 125 (1974). Grimes, W. R.,, and Cuneo, D. R., '"Molten Salts as Reactor Fuels", Reactor Hdbk., 1, 425 (1955). Mathews, A, L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L., and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F,, Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroananl. Chem. (in press) (1978). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Eichelberger, J. L., (Pennwalt Corpn.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry", ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va. (Dec. 1976). Petit, G. and Cremieux, A., Compt. rend. 243, 360 (1956). Janz, G. J., Kelly, F. J., and Pérano, J. L., Trans. Farad. Soc. 59(12), 2718 (1963). T Kelley, K. K., U. S. Bur. Mines Bull. 393 (1936). Douglas, T. B., and Dever, J. L., J. Research Nat. Bur. Stds. 53[2], 81 (1954). I Douglas, T. B., Trans. Amer. Soc. Mech. Eng. 79, 23 (1957). Lyshenko, V. S., Metallurg. (Leningrad) 10, 85 (1935). Wicks, C. E. and Block, F. E., U.S. Bur. Mines, Bull. 650 (1963). 37 [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] (51) Can Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). Schulz, D. A. and Searcy, A. W., J. Phys. Chem. 67, 103 (1963). Ruff, 0. and LeBoucher, L., Z. anorg. allgem. Chem. 219(4), 376 (1934). McCarthy, K. A., and Ballard, S. A., J. Appl. Physics 31, 1410 (1960) Slack, G. A., Phy. Rev. 122 , (1961). Ericksen A., Ann. Physik. 34, 185 (1911) Charvat, F. R. and Kingery, W. D., J.Am. Ceram. Soc. 40, 306 (1957). Slack, G. A., "The Thermal Conductivity of Nommetalliec Crystals”, G. E. Report No. 77CRD140 (July, 1977); General Electric Co., Cooporate Research and Development, Schenectady, N.Y. Parfenjeva,L. S., Smirov, I. A., and Tekhonov, V. V., Fiz. Tverd. Tela 13, 1509 (1971); Sov. Phys.-Solid State 13, 1267 (1971). Mogilevski, B. M. and Tumpurova, V. F., Fiz Tverd Tela 16, 1786 (1974); Sov. Phys.-Solid State 16, 1161 (1974). Moss, M., J. Appl. Physics 36, 3308 (1965). Moss, M., Ph.D. Thesis, Cornell University (1962). Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liquid Thermal Conductivity Data’, HMSD, Edinburgh (1975). 38 System (52) BaF I1. Melting Temperature (Tm) Melting point: 1320° + 5°C [1] References [1-8]. 2. Density (p) Measurement method: Archimedean technique [9,10] o = 5.775 - 0.999 x 10 °T (52.1) precision: not estimated uncertainty: =~ * 1 o\® Table 52.1. Density from equation (52.1)) T P_j3 T P_3 (K) (g cm 7) (K) (g em ) 1600 4.177 1850 3.927 1650 4.127 1900 3.877 1700 4,077 1950 3.827 1750 4.027 2000 3.777 1800 3.977 References [9,10] 3. Surface Tenston () No data 4. Viscosity (n) No data S. Electrical Conductance (k) No data 6. Safety and Hazards A. Hazard rating (1) Toxicity: 1norganic fluorides are generally irritants and toxic. (ii) Vapor pressure: at m.pt., 1320°C, ~ < 0O.5mm. B. Disaster hazards (1) Molten salt bath "explosions'": 1i.e., explosive generation of steam due to bulk water '"carry-over"” and/or equipment failure; i.e., explosive expansion of "trapped'" air, (1i) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [11-16] 39 (52) BaF 2 7. Corrosion Table 52.2. Corrosion studies from primary research literature Studies References Cr (17] Ni-Cr-Fe [18,19] INOR-8 [19-22]) Al [23,24] Ni-Mo-Cr-Fe (Hastelloy) [25] Inconel [22,26] Corrosion: molten fluorides (survey) [26,32] Electro-chemical behaviour of oxide ions and related species in molten fluorides [(27-29] Electro-analytical studies in molten fluorides [30] Annotated corrosion biblio. [31] No studies specific to molten Ban were found. For thermodynamic (theoretical) considerations, and some considerations of impurities in the melts, and "gettering" techniques, see [32]. References [17-32] 8. Diffusion No data 9. Heat of Fusion (AH;) Measurement method: drop calorimetry [34] able 52.3. Heat of fusion Lo} AHf Uncertainty (kcal mol-l) 3.03 nvo+ 27 References [33-37] 10. Heat Capacity (Cp) No data 40 (52) Ban 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [38] Table 52.4. Volume change on melting (AVf/VS) Uncertainty 17% v+ 107 References [38] . |4 P 12 apor Pressure (pvap) Measurement methods: dynamic boiling point technique [39] log p = 10.2506 - 17,910/T (52.2) o\ precision: v~ *+ 5% uncertainty: ~ + 5 Table 52.5. Vapor pressure from equation (52.2) T p T D (K) (mm) (K) (mm) 1960 12.97 2120 63.46 1980 16.04 2140 76.11 2000 19.75 2160 90.98 2020 24,23 2180 108.4 2040 29.59 2200 128.7 2060 36.01 e 2080 43.65 2100 52.73 2533 760 References [39] 13. Thermal Conductivity (liqutd) (kl) No data 14. Thermal Conductivity (solid) (XS) Measurement method: comparative technique: modified parallel plate assembly [40] 3 6.2 A = 0.1257 - 0.5831 x 10 °T + 0.8421 x 10 "T“ (52.3) precision: not estimated uncertainty: ~ % 10% Table 52.6. Thermal conductivity of solid from equation (52.3) T A X lO3 A X 103 1 -1 -1 T -1 -1 -1 (K) (cal cm s K ™) (K) (cal cm s K ™) 270 29.7 330 25.0 280 28.5 340 24 .8 290 27 .4 350 24,8 300 26.5 360 24 .9 310 25.9 370 25.2 320 25.3 References [40-44] 41 (52) BaF2 15. Cryoscopic Constant (kf) Measurement method: calculated from AH% [38] Table 52.7. Cryoscopic constant e -1 Uncertainty (K mol “kg) 292 N+ 1Y References [38] 16. References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables'", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). 12] Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, 1., "Selected Values of Chemical Thermodynamic Properties', NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganic Substances", Springer-Verlag, New York (1973). [4] Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "American Institute of Physics Handbook", 3rd Ed., ' McGraw-Hill Book Co., N. Y. (1972). [6] Weast, R. C, (ed.) "Handbook o Chemistry and Phystics'", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). (7] Glassnef, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides", ANL Rept. 5750 (1959) Argonne National Laboratory, I11, [8] Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik'", 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). [9] Kirshenbaum, A. D., Cahill, J. A. and Stokes, C. S., J. Inorg. Nucl. Chem. 15, 297 (1960). [10] Mashovetz, V. P. and Lundina, Z. F., Ukrain. Akad. Nauk. Inst. Proc. First All Union Conf. on Aqueous Solutions, 191 (1935). [11] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [12] "Registry of Toxic Effects of Chemical Substances', Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). [13] Vapor pressure, estimated Janz, G. J., et al, (MSDC-RPI,1980) [14] wpotential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board of Fire Underwriters Research Report No. 2 (1954). [15] "Bandbook of Reactive Chemical Hazards', Bretherwick, L., Butterworth Co., London (1975). 42 (52) BaF2 Janz, G. J., Tomkins, R. P. T., Downey, J. R, Jr., and Allen, C. B., "Safety and Hazards', Chapter in "Eutectic Data”, ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Brasunas, A., Metal Progr., 62, 88 (1952). Grimes, W. R., Blankenship, F. F., Keilholtz, G. W., Poppendiek, H. F., and Robinson, M. T., Proc. Sec. U. N. Inter. Conf. Peaceful Uses of Atomic Energy, Geneva, 28, 99 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report, ORNL-3708, (1964). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, 64, 149 (1967). Manly, W. D., et al., "Construction Materials for Molten Salt Reactors’”, Ch. 13 in "Fluid Fuel Reactors'", Lane J. A., MacPherson, H. G., and Maslan, F., eds., Addison-Wesley Co. Inc. Publ. (1958). Pizzini, S., Magistris, A., and Sternheim, G., Corrosion Sci., 4, 345 (1964). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov, 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Hdbk., 1, 425 (1955). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L., and Mamantov, C., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F.,, Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem. (in press) (1978). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Eichelberger, J. L., (Pennwalt Corpn.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availabilitu, Cost, Chemistry”, ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va. (Dec. 1976). Petit, G. and Crémieux, A., Compt. rend., 243, 360 (1956). Janz, G. J., Kelly, F. J., and Pérano, J. L., Trans. Farad. Soc. 59(12), 2718 (1963). T Darmois, G. and Petit, G., Bull. Soc. Chim. 511 (1958). Crémieux, A., Dipléme d'etude supérieures, Paris (1956). Kelley, K. K., U. S. Bur. Mines Bull. 393 (1936). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). Ruff, 0. and LeBoucher, L., Z. anorg. allgem. Chem. 219(4), 376 (1934). McCarthy, K. A., and Ballard, S. A., J. Appl. Physics 31, 1410 (1960). 43 [41] [42] [43] (52) BaF2 Slack, G. A., "The Thermal Conductivity of Nonmetallic Crystals'”, G. E. Report No. 77CRD140 (July, 1977); General Electric Co., Corporate Research and Development, Schenectady, N.Y. Mogilevski, B. M. and Tumpurova, V. F., Fiz Tverd Tela 16, 1786 (1974); Sov. Phys.-Solid State 16, 1161 (1974). Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liquid Thermal Conductivity Data", HMSD, Edinburgh (1975). 44 g £. System 53 AlF3 Melting Temperature (Tm) Melting point: _ does not melt; sublimes with 1 atm equilm press. at ~ 1255°C [9,66,68,71]; by extrapolating high pressure data, a triple point of 2250°C at 30,000 atm is predicted [69,74] References [1-9,66,68,69,71,74] Density (p) No data Surface Tension (Y) No data Viscosity (n) No data Electrical Conductance (k) No data Safety and Hazards A, Hazard rating (1) Toxicity: 1inorganic flucrides are generally quite irritant and toxic. (ii) Vapor pressure: m.pt., 1272°C; sublimes at ~ 1257°C. B. Disaster hazards (1) Molten salt bath "explosion'": 1i.e., explosive generation of steam due to bulk water "carry-over: and/or equipment failure; i.e., explosive expansion of "trapped' air. (i1) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [10-14] 45 (53) AlF, 7. Corrosion Table 53.1. Corrosion studies from primary research literature Studies References [ cr [15] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [16,17] A SSNI-12P [18] Quartz [19] Al [20] | Various metals [21] [Pt [22-26] B Boron nitride, carbon, Inconel [27-29] | Fused MgO [30] —impurities in electrolyte [31,32] C | Graphite [31,32] | _TiC, TiBz, CrB2, ZTN, NbB2 [33-35] [ Corrosion studies in molten salts with NaF as one component (e.g., Cl’ CO3,...) [36-51,58,59] Electrochemical behavior of oxide ions and related species in molten 5 fluorides [52-54] Electroanalytical studies in molten fluorides [55] Annotated corrosion biBlio. [56] _porrosion: molten fluorides (survey) [57] A studies principally in molten NaF, KF, and LiF; no results reported specifically for molten AlF B: used 33 largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys References [15-59] 46 (53) AlF3 8. Diffusion No data 9. Heat of Fusion (AH}) Measurement method: heat of solution calorimetry [70] Table 53.2. Heat of fusion T AH® -1 Phase transition| (K) (kcal mol 7) Uncertainty ALF , (s) (a>B) ™ 718 0.16 vt 1% AlF, (fusion) * % 26.5 N o+ 8% * s there appears some evidence for a second solid state transition at a 1330°C [69] * % A . the heat of fusion value is gained from heat of solution calorimetry for A1F3(s) in molten alkali fluorides and ZnF, at 1025°C by extrapolation to XA1F3= 1.0 [70] References [60-63,70] 10, Heat Capacity (Cp) Measurement method: drop calorimetry [60,61] Table 53.3. Heat capacity Cp T range AlF3 phase (cal K—1 mol-l) (K) Uncertainty A1F3(s,a) (a) 298.1 - 718 AV S 4 A1F3(s,B) (b) 714 - 1400 A 74 A1F3(liquid) no data 1845 - The values in Table 53.3.are based on the calorimetric measurements of O0'Brien and Kelley [60] corrected by Frank [61] for errors in temperature measurements. 2 (a) ¢ = 17.152 + 1.189 x 10 °T - 1.953 x 10 °T 2 (53.1) ps(a) -3 = + 53.2 (b) CPS(B) 21.227 3.26 x 10 °T ( ) References [60,61,64] 11. Volume Change on Melting (AV,) il No data 47 12. 13. 14, 16. 16. Vapor Pres Does not (53) AlF3 sure (pvap) melt; sublimes with 1 atm equilm press. at v 1255°C [9,66,68,71]; by extrapolating high pressure data, a triple point at ~ 2250°C and ~v 30,000 atm is predicted [69]. Molten State: No data. Table 53.4. Vapor pressure measurements for solid AlF3 Vapor pressure measurements T range log p(atm) = A + B/T Ref ., Technique (K) A -B {71] * 980-1613 11,433 17,109 [68] high press. tech. 1550-1900 11,370 17,391 * cited in [71] as merge of Knudsen effusion technique data set for 980-1123K [72], and static equilm manometric technique data set for 1314-1613K [73]. AHgybl = 78.2(* 0.8) kcal mol-l between 980-1613K; at 298K, the value recommended is 78.0 kcal mol~1l. For additional related studies, see [71], PP. 225-229, References [65-67,71-74] Thermal Conductivity (liquid) (Al) No data Thermal Conductivity (solid) (A ) s No data Cryoscopic Constant (k No data References [1] [2] [3] [4] [5] [6] [7] f) Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables"”, 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties", NBS, Circ. 500; U, S. Gov't Printing Office, Washington, D. C. (1952). Barin, I., and Knacke, 0., "Thermochemical Properties of Inorgantic Substances”, Springer-Verlag, New York (1973). Janz, G. J., "Molten Salts Handbook'", Academic Press, N. Y. (1967). Gray, D. W. (ed.), "dmerican Institute of Physics Handbook", 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). Weast, R. C. (ed.) "Handbook of Chemistry and Physics', 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides", ANL Rept. 5750 (1959) Argonne National Laboratory, Ill. 48 (53) AlF3 (8] Landolt-Bdrnstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik"”, 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Géttingen, Heidelberg (1956). [9] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Aluminum-Verlag GmgH. Dusseldorf (1977). [10] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., [11] g Y , Lo and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [12] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). [13] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [14] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data'", ERDA TID-27163-P1l; NTIS, U. S, Dept. Commerce, Springfield, Va., (1977). [15] Brasunas, A., Metal Prog., 62, 88 (1952). [16] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [17) Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [18] Oak Ridge National Laboratory, '"The Development Status of Molten Salt Breeder Reactors'", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). . [19] Heimann, R., Glastech. Ber., 43, 83 (1970). [20] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [21f Koger, J. W., Corrosion, 30, 125 (1974). [22] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., ibid., 99, 527 (1952). [23] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [24] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u, Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. [25] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [26] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [27] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). [28] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). [29] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). [30] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). 49 [31] vide ’l:n’l"a.' I‘ef. 9. [32] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [33] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. [34] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, [35] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct. 4, 1973. [36] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [37] Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). [38] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [39] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [40] Adamson, G. M., Manly, W, D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). [41] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [42] Gill, C. B., Straumanis, M. E., and Schlechten, W. B. Soc., 102, 42 (1955). , J. Electrochen. [43] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs', ORNL-3253, Oak Ridge Nat'l Lab., (1962). [44] Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluoro- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process', ORNL-2832, Oak Ridge Nat'l Lab. (1961). ' [45] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems”", Proc, 2nd 'y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [46] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [47] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [48] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). [49] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [50] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems”, ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). 50 (53) AlF, [51] Venkatasetty, H. W., "Thermodynamic Properties and Corrosion Character- isties of Thermal Energy Storage FEutectic Mixtures'”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [52] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [53] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [54] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [55] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978: [56] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [57] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [58] Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). [59] Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). [60] O'Brien, C. N. and Kelley, K. K., J. Amer. Chem. Soc. 79, 5616 (1957). [61] Frank, W. B., J. Phys. Chemn., O, §208 (1861 . [62] Holm, J. L., High Temperature Sci. (in press) 1970. [63] Holm, J. L., J. Chem. Ed. 51, 460 (1970). [64] Lyshenko, V. S., Metallurg. (Leningrad) 10, 85 (1935). [65] Witt, W. P. and Barrow, R. F., Trans. Faraday Soc. 55, 730 (1959). [66] Kuxmann, U. and Tillessen, U., Erzmetall 20, 147 (1967). [67] Ruff, 0. and LeBoucher, L., Z. anorg. allgem. Chem. 219(4), 376 (1934). [68] Mesrobian, G., Rolin, M., and Pham, H., Rev. Int. Hautes Temp. et Refract. 9, 139 (1972). [69] Millet, J. P., Pham, H., and Rolin, M., Rev. Int. Hautes Temp. et Refract. 11, 277 (1974). [70] Hong, K. C., and Kleppa, O. J., J. Phys. Chem. 82, 176 (1978); High Temp. Sci., 8, 299 (1976). [71] Rolin, M., "Les Equilibres Chimiques Dans Les BginsD'Electrolyse De L'Aluminium” Inst. Nat. Sci. Appl. Lyon Villeurbanne, France (1973). [72] Evseev, A. M., Pozharskaja, G. V., Nesmejanov, An. I., and Gerasimov, Ja. J., Zh. Neorg. Khim. 4, 2196 (1959). [73] Laureillard, J., and Rolin, M., unpublished work (1966) cited in {71]. [74] Rolin, M., "La Physicochimie des Bains D'Electrolyse De L'Aluminium" Inst., Nat. Sci. Appl. Lyon Villeurbanne, France (1975). 51 System 54 BaCl2 1. Melting Temperature (Tm) Melting point: 962° £ 5°C [2] References [1-8]. 2. Density (p) Measurement method: Archimedean technique [14] o = 4.0152 - 0.6813 x 10 °T (54.1) precision: not estimated uncertainty: ~ * 5,0% Table 54.1. Density from equation (54.1) o P _3 T P _3 (K) (g cm 7) (K) (g em 7) 1240 3.170 1310 3.123 1250 3.164 1320 3.116 1260 3.157 1330 3.109 1270 3.150 1340 3.102 1280 3.143 1350 3.095 1290 S 1360 3.089 1300 3.130 1370 3.082 References [9-23] 3. Surface Tension (Y) Measurement method: maximum bubble pressure [12] Yy = 263.2 - 0.0790 T (54.2) precision: not estimated uncertainty: ~ * 2.0% able 54.2. Surface tension from equation (54.2) T Y 1 i Y -1 (K) (dyn cm ) (K) (dyn cm ) 1240 165.2 1280 162.1 1250 164.5 1290 161.3 1260 163.7 1300 160.5 1270 162.9 1310 159.7 References [12,21,24-26] SK. (54) BaCl, Viscosity (n) Measurement method: oscillating sphere [28] 3 6 - -6.2 n 53.203-65.230 x 10 "T + 20.696 x 10 "T~ (54.3) precision: ~ = 1,5% uncertainty: ~ * 10% Table 54.3. Viscosity from equation (54.3) T n T n (K) (cp) (K) (cp) 1250 4,00 1300 3.38 1260 3.87 1310 3.27 1270 3.74 1320 3.16 1280 3.62 1330 3.06 1290 3.50 1340 2.96 References [16,26-30] Electrical Conductance («x) Measurement method: %., is normal melting of solid (B) cryolite; the molten sta%e (2.) consists of cryolite and its dissociation products (e.g., NaF, NaAlF,,...) and the enthalpy of fusion (26.71 kcal mol ~) is a composite of the true heat of fusdon and the substantial heat effect due to a partial dissociation of liquid cryolite into NaF,/ NaAlF4, and the constituent ions. The melting process, B>%,, is for the hypothetical melting process: solid (é)cryolite to liquid cryolite at unit activity (as molten cryolite in the "undissociated" state, i.e., as Na3AlF6, liquid). The values in Table 66.10(above) are based on the calor- imetric measurements of O'Brien and Kelley [l4l] as corrected for an apparent error in temperature measure- ment by Frank [54], and the measurements of Jenssen- Holm [145] References [54,56,141-143,144-147] 10. Heat Capacity (Cp) Measurement method: drop calorimetry [54,141,145] Table 66.11. Heat capacity C gl -1 T range Cryolite phase (cal K mol ) (K) Uncertainty Na3AlF6(s,a) (a) 298.1-833.5 v+ 17 Na3A1F6(s,8) (b) 833.5-1283 v+ 17 liquid 1. 95.86 1283-1350 v+ 1% liquid 2. 76.12 1283-1350 v+ 17 The normal melting of solid B cryolite results in the molten state, liquid 1, which consists of a solution of cryolite (Na3AlFg) and its constituent components (NaF, NaAlF,..., and their ions) due to a partial dissociation: NajAlF, < 2NaF + NaAlF, in the molten state of cryolite. If this value is "corrected" for the heat capacities contri- bution of the dissociation products and the degree of dis- sociation, the "trace" heat capacity of liquid cryolite at unit activity in the molten state (i.e. for liquid 2) is obtained. cont'd 109 (66) Na.AlF 3 6 The values in Table 66.11 (above) are based on the calorimetric measurements of O'Brien and Kelley [1l41l] as corrected by Frank [54] for an error in the temperature measurements, and on the measurements of Jenssen-Holm [145] 2 5.2 (a) Cp(s,a) = 45,51 + 3.206 x 10 “T - 1.755 x 10 °T (b) C_(s,8) = 36.4 + 3.428 X 10721 References [54,141,144-146,148-152] 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [153] Table 66.12. Volume change on melting (AVf/VS) Uncertainty 26.5% v+ 107 References [153] 12. Vapor Pressure (p ) var Measurement method: boiling point technique [155] Equation: log p = 8.6950 - 10400/T (66.6) precision: not estimated uncertainty: v % 10% Table 66.13. Vapor pressure from equation (66.6) 0 T op T P (K) (mm) (K) (mm) 1280 3.715 1380 14,41 1290 4,295 1390 16.33 1300 4.955 1400 18.47 1310 5.703 1410 20.85 1320 6.550 1420 23.50 1330 7.507 1430 26.44 1340 8.586 1440 29.70 1350 9.802 1450 33.31 1360 11.17 1460 37.30 1370 12.70 1470 41.70 References [154,155,158] 110 (66) Na,AlF 3 6 13. Thermal Conductivity (liquid) (A,) Measurement method: modified coaxial-cylinder method [156] Equation: 2 A = - 2.280 x 1072 + 18.66 x 107°T (66.7) precision: not estimated, uncertainty: ~ % 15% graphical data only Table 66.14., Thermal conductivity of melt from equation ( 66.7) T A x 104 T A x 104 (K) (cal cm-l s_l K-l) (x) (cal cm-l s_1 K-l) 1300 14.6 1330 20.2 1310 16.4 1340 22.0 1320 18.3 References [156,157] 14. Thermal Conductivity (solid) (AS) No data 15. C(Cryoscopie Constant (kf) Measurement method: calculated from AH% [153] Table 66.15. Cryoscopic constant kf Uncertainty 25.5 v+ 1% References [153] 16. References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U, S. Gov't Printing Office, Washington, D. C. (1971). [2] Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, 1., "Selected Values of Chemical Thermodynamic Properties", NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Thermochemical Properties of Inorgantc Substances!", Springer-Verlag, New York (1973). [4] Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "American Institute of Physics Handbook", 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). [6] Weast, R. C. (ed.) "Handbook of Chemistry and Physies"”, 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). 111 [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] (66) NajAlF, Glassne;, A., "Thermochemical Properties of Oxzides, Fluorides, and Chlorides", ANL Rept. 5750 (1959) Argonne National Laboratory, I1l1. Landolt—BBynstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik'", 6th Ed., II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). Grjotheim,K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Alumi -V Dusseldorf (1977). 4 ? Inum-Verlag GmgH. Fedotiev, P. P. and Ilinskii, V. P., Izv. SPB. Politekhnickeskogo Instituta (Proc. of SPB. Polytechn. Univ.), 18, 147 81912]' Z. anorg. Chem. 80, 113 (1913); Z Anorg. Allgem, Chem. 129 9% (1923). Dergunov, E. P., Dokl. Akad. Nauk SSSR 60(7), 1185 (1948). Fuseya, G., Sugihara, C., Nagao, N. and Teraoka, J., J. Electrochem. Soc. Japan 18, 65 (1950). Abramov, G. A., Vetyukov, M. M., Gupalo, I. P., Kostyukov, A. A. and Lozhkin, L. N., "Teoreticheskie osnovy elektrometallurghii alyumintya” (Theoretical Principles of the Electrometallurgy of Aluminum), Metallurgizdat, Moscow, 1953. Phillips, N. W. F., Singleton, R. H. and Hollingshead, E. A., J. Electrochem. Soc., 102(12), 690 (1955). Grjotheim, K., "Contribution to the Theory of Aluminum Electrolysis, Kgl. Norske Videnskabers Selskabs Skrifter, Nr. 5, Trondheim, 1956. Kuvakin, M. A. and Kusakin, P. S., Zh. Neorg. Khim., 4(11), 2577 (1959); Russ. J. Inorg. Chem., 4(11), 1188 (1959). Barton, C. J., Bratcher, L. M. and Grimes, W. R., Unpublished work, "Ref. in Phase Diagrams of Nuclear Reactor Materials", ed. by Thoma, R. E., U. S. At. Energy Comm. ORNL-2548 (1959). Holm, J. L., Thesis, The University of Trondheim, NTH, Trondheim, 1963. ' Rolin, M. and Rey, M., Bull. Soc. Chim., France 9, 2785 (1966} . Yoshioka, T. and Kuroda, T., Denki Kagaku 36(10), 727 (1968). Ginsberg, H. and Wefers, K., Erzmetall, 20(4), 156 (1967). Fuseya, G. and Takeda, B., J. Electrochem. Soc., Japan - 27, 339 (1959). Rolin, M., Bull. Soc. Chim., France 671 (1960). Mesrobian, G., Rolin, M. and Pham, P. H., Rev. Int. Hautes Temper. et Réfract., 9, 139 (1972). Foster, P. A., J. Am. Ceram. Soc., 53(11), 598 (1970). Mashovets, V. P. and Petrov, V. I., Zh. Prikl. Khim., 50, 1695 (1957); J. Appl. Chem. USSR, 30 1785 (1957). - Phillips, N. W. F., Singleton, R. H. and Hollingshead, E. A., J. Electrochem. Soc., 102, (11), 648 (1955). Vatslavik, E. and Belyaev, A. I., Zh. Neorg. Khim., 3, 1044 -(1958). 112 (66) Na ALF 6 [29] Rolin, M., Bull. Soc. Chim., France 1201 (1960). [30] Brynestad, J., Grjotheim, K., Grdnvold, F., Holm, J.L. and Urnes, S., Disc. Faraday Soc., 32, 90 (1962). [31] Kleber, W. and Fehling, W., Z. Anorg. Allgem. Chem., 338, 134 (1965). [32] Chin, D. A. and Hollingshead, E. A., J. Electrochem. Soc., 113, 736 (1966). [33] Holm, J. L., Tidsskr. Kjemi, Bergv., Met., 10, 165 (1966). [34] Batashev, K. P., Trudy LPI 1 (1), 40 (1939), Trans. of the Leningrad Polytechnical University (see also [®2], p. 99). [35] Holm, J. L., Trans. Faraday Soc., 58, 1104 (1962). [36] Chu, Y. A. and Belyaev, A. I., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 2, 69 (1959). [37] Jenssen, B., Thesis, The University of Trondheim, NTH, Trondheim, 1969. [38] Kuvakin, M. A., 'Zh. Neorg. Khim., 14, 282 (1969); Russ. J. Inorg. Chem., 14, 146 (1969). [39] Malinovsk&, M. and Matiasovsk&, K., Hutnicke Listy, 13(7); 515 (1969). [40] Holm, J. L. and Holm, B. J., Acta Chem. Scand., 24, 2535 (1970). [41] Holm, J. L. and Holm, B. J., Thermochim. Acta 6, 375 (1973). [42] Kostenska, I., Corba, J. and Malinovsk?, M., Chemicke Zvesti, 28, 546 (1974). [43] Romanovskii, A. M. and Berent, J. K., Legkie Met., 6, 27 (1935). [44] Belyaev, A. I.,, Razumov, I. N, and Sidorenko, M. S., Trudy Min. Tsvet. Met, Zoloto, No. 14, 1946, [45] Yoshida, T. and Matsushima, T., Keikin Zoku, 19(11), 488 (1969). [46] Matiasovsk?, K. and Malinovskfi, M., Chem. Zvesti, 14, 353 (1960). [47] Rolin, M., Bull. Soc. Chim., France 1120 (1961). [48] Holm, J. L., Acta Chem. Scand., 22, ‘1004 (1968). [49] Verdan, M. and Monnier, R., Rev. Int. Hautes Temp. Refract., 9(2), 205 (1972). [50] Rolin, M. and Bernard, M., Bull. Soc. Chim., France 1962, 429. [51] Holm, J. L., Dr. techn. Thesis, The University of Trondhei NTH, Trondheim, 1971. 4 R [52] Kostenska, I. and Malinovsky, M., Chem. Zvesti, 28, 553 (1974). [53] Chlebovsky, T., Kasikova, S. and Malinovsk?, M., Hutnicke List 21(12), 868 (1966). & [54] Albright, D. M., "The High Temperature Thermodynamic Properties igsgryolzte”, Ph.D. Thesis, Carnegie Institute of Technology, 113 [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] (66) Na ALF, Landon, G. J. and Ubbelohde, A. R., Proc. Roy. Soc., London 240 A, 160 (1957). Frank, W. B., J. Phys. Chem., 65, 2081 (1961). Majumdar, A. J. and Roy, R., J. Inorg. Nucl. Chem., 27, 1961 (1965). Paucirova, M., Matiasovsky, K., and Malinovsky, M., Rev. Roum. Chim., 15, 33 (1970). Bloom, H., and Burrows, B. W., "Proceedings of the 1St Australian Electrochemistry Conference', -882 (1963). Pearson, T. G., and Waddington, J., Discuss. Faraday Soc., 1, 307 (1947). Batashev, K. P., Legkie Metal., No. 10, 48 (1936). Edwards, J. D., Taylor, C. S., Cosgrove, L. A., and Russell, A. S., J. Electrochem. Soc., 100, 508 (1953). Mashovets, V. P., The Electrolytic Production of Aluminum, p. 41 (1951). Cuthbertson, J. and Waddington, J., Trans. Faraday Soc., 32, 745 (1936). Vayna, A., Alluminio, 19, 215 (1950). Arndt, K., and Kalass, W., Z. Elektrochem., 30, 12 (1924). Matiasovsky, K., Malinovsky, M., and Danek, V., Electrochim. Acta, 15, 25 (1970). N Danek, V., Malinovsky, M., amd Matiasovsky, Chem. Zvesti., 22 641 (1968). Abramov, G. A., and Kostyukov, A. A., Trudy Liningradskogo Politekhniches- kogo Instituta, 40, 188 (1957). Matiasovsky, K., Malinovsky, M., and Danek, Private communication, 1968. Mashovets, V., and Petrov, V., J. Appl. Chem. (USSR) 32, 1561 (1959) (1959), Yim, E. W., and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Matiasovsky, K., Danek, V., and Malinovsky, M., J. Electrochem. Soc., 116, 1381 (1969). Bajesy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Danek, V., Malinovsky, M., and Matiasovsky, Chem. Zvesti, 22, 22 (1968). Landon, G. J., and Ubbelohde, A. R., Proc. Roy. Soc., A240, 160 (1957). Matiasovsky, K., Malinovsky, M., and Ordzovensky, S., J. Electrochem. Soc., 111, 973 (1964) Taniuchi, K. Keikinzokii, 20, 157 (1970). Frank, W. A., and Foster, L. M., J. Phys. Chem., 64, 310 (1960). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc., 99, 527 (1952). Rolin, M., Electrochim. Acta, 17, 2293 (1972). Winterhager, H., and Werner, L., Forschungsberichte des Wirtschafts-und Verkehrsministeriums Nordheim-Westfalen, No. 438, Germany, 1957. 114 (66) Na AlF [83] Matiasovsky, K., and Malinovsky, M., Electrochim. Acta, 11, 1035 (1966). [84] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [85] "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [86] Vapor pressure, estimated (this work). [87] "potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). [88] "Handbook of Reactive Chemical Hazards'", Bretherwick, L Co., London (1975). ., Butterworths [89] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectie Data", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [50] Brasunas, A., Metal Prog., 62, 88 (1952). [91] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [92] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1556). [93] Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors'", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). [94] Heimann, R., Glastech. Ber., 43, 83 (1970). [95] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [96] Koger, J. W., Corrosion, 30, 125 (1974). [97] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [98] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). [99] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). [100] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [101] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [102] Holliday, R. D., (Olin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. [103] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [104] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. [105] Khan, I. A., Ber. Kernforschungsaniage Juelich, Juel-608-RW, (1969). [106] Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage Juel-718-RW (1570). 115 (66) Na ALF 6 [107] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [108] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [109] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluortdes'", ANP Materials Meeting ORNL-2685, (1958). [110] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [111] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). [112] Litman, A. P.,, "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. N{ickel Fluorinator after Fourteen Dissolution Runs'", ORNL-3253, Oak Ridge Nat'l Lab., (1962). [113] Litman, A. P., and Goldman, A. E., "Corrosion Assoeciated with Fluoro- tdation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process"”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). [114] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems tn Molten Fluoride Systems", Proc. 2nd 'y, N, Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [115] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [116] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [117] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). [118] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [119] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [120] Venkatasetty, H. W., "Thermodynamiec Properties and Corrosion Character- istiecs of Thermal Energy Storage Eutectic Mixtures’”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [121] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [122] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [123] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [124] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978: [125] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [126] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry"” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [127] Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). [128] Ozeryanaya, I. N., Volodin, V. P,, and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230" (1969). 116 (66) N33A1F6 [129] Hinden, J., J. Augustynski, and Monnier, R., Electrochim. Acta 21, 459 (1976). — [130] Lantelme, F. and Chemla, M., C. R. Acad. Sci. Paris, Ser. C, 267, 281 (1968). [131] Desclaux, P. and Rolin, M., Rev. Int. Hautes Temp. Refract. 8, 227 (1971). [132] Rey, M., cited as private private communication (1966) to Desclaux and Rolin in [3]. 133] Shurygin, P. M., Boronenkov, V. N., and Kryuk, V. I., Izv. Vyssh. Ucheb. g Zaved. Tsvet. Met. 5(3), 59 (1962). [134] Harari, D., Lantelme, F., and Chemla, M., J. Chem. Phys. Physiochim. Biol. 66, 1286 (1969). [135] Harari, D., Lantelme, F., and Chemla. M., Comp. Rend. Acad. Sci. Paris 270C, 653 (1970). [136] Vetyukov, M. M., and Acquah, F., Elektrokhimiya 7,4, 557 (1971) Eng transl; Soviet Electrochemistry 7, 538 (1971). [137] Shurygin, P. M., Barmen, L. N., and Boronenkov, V. N., Izv. Vyssh. Ucheb. Zaved. Tsvet. Met. 5(4), 106 (1962). [138] Shurygin, P. M., Boronenkov, V. N., and Kryuk, V. I., Sbornek, Nanchn. Trudov. Uralsk. Polytekhn. Inst. 126, 80 (1963). [139] Thonsted, J., Electrochim. Acta 14, 127 (1969). [140] Vetynkov, M. M., and Acquah, F., Elektrokhimiya (1969). [141] O'Brien, C. J., and Kelley, K. K., J. Amer. Chem. Soc. 79, 5616 (1957). [142] Darmois, G., and Petit, G., Bull. Soc. Chim. 511 (1958). [143] Rolin, M., These Doc. Sci. Physiques, Paris (1958). [144] Lyshenko, V. S., Metallurg. (Leningrad) 10, 85 (1935). [145] Jenssen-Holm, B., and Gronvold, F., Acta Chem. Scand. 27, 2043 (1973). [146] Holm, J. L., J. Chem. Educ. 51, 460 (1970). [147J Yoshida, Y. and Matsushima, T., Kerkinzoku, 19, 488 (1969). [148] Rolin, M., and Recapet, J-M., Bull. Soc. Chem. Fr. 2504 (1964). [149] Douglas, T. B., Trans. Amer. Soc. Mech. Eng. 79, 23 (1957). [150] Krestovnekov, A. N., and Karetnekov, G. A., Legkie Metal. 3, 29 (1934). [151] Roth, W. A., and Bertram, W. W., Z. Elektrochem. 35, 297 (1929). [152] Douglas, T. B., and Dever, J. L., J. Research Nat. Bur. Stds. 53[2], 81 (1954). [153] Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). [154] Kuxmann, U. and Tillessen, U., Erdmetall 20, 147 (1967). [155] Kvande, H., Electrochim. Acta 25(2), 237 (1980). [156] Polyakov, P. V., and Mozhaev, V. M., Teplof. Vysok. Temp. 13 (3) 661 (1975); Eng. transl., High Temp. 13, 600 (1975). [157] Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liquid Thermal Conductivity Data", HMSO, Edinburgh (1975). [158] Rolin, M., "Les Equilibres Chimiques Dans Les Bains D'Electrolyse De L'Alumintum” Inst. Nat. Sci. Appl. Lyon Villeurbanne, France (1973). 117 System 67 K3A1F6 1. Melting Temperature (Tm) Melting point: 990°C = 10°C [16,17] References [1-19] 2. Density (p) Measurement method: Archimedean technique [20] Equation: 4 p=2.770 - 7.398 x 10 "T (67.1) precision: insufficient data uncertainty: ~ * 1,5% for estimate Table 67.1. Density from equation (67.1) T p_3 T 0_3 (K) (g cm 7) (K) (g cm 7) 1270 1.8304 1300 1.8082 1280 1.8320 1310 1.8008 1290 1.8156 1320 1.7934 References [20] 3. Surface Tension (y) No data 4. Viscosity (n) No data 5. Electrical Conductance (k) Measurement method: «classical ac technique [21] Equation: € = -2.6020 + 3.8055 x 10°°T (67.2) precision: insufficient data uncertainty: ~ = 3.0% for estimate Table 67.2. Specific conductance from equation (67.2) K K o ~3 ° =1 ! -1 = (K) (ohm cm ) (K) (ohm cm ) 1280 2.27 1320 2.42 1290 2.31 1330 2.46 1300 2.35 1340 2.50 1310 2.38 References [21-24] 118 (67) K,AlF 3 6 6. Safety and Hazards A, Hazard rating (1) Toxicity: 1inorganic fluorides are generally quite irritant and toxic. (ii) Vapor pressure: at m.pt., 990°C, ~ << 0.5mm. B. Disaster hazards (i) Molten salt bath "explosions'": 1i.e., explosive generation of steam due to bulk water '"carry-over' and/or equipment failure; i.e., explosive expansion of '"'trapped" air. (11) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [25-30] 7. Corrosion Table 67.3. Corrosion studies from primary research literature Corrosion studies in molten salts with NaF as one component (e.g., Cl’ C03’ll.) Electrochemical behavior of oxide ions and related species Studies References [Cr [31] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [32,33] SSNI-12P [34] Quartz [35] Al [36] L“_Various metals [37] Pt [38-42] | Boron nitride, carbon, Inconel [43-45] Fused MgO [46] Fi‘.mpurities in electrolyte [47,48] Graphite [47,48] TiC, TiB,, CrB,, ZrN, NbB, [49-51] [52-67,74,75] in molten fluorides [68-70] Electroanalytical studies in molten fluorides [71] Annotated corrosion biblio. [72] L_Cprrosion: molten fluorides(survey) [73] 119 continued (67) K4 ALF, footnote to Table 67.3 \ A: studies principally in molten NaF, KF,and LiF; B: used largely in fluorides physical properties measurementsy C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys References [31-75] 8. Diffusion No data 9. Heat of Fusion (AH}) Measurement method: modified drop calorimetry [76] Table 67.4. Heat of fusion AH? . T f _1 Uncertainty m (kcal mol ) 1000°C 29.3 v+ 17 References [76] 10. Heat Capacity Measurement method: modified drop calorimetry [76] Table 67.5. Heat capacity CP K,ALF 21 5 3 6 (cal K mol ) T range Uncertainty iz 93.84 1280-1330 v+ 17 References [76] 11. Volume Change on Melting (AV No data 12. Vapor Pressure (pvap} No data 13. Thermal Conductivity (liquid) (Az) No data 14, Thermal Conductivity (solid) (As) No data 120 (67) K:AlF 3 6 15. Cryoscopic Constant (kf) Measurement method: calculated from AH% Table 67.6. Cryoscopic constant kf Uncertainty (K mol_lkg) 27.9 vt 1Y References [78] 16. References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D, C. (1971). [2] Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties', NBS, Circ. 500; U. S. Gov't Printing Office; Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Therwochemical Properties of Inmorganic Substances”, Springer-Verlag, New York (1973). 4 Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). ] [5] Gray, D. W. (ed.), "American Institute of Physics Handbook”, 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). [6] Weast, R. C. (ed.) "Handbook of Chemistry and Physics", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). [7] Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides”, ANL Rept. 5750 (1959) Argonne National Laboratory, I11l. [8] Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik”, 6th Ed. II. Pt. 3 Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). [9] Grjotheim, K., Krohn, C., Malinovsky, M. Thonstad, J., "Aluminum Ele Dusseldorf (1977). , Matiasovsky, K., and ctrolyses", Aluminum-Verlag Gmbl. [10] Belyaev! A. I., Rapoport, M. B. and Firsanova, L. A., "Elektrometallurghiya Alyuminia (Electrometallurgy of Aluminum), Moscow, Metallurgizdat, 1953, [11] Belyaev, A, I. and Studentsov, Ya. E., Legkie Metally, 9, 15 (1938). [12] Bufi?:;ggziné,Aiz§n%1ggé;?sev, V. T., Izv. Akad. Nauk SSSR, Neorganicheskie [13] Mikhaiel, S. A., Thesis, The University of Trondheim, NTH, Trondheim, 1970. [14] Dergunov, E. P., Dokl. Akad. Nauk SSSR 60 (7), 1185 (1948). [15] Barton, C. J., Bratcher, L. M. and Grimes, W. R., Unpublished work, "Ref. in Phase Diagrams of Nuclear Reactor Materials," ed. by Thoma, R. E., U. S. At. Energy Comm., ORNL-2548 (1959). 121 [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] (67) K3A1F6 Jenssen, B., Thesis, The University of Trondheim, NTH, Trondheim, 1969. Phillips, B., Warshaw, C. M. and Mockrin, I., J. Am. Ceram. Soc., 49(12) 631 (1966). Pushin, N. A. and Baskov, A. V., Zh. Russ. Fiz. Khim. Obshch. 135, 82 (1913). Fedotiev, P. P. and Timofeff, K., Z. Anorg. Allgem. Chem., 206, 263 (1932). Mal'tsev, V. T., and Bukhalova, G. A., J. Appl. Chem. (USSR), 40, 521 (1967). Markov, B. F., and Prisyazhnyii, V. 0., Ukr. Khim. Zh., gg, 47 (1963). Bertozzi, G., and Soldani, G., J. Phys. Chem., 70, 1838 (1966); J. Electrochem. Soc., 111, 1355 (1964). Bloom, H., Bendall, M. R., Boyd, P. D. W., and Laver, J. L., Aust. J. Chem., 27, 1401 (1974). Harrap, B. S., and Heymann, E., Trans. Faraday Soc., 51, 259 (1955). "Dangerous Properties of Materials', Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances', Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). Vapor pressure, estimated (this work). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2 (1954). . "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). Janz, G, J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutecttc Data'", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., {(Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). 122 [40] [41] [42] [43] [44] [45] [46] [47] 148] [49] [50] [51] [52] (53] [54] [55] [56] [57] [58] [59] [60] [61] (67) K3A1F6 Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Xrohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses", Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973, Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). ' Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluortides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolutton Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluoro- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process', ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 2Md U, N, Inter. Conf. Peaceful Uses .0of At., Energy, 7, 223 (1958). 123 [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] (67) K ALF, 3 Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). o Grimes, W. R., and Cuneo, D. R., '"Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems'", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- tstics of Thermal Energy Storage Eutectic Miztures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ca., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977) Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39,1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978 Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). h Y Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluroide Thermal Energy Storage Materials: Availability, Cost, Chemistry"” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Jenssen-Holm, B., and Gronvold, F., Acta Chem. Scand. 27, 2043 (1973). Yoshida, Y. and Matsushima, T., Kerkinzoku 19, 488 (1969). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 124 System 68 LiOH 1. Melting Temperature (Tm) Melting point: 462° = 5°C [2] References [1-8] 2. Density (p) No data 3. Surface Tension (Y) No data 4, Viscosity (n) No data 5. Electrical Conductance (k) No data 6. Safety and Hazards (1) (i1) (1) (i1) A. Hazard rating Toxicity: very caustic and toxic. Vapor pressure: at m.pt., 460°C, << 0.S5mm. B. Disaster hazards Molten salt bath "explosions': 1i.e., explosive generation of steam due to bulk water ''carry-over" and/or equipment failure; i.e., explosive expansion of "trapped'" air. Dangerous; reacts with water or steam with evolution of heat; the aqueous solution is very strongly caustic; attacks living tissue. References [9-14] 7. Corrosion Table 68.1. Corrosion studies from primary research literature Studies References Ni, Cu, Armco Fe and steel Fe, effects of H20 Pt, Ag, and alloys Thermodynamics of corrosion [15-17) [18] [19-21] [22,24,25] Corrosion - annotated biblio. [26] Electrochemical aspects [27] Paviews: corrosion - molten salts [23,28-30]) References [15-30] 125 (68) LiOH 8. Diffusion No data 9. Heat of Fusion (AH}) Measurement method: drop calorimetry [321 Table 68.2. Heat of fusion AHf -1 Uncertainty (kcal mol ) 5.01 N+ 2% References [31-33] 10. Heat Capacity (Cp) Measurement method: drop calorimetry (31] Table 68.3. Heat capacity Cp T range (cal K—.1 mol_l) (K) Uncertainty 20.74 744-900 v+ 2% For the crystalline state (400-744.3 K), the heat capacity is given by: C,= 11.988 + 8.24 x 10-3T - 0.,2267 x 1067727 (68.1) References [31,32] 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure vaap) No‘dagé 126 (68) LiOH 13. Thermal Conductivity (liquid) (x,) Measurement method: comparative technique, flat slab [34] 3 4 6.500 x 107 /T (68.2) A = 1.5384 x 10 precision: not estimated uncertainty: ~ % 15% Table 68.4. Thermal conductivity of melt from equation (68.2)) . A X lO4 T A x 104 (K) (cal cm_'1 s_l K-l) (K) (cal cm-l s_1 K-l) 760 20.3 820 20.7 770 20.4 830 20.8 780 20.5 840 20.8 790 20.5 850 20.9 800 20.6 860 21,0 810 20.5 870 21.0 The preceding are for reagent grade quality LiOH. The thermal conductivity for commercial grade LiOH was also investigated [34] over the same temperature range (760-870 K), the- thermal con- ductivity for the molten state of commercial grade LiOH may be expressed by: X = 1.3707 x 1073 +8.7417 x 107'T (68.3) The values of A for reagent grade and commercial grades LiOH in the molten state are in close accord (+ 1%Z). The data set was insuf- ficient for precision estimates; the uncertainty limits are esti- mated as + 157%. References [34,35] 14. Thermal Conductivity (solid) (AS) Measurement method: comparative technique, flat slab [34] 2 1.3269 x 10 “ - 29.96 x 1070 T + 21.93 x 10 772 (68.4) -~ n precision: + 1.25% uncertainty: ~ + 15% Table 68.5. Thermal conductivity of solid from equation (68.4), A x 104 A x lOl+ T -1 -1 -1 T -1 -1 -1 (K) (cal cm s K ™) (K) (cal cm s K ™) 320 59.3 570 33.2 370 51.9 620 31.2 420 45.5 670 30.4 470 40.3 710 30.5 520 36.2 The preceding values are for reagent grade quality LiOH. The solid state thermal conductivity of commercial grade LiOH was also investigated [34] The solid state thermal conductivity of commercial grade LiOH over the same temperature range (320-710 K) may be expressed by: 2 6 —9T2 A = 1.5636 x 10 ° - 33.28 x 10 T + 22.25 x 10 (68.5) The precision and uncertainty estimates are v + 2.97 and Vv + 15%, respectively. The A values for the commercial grade quality LiOH are higher then for the reagent grade quality LiOH, (320 K, ~ 20%; 710 K, ~ 9%). References [34,35] 127 (68) LiOH 15. Cryoscopic Constant (kf) Measurement method: calculated from AHZ [11) Table 68.6. Cryoscopic constant k (K molzlkg) Uncertainty 5.13 N+ 17 References [11] 16. References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D, C. (1971). [2] Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties', NBS, Circ., 500; U, S, Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganic Substances", Springer-Verlag, New York (1973). [4] Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "American Institute of Physics Handbook", 3rd Ed., McGraw-Hill Book Co., N. Y. (1972), [6] Weast, R. C. (ed.) "Handbook of Chemistry and Physics”, 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). [7] Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides”, ANL Rept. 5750 (1959) Argonne National Laboratory, Ill. [8] Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik"”, 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). [9] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [10] "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [11] Janz, u. J., et al. (MSDC-RPI), unpublished work (1980) [12] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2. (1954). [13] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). (14} Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter inm "Euteetie Data", ERDA TID-27163-P1l; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [15] Gurowich, E. I., Zh. Prikl. Khim., 32, 817 (1959). [16] Smith, G. P., Hoffman, E. E., Corrosion, 13, 627t (1957). [17] Smith, G. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957 128 [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] (68) LiOH Tribunskii, V. V., Kalinichenko, I. I.,, Tr., Ural. Politekh. Inst., 190, 49 (1970). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts”, Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203 (1973) Battelle, Geneva. Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes'", The Electrochemical Society, Inc., Princeton, N. J., p. 581 (1975). Inman, D., and Wrench, N. S., Brit. Corr., J., 1, 246 (1966). Ketelaar, J. A. A., Chem. Ing. Tech., 45, 667 (1973). Smirnov, M. V., and Ozeryanaya, I. W., Nauki Tekh. Korros. Zaschch. Korros., 2, 171 (1973). Shomate, C. H. and Cohen, A. J., J. Amer. Chem. Soc. 77, 285 (1955). Wagman, D. D., U. S. National Bureau of Standards; private communication to R. P.T. Tomkins (MSDC-RPI), Feb.1977; value cited by T.B. Douglas and A. C. Victor in NBS Report 6297 (1959). Kelley, K. K., U. S. Bur. Mines Bull. 393 (1936). Tye, R. P., Bourne, J. G., and Desjarlais, A. 0., "Thermal Energy Storage Material Thermophysical Property Measurment and Heat Transfer Impact'", Dynatech Report No. 1503 (August, 1976); Dynatech R/D Co., Cambridge, Mass. Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liquid Thernal Conductivity Data', HMSO, Edinburgh (1975). 129 1. Melting Temperature (Tm) Melting Point: 318° + 5°C [2] References [1-8]. 2. Density (p) Measurement method: System 69 NaOH Archimedean technique [9] 3 p = 2.068 - 0.4784 x 10 °T (69.1) precision: not estimated uncertainty: Table 69.1. Density from equation (69.1) ' o ! Y g (K) (g em ™) (K) (g em ™) 600 (1.781) 670 1.747 610 (1.776) 680 1.743 620 1.771 690 1.738 630 1.767 700 1.733 640 1.762 710 1.728 650 1.757 720 1.724 660 1.752 730 1.719 References [9] 3. Surface Tension (Y) No data 4. Viscosity (n) Measurement method: n = 164.771 capillary technique 4.2 0.614833T + 7.80340 x 10 'T precision: ~ * 2% [9] -3.33334 x 10 7 uncertainty: T References [9] Table 69.2. Viscosity from equation (69.2) T n T n (K) (cp) (K) (cp) 630 3.79 730 2.11 640 3.52 740 2.03 650 3.28 750 1.96 660 3.07 760 1.90 670 2.87 770 1.84 680 2.70 780 1.78 690 2.55 790 1.72 700 2.42 800 1.66 710 2.31 810 1.59 720 2.20 820 1.52 130 3 (69.2) n + 5% S, 6. (69) NaOH Electrical Conductance (k) Measurement method: classical ac technique [9] ¢ = -3.230 + 9.00 x 107°T (69.3) precision: ~ £ 0.2% uncertainty: insufficient data for estimate Table 69.3. Electrical conductance from equation (69.3) T 8 K -1 1 T -1 1 (K) (ohm cm ) (K) (ohm cm ) 600 2.17 670 2.80 610 2.26 680 2.89 620 2.35 690 2.98 630 2.44 700 3.07 640 2.53 710 3.16 650 2.62 720 3.25 660 2.71 730 3.34 References [9] Safety and Hazards (1) (i) (1) (i1) References A. Hazard rating Toxicity: very caustic; 1is corrosive to all body tissues. Vapor pressure: at m.pt., 318°C, << 0.5mm; at ~v 740°C, ~ 1lmm. B. Disaster hazards Molten salt bath "explosions': 1i.e., explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. Dangerous; with water or steam, reacts with evolution of heat; the aqueous solution is very strongly caustic; attacks living tissue. [10-15] 131 7. & (69) NaOH Corrosion Table 69.4. Corrosion studies from primary research literature Studies References Metals Metals, ceramics, alloys Stainless steel, Fe-Cr-Ni alloys Ni-Cr-Fe; Ni-Si-Cu Ni-Mo Ni, Cu, Armco Fe Ni-steels Fe (effects of HZO) Pt, Ag, and alloys Thermodynamic and electrochemical approach Reviews (molten salts corrosion) Annotated corrosion biblio. [22] [16,18,21-23,25,26, 29] [27] [18,28] [30,31,35] [16] [16,17,19-21,23-25] [36] [37] [32-34] [38-40] [41-43] [44] References [16-44] Diffustion No data Heat of Fusion (AH}) Measurement method: drop calorimetry [45] Table 69.5. Heat of fusion AHf » (kcal mol 7) Uncertainty 1.52 N+ 2% NaOH (m.pt. 319°C) exhibits a solid-state transition -1 at 293°C with AH = 1.52 + ~ 2% kcal mol References [45-50] 132 (69) NaOH 10. Heat Capacity (Cp) Measurement method: drop calorimetry [45] C =a+bT (69.4) P precision: in table 69.6 uncertainty: ~ % 3% Table 69.6. Parameters of equation (69.4) and precisions NaOH phase T Ei?ge a b x 103 Precision solid-a 273.2-566.0 7.302 21.66 v+ 0.27 solid-8 566.0-592.3 20.56 0 liquid 593.3-1000 21.409 -1.400 v+ 0,17 Table 69.7., Heat capacity from equation(69.4) and parameters for liquid NaOH in table 69.6 CP CP T -1 -1 T -1 -1 (K) (cal K mol ) (K) (cal K mol 7)) 600 20.6 850 20.2 650 20.5 900 20.2 700 20.4 950 20.1 800 20.3 1000 20.0 References [45,49,51-56] 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [57] Table 69.8. Volume change on melting (AVf/VS) Uncertainty 15.7% ~ o+ 107 References [57] 12. Vapor Pressure (p ) vap Measurement method: cited in table 69.9 Table 69.9. Vapor pressure measurements, techniques, and uncertainty Vapor pressure measurements T range Uncertainty {(in Ref. Technique (K) vapor pressures) [58] Knudsen cell effusicn 870-1130 + 10% [59] boiling point 1283-1675 + 10% 133 (69) NaOH Equation: log p(mm) = A + B/T (69.5) precision: in table 69.10 uncertainty: in table 69.9 Table 69.10. Parameters of equation (69.5) and precisions Equation T range (K) A -B Precision (69.5.4) 870-1130 7.0316 6750.9 * (69.5.B) 1283-1675 6.9281 6706.4 nNo229% insufficient data for estimate Table 69.11. Vapor pressures from equation (69.5) in table 69.10 T p T o) (K) (mm) (K) (mm) 870 0.187 1360 99.31 880 0.229 1400 137.4 920 0.494 1440 186.6 960 0.999 1480 249.6 1000 1.909 1520 328.1 1040 3.471 1560 425.8 1080 6.037 1600 545.3 1110 7.843 1640 690.1 c=oo L ooooo 1657 760 1280 48 .84 1680 863.4 1320 70.40 References [58,59] 13. Thermal Conductivity (liquid) (Al) Measurement method: modified parallel plate method [60] 4 6 A = 6.3986 x 10 ~ + 2.271 x 10 "T (69.6) precision: *9.6% uncertainty: ~ = 5% Table 69.12. Thermal conductivity of melt from equation (69.6) A ox 104 A X 104 T -1 -1 -1 ! -1 -1 -1 (K) (cal cm s K ™) (K) (cal cm s K ) 600 20.0 800 24,6 650 21.2 850 25.7 700 22.3 875 26.3 750 23.4 *extrapolated values The sodium hydroxide was analytical reagent grade quality, as- saying at 97.67% NaOH with 0.327% NajyCO5. The thermal conduc- tivity measurements were made in nickel under an atmosphere of purified hydrogen. References [60-69] 134 (69) NaOH 14. Thermal Conductivity (solid) (As) No data 15. Cryoscopic Constant (kf) Measurement method: calculated from AH% [57] Table 69.13. Cryoscopic constant (K mojflkg) Uncertainty 18.3 N+ 1% References [57] 16. References (1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). [2] Rossini, F., D., Wagman, D, D., Evans, W, H., Levine, S., and Jaffe, 1., "Selected Values of Chemical Thermodynamic Properties', NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Therwochemical Properties of Inorganic Substances”, Springer-Verlag, New York (1973). [4] Janz, G, J., "Molten Salts Handbook'", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "American Institute of Physics Handbook"”, 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). [6] Weast, R. C. (ed.) "Handbook of Chemistry and Physics'", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). [7] Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides™, ANL Rept. 5750 (1959) Argonne National Laboratory, Ill. [8] Landolt-Bornstein, "Zaghlenwerte Und Funktionen Aus Phystk, Chemie, Astronomie, Geophysik, Und Technik"”, 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). [9] Arndt, K., and Ploetz, G., Z. Physik. Chem. 21, 439 (1926). [10] "Dangerous Properties of Matertials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [11] "Registry of Toxtic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). [12] Vapor pressure, estimated at m.pt., (this work). [13] "Potent?al Hazards in Molten Salt Baths for Heat Treatment of gefaZS", National Board of Fire Underwriters Research Report No. 1954) . 135 [14] [15] [16] [17] (18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] (69) NaOH "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards!, Chapter in "Eutectic Data", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Craighead, C. M., Smith, L. A., Phillips, E. C., Jaffee, R. I., "Continued Studies of Corrosion by Fused Caustie", AECD-3704, Battelle Memorial Institute, (1952). Gregory, J. N., Hodge, N., Iredale, J. V. G., "The State Corrosion and Erosion of Nickel by Molten Caustic Soda and Sodium Uranate Suspensions under Dynamic Conditions", British Report AERE/C/M-273, (1956). Gregory, J. N., Hodge, N., Iredale, J. V. G., "The Static Corrosion of’ Nickel and Other Materials in Molten Caustic Soda", British Report AERE-C/M-272, (1956). Manly,‘W. D., "Operation of a Ni-NaOH Thermal Convection Loop'", ORNL CF- 51-11-186, Oak Ridge National Laboratory, (1951). Miller, N, E., Simons, E. M., Chem. Eng. Progr. Symp. Ser. No. 19, Amer, Inst. Chem. Eng., 52, 113 (1956). Miller, R. R., "The Thermal Properties of Sodium Hydroxide and Lithium Metal”, 4th Progr. Rept. Nov. 1 (1952)-Jan. 31 (1953) NRL-Memo-130: Progr. Rept. No. 1, Naval Research Lab., (1952). Anon, "Oak Ridge National Laboratory, Proceedings of the 1st Information Meeting on Hydroxide and Metal Interaction'”, ORNL CF-51-11-204, (1953). Williams, D. D., Ewing, C. T., "Thermal and Related Physical Properties of Molten Materials", Prog. Rept. Feb., 1 - May 1, (1953) NRL-Memo-170, Progress Report 5, Naval Research Lab., (1953}. Simmons, E. M., Miller, N. E., Stang, J. H., Weaver, C. V., "Corrosion and Componént Studies on Systems Containing Fused NaOH'", BMI-1118, Battelle Memorial Institute, (1956). Smith, G. P., "Corrosion of Materials in Fused Hydroxzides'", Am. Inst. Mining Engrs., Inst. Metals Div., Spec. Rept., #2, 71 (1956). Smith, G. P., "Corrosion of Materials in Fused Hydroxides', ORNL-2048, Oak Ridge National Laboratory, (1956). Smith, G. P., Hoffman, E. E., "Corrosion Products Formed in the Reaction between Fused Sodium Hydroxide and Iron-Rich Alloys of Iron, Chromium and Nickel", ORNL-2156, Oak Ridge National Laboratory, (1957). Smith, G. P., Steidlitz, M. E., Hoffman, E. E., Corrosion, 11, 47t (1958). Smothers, W. J., Prog. Rept., Jan. 1 - March 31, (1953), AECU-2872, Univ. of Ark., (1953). ’ Smith, G. P., Hoffman, E. E., Corrosion, 13, 627t (1957). Smith, G. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schiwwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Gurowich, E. I., Zh. Prikl. Khim., SIZERETIST UGO8 Kolotii, A. A., Vengzhen, G. S., Zashch. Met., dulby @il [(ILS7E) 136 [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] (69) NaOH Tribunskii, V. V., Kalinichenko, I. I., Tr. Ural. Politekh. Inst., 190, 49 (1970). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", Proceedings of the European Conference on the Development of Molten Salts Applications, p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts', Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. p. 581 (1975). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Smirnov, M. V., and Ozeryanaya, 1. N., Nauki Tekh. Korors., Zashch, Korros., 2, 171 (1973). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie Ing. Techn., 45, 667 (1973). Janz, G. J., and Tomkins, R. P, T., Corrosion, 35, 485 (1979). Douglas, T. B., and Dever, J. L., J. Res. Nat. Bur. Stand. 53, 81 (1954). Janz, G. J., Kélly, F. J., and Perano, J. L., J. Chem. Eng. Data. 9(1) 133 (1964). ) Seward, R. P., J. Amer. Chem. Soc., 64, 1053 (1942). von Hevesy, G., Zert. physik. Chem. 73, 667 (1910). Maru, H., C., et al.,, Inst. Gas Technology; "Molten Salt Thermal Energy Storage Systems : Salt Selection' ERDA Rpt. C00-2888-1, Aug. (1976); NTIS, U. S. Dept. Commerce, Springfield, Va. Kelley, K. K., U. S. Bur. Mines Bull. 393 (1936). Kelley, K. K., Bulletin 476. Douglas, T. B., Trans. Amer. Soc. Mech. Eng. 79, 23 (1957). Blumcke, Ann. Physik. [3] 25, 417 (1885). Terashkevich, V. R., and Veshnevskii, A. I., Zhur. Obshchei Khim 7, 2173 (1937). Hulme, R. E., Chem. Eng. 57, 139 (1950). Douglas, T. B., "Reactor Heat Transfer Information Meeting: Oct. 18 (1954) BNL-2446; AD79723, 13 (1954). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). Kroger, C. and Stratmann, J., Glastechn. Ber. 34, 311 (1961). von Wartenberg, H. and Albrecht, P., Z. Elektrochem. 27, 162 (1921). Lucks, C. F., and Deem, H. W., Preprint 56-SA-31, ASME Meeting, Cleveland, Ohio (June, 1956). Cornwell, K., J. Phy. D: Appl. Phys. 4, 441 (1971). Turnbull, A. G., Australian J. Appl. Sci. 12, 30 (1961). Bloom, H., "The Chemistry of Molten Salts"”, W. A. Benjamin, Inc. N. Y. (1967). ’ 137 [64] [65] [66] (67] [68] [69] (69) NaOH Turnbull, A. G., Australian J. Appl. Sci. 12, 324 (1961). Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liguid Thermal Conductivity Data”, HMSO, Edinburgh (1975). McDonald, J., and Davis, H. T., Physics and Chemistry of Liquids, 2, 119 (1971). Gambill, W. R., Chemical Eng. 66, 129 (1959). Turnbull, A. G., Ph.D. Thesis, Imperial College of Science and Technology, London (1959). McDonald, J., Ph.D. Thesis, University of Minnesota, Minneapolis (1969). 138 7 2. 3. 4. Melting Temperature (Tm) Melting point: 360° + 5°C References [1- Density (p) Measurement method: precision: [2] 8]. D = System 70 KOH %, 01L& = not estimated Archimedean technique [9]] 0.4396 x 10 °T (70.1) uncertainty: Table 70.1. Density from equation (70.1) T 0-3 T p_3 (XK) g cm (X) (g cm ™) 640 1.732 760 1.679 650 1.727 770 1.675 660 1.723 780 1.670 670 1.718 790 1.666 680 1.714 800 1.661 690 1.710 810 1.657 700 1.705 820 1.653 710 1.701 830 1.648 720 1.696 840 1.644 730 1.692 850 1.639 740 1.688 860 1.635 750 1.683 870 1.631 References [9] Surface Tension No data Viscosity (n) Measurement method: n = 52.7561 precision: (y) capillary technique [9] - 0.166134T + 1.80314 x 10" %1% - 6.66494 x 10737 (70.2) v 1% uncertainty: ~ % 5% Table 70.2. Viscosity from equation (70.2) T n T n (X) (cp) (K) (cp) 680 2.21 780 1.25 690 2.08 790 1.18 700 1.96 800 1.13 710 1.84 810 1.07 720 1.74 820 1.02 730 1.64 830 0.97 740 1.55 840 0.93 750 1.46 850 0.89 760 1.39 860 0.85 770 1.31 870 0.81 References [9] 139 6. Electrical Conductance (k) (70) KOH Measurement method: «classical ac technique [9] 3 < = -1.380 + 5.800 x 10 °T (70.3) precision: ~ = 0.5% uncertainty: insufficient data for estimate Table 70.3. Electrical conductance from equation (70.3) T K T K -1 -1 -1 -1 (K) (ohm cm ) (K) (ohm cm ) 670 2.51 780 3.14 680 2.56 790 3. 20 690 2.62 800 3.26 700 2.68 810 3.32 710 2.74 820 3.38 720 2.80 830 3.43 730 2.85 840 3.49 740 2.91 850 3.55 750 2.97 860 3.61 760 3.03 870 3.67 770 3.09 References [9] Safety and Hazards A. Hazard rating (1) Toxicity: highly caustic; very corrosive to all body tissues. (ii) Vapor pressure: ~ 1mm, B. (1) Molten salt bath "explosions': at m.pt., Disaster hazards 360°C, << 0.5mm; at ~ 720°C i.e., explosive generation of steam due to bulk water '"carry-over'" and/or equipment failure; i.e., explosive expansion of '"'trapped'" air. (ii) Dangerous; reacts with water or steam with evolution of heat; the aqueous solution is very strongly caustic; attacks living tissue. References [10-15]. 140 (70) KOH 7. Corrosion Table 70.4. Corrosion studies from primary research literature Studies References Ni, Cu, Armco Fe and steel [16-18] Fe, effects of HZO [19] Pt, Ag, and alloys [20-~22] Thermodynamics of corrosion [23-26] Corrosion - annotated biblio. [27] Electrochemical aspects [28] Reviews: corrosion - molten salts [24,29-31] References [16-31] 8. Diffusion No data 9. Heat of Fusion (AH}) Measurement method: calcutated (cryoscopy) [32] Table 70.5. Heat of fusion ARE °eq _ Uncertainty (kcal mol ) 1.98 vt 5% References [32-35] 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [36] Table 70.6. Volume change on melting (AVf/VQ) Uncertainty 13.7% v+ 107 References [36] 141 (70) KOH 12, Vapor Pressure (pvap) Measurement method: boiling point technique [37] log p = 7.3701 - 7162/T (70.4) precision: ~ * 4% uncertainty: ~ £ 10% Table 70.7. Vapor pressure from equation (70.4) T p T P (K) (mm) (K) (mm) 1440 249.,2 1530 488.7 1450 269.6 1540 524.1 1460 291.5 1550 561.6 1470 314.8 1560 601.3 1480 339.6 1570 643.2 1490 365.9 1580 687.4 1500 393.9 1590 734.0 1510 423.7 1595.4 760 1520 455.3 1600 783.2 References [37] 13. Thermal Conductivity (liquid) 7*2) No data 14. Thermal Conductivity (solid) (As) No data 15. Cryoscopic Constant (kf) [} Measurement method: calculated from &HZ [36] Table 70.8. Cryoscopic constant k £ Uncertainty (K mol "kg) 22.6 v+ 1% References [36] 16. References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables”, 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). [2] Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties”, NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., ""Thermochemical Properties of Inorganic Substances", Springer-Verlag, New York (1973). [4] Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "Ameriecan Institute of Physics Handbook”, 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). 142 [6] [7] (8] [9] [10] [11] [12] [13] [14] [15] [16] [17] (18] (19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] (70) KOH Weast, R. C. (ed.) "Handbook of Chemistry and Physics", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Glassner, A., "Thermochemical Properties of Oxides, Fluorides, and Chlorides”, ANL Rept. 5750 (1959) Argonne National Laboratory, I11. Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik”, 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). Arndt, K., and Ploetz, G., Z. Physik. Chem., 121, 439 (1926). "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). Vapor pressure, at m.pt., estimated (this work). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals"”, National Board of Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). Janz, G. J., Tomkins, R. P, T., Downey, J. R. Jr., and Allen, C. B., "Safety and Hazards", ChLapter in "Eutectic Data”, -ERDA TiD-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Gurowich, E. I., Zh, Prikl. Khim., 32, 817 (1959). Smith, G. P., Hoffman, E. E., Corrosion, 13, 627t (1957). Smith, G. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957). Tribunskii, V. V., Kalinichenko, I. I., Tr. Ural. Politekh. Inst., 190, 49 (1970). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", Proceedings of the European Conference on the Development of Molten Salts Applications'", p. 203 (1973) Battelle, Geneva. Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). ‘Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts”, Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes'", The Electrochemical Society, Inc., Princeton, N. J., p. 581 (1975). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chem. Ing. Tech., 45, 667 (1973). 143 [31] [32] [33] [34] [35] [36] [37] (70) KOH Smirnov, M. V., and Ozeryanaya, Korros., 2, 171 (1973). Kelley, K. K., U. S. Bur, I. Ww. Mines Bull. , Nauki Tekh. Korros. Zaschch. 393 (1936). Scarpa, G., Atti accad. Lincei 24(I) 738 (1915). Petortillo, N.M., and Moles, E. 830 (1933). von Hevesy, G., Zertsch. phys. Janz, G. J., et al. von Wartenberg, H. (MSDC-RPI), unpublished work (1980). and Albrecht, 144 ’ Anales Soc. Espan. P Chem. * 3 73, %o 667 (1910). Elektrochem. Z1z., 27, Quin. 31, 162 (1921). System 71 Mg(N03)2 1. Melting Temperature (Tm) Melting point: Decomposes [12,13] Anhydrous Mg(NOz), has been reported stable in the crystalline state up to ~ 325°C, although the thermo- dynamic data are consistent with complete decomposition to MgO at this temperature. References [1-13]. 2. Density (p) No Data 3. Surface Tension (y) No Data 4. Viscosity (n) No Data 5. Electrical Conductance (k) No Data 6. Safety and Hazards A. Hazard rating (1) Toxicity: inhalation: 1low; ingestion: moderate. (ii) Vapor pressure: Mg(NO )g.ZHZO melts ~ 129°C; Mg (NO3) 2.6H20 melts ~ 85 C; little is known of the high temperature properties of anhydrous Mg(NO3)2; onset of decomposition reaction has been observed from n 130°C to ~ 390°C, and appears dependent on the composition of the gas phase. B. Disaster hazards (1) Molten salt bath "explosions': 1i.e., explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of "trapped'" air. (i1) On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: MNO, —3 MNO, + %0, (71.1) ZMNO2 — MZO + NO + NO (71.2) 2 The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO, is dominant. If the gas phase 1s not immediately removed, the NO may re-oxidize the nitrite to nitrate. (1i1) Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds, oils, carbon,...); aluminum alloys and bath sludges (e.g.iron oxides); magnesium alloys. Dangerous. References [9,14-20] 145 (71) Mg(NO,), 7. Corroston Table 71.1. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fa [21,23,25] Fe, Co, Ni, Cr, Al,... [22,30,31] Cu, Pt, Au, W,... [24,30,31] Zn, Pb, Cu, Ni, Al [28] Pt, S, steel [26] Zr [29] Oxide species [27] Electrochemical approach [31,33] Thermodynamic redox diagrams [34,36] Annotated corrosion biblio. [36] Reviews/molten salts [37-39] No compatibility studies with molten Mg(NQ3)2 were found; for effects of alkaline earth chlorides added to nitrates, see [25]. References [21-39] 8. Diffusion No Data 9. Heat of Fusion (AH}) No Data 10. Heat Capacity (Cp) No Data 11. Volume Change on Melting (AV,) f No Data 12. Vapor Pressure vaap) No Data 13. Thermal Conductivity (liquid) (AQ) No Data 14. Thermal Conductivity (solid) (AS) No Data 146 (71) Mg(NOy), 15. Cryoscopic Constant (kf) No Data 16. References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). [2] Rossini, F. D., Wagman, D. D., Evans, W, H., Levine, S., and Jaffe, 1., "Selected Values of Chemical Thermodynamic Properties'", NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganic Substances", Springer-Verlag, New York (1973). [4] Janz, G. J., "Molten Salts Handbook'", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "American Institute of Physiecs Handbook"”, 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). [6] Weast, R. C. (ed.) "Handbook of Chemistry and Physics'", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). i) Addison, C., C., Walker, A. J., J. Chem. Soc., 1220 (1963). (8] Oza, T. M., Dipali, N. L., J. Indian Chem. Soc., 27, 305 (1950). [9] Oza, T. M., Mirza, B. V., Indian J. Chem., 3, 280 (1965). [10] Graham, T., Phil. Mag., (3)4, 265,331 (1928). [11] Germez, D., Compt. Rend., 64, 606 (1867). [12] Stern, K., J. Phys. Chem. Ref. Data 1, 47 (1972) [13] Landolt-Bsrnstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik.'" 6th Ed. Il. Pt. 3; Sprenger- Verlag, Berlin, Gottingen, Heidelberg. (19560). [14] Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. IT7T7T. N’l:tr’ates and N’l:trites", J o PhySo Chem, Refo Data, 1, 747-772 (1972). L [15] "Dangerous Properties of Matertials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [16] "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U, S. Gov't Printing Office, Washington, D. C. (1975). [17] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals', National Board Fire Underwriters Research Report No. 2. (1954). (18] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [19] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B. "Safety and Hazards'", Chapter in "Eutectic Data", ERDA TID-27163-Pi; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [20] Addison, C. C., Walker, A,, J. Chem. Soc., 1220 (1963). [21] Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). 147 [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] (71) Mg(NOy), Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, Denki Kagaku, 41, 779 (1973). T., Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). i Johnson, K. E., Electrochimica Acta, 11, (1966). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts"”, p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Herquet, M, L. H., Industrie Chim, Belge, 20, 592 (1955). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Pizzini, S., "Matertals Problems in the Industrial Applications of Molten Salts'", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (19696). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). 148 Y Ca(NOS)Z 1. Melting Temperature (T_) Melting point: 561° + 4°C [7] References [1-8]. 2. Density (p) No data 3. Surface Tension (Y) Measurement method: maximum bubble pressure (9] precision: not estimated uncertainty: o Table 72.1. Surface tension T Y -1 (K) (dyn cm 7) 833 101.5 References [9] 4. Viscosity (n) No data 5. Electrical Conductance («x) No data 6. Safety and Hazards A. Hazard rating (1) Toxicity: 1ingestion, moderate. (ii) Vapor pressure: Addison and Coldrey [10] report the formation of bubbles in molten Ca(NO3), at its m.pt., 561°C; Ca(NO3), loses NO, on decomposition, with for- mation of Ca0 and oxygen (see (ii) below and [4]). B. Disaster hazards (1) Molten salt bath "explosions': 1i.e., explosive generation of steam due to bulk water 'carry-over'" and/or equipment failure; i.e., explosive expansion of ''trapped' air. (11) On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: ZMNOg——é-ZMNOZ + O2 (72.1) ZMNOZ——>-M20 + NO2 (72.2) The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO, is dominant. (iii) Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [10-16] 149 (72) Ca(NQ3)2 7. Corrosion Table 72.2. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [17,19,21] Fe, Co, Ni, Cr, Al,... [18,26,27] Cu, Pt, Au, W,... [20,26,27] Zn, Pb, Cu, Ni, Al [24] Pt, S, steel [22] Zr [25] Oxide species [23] Electrochemical approach [28,31] Thermodynamic redox diagrams ' [30,31] Annotated corrosion biblio. [32] Reviews/molten salts [33-35] No compatibility studies with molten Ca(N03)2 were found; for effects of alkaline earth chlorides added to nitrates, see [21]. References [17-35] 8. Dtffuston No data 9. Heat of Fusion (AH}) Measurement method: drop calorimetry [36] Table 72.3. Heat of fusion R £ 1 _ Uncertainty (kcal mol 7) 5.67 v o+ 2% Ca(NO3)2 (m.pt. 561°C) exhibits two solid state transitions at -185°C and 15°C for which the AH values are ~ 0.9 and v 69 cal. mol_l respectively. References [36,37] 10. Heat Capaecity (Cp) No data 150 12. 13. 14. (72) Ca(NO,), Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Az) No data Thermal Conductivity (solid) (As) No data 15. Cryoscopie Constant (kf) Measurement method: calculated from AH% [38] Table 72.4. Cryoscopic constant Lo 2 -1 Uncertainty (K mol “kg) 40.0 vt 17 References [38] 16. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables”, 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). Rossini, F, D.,, Wagman, D. D., Evans, W, H.,, Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties', NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganic Substances”, Springer-Verlag, New York (1973). Janz, G. J., "Molten Salts Handbook", Academic Press, N. Y. (1967). Gray, D. W. (ed.), "American Institute of Physics Handbook”, 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). Weast, R. C. (ed.) "Handbook of Chemistry and Physics”, 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Stern, K., J. Phys. Chem. Ref. Data 1, 47 (1972) Landolt-Bvrnstein, "Zahlenwerte Und Funktionen Aus Phystik, Chemtie, Astronomie, Geophysic, Und Technik'", 6th Ed. II. Pt. 3; Springer-verlag, Berlin, Gdttingen, Heidelberg. (1956). Addison, C. C., and Coldrey, J. M., J. Chem. Soc. 468-71 (1971) Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites", J. Phys. Chem. Ref. Data, 1, 747-772 (1972). - "Dangerous Properties of Materials"”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). 151 (72) Ca(Noy), [12] "Registry'of Tozxic Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [13] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals'", National Board Fire Underwriters Research Report No. 2. (1954). [14] Vide infra, Ref. [9] [15] "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). [16] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectie Data'", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [17] Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). [18] Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). [19] Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). [20] Notoya, T., Denki Kagaku, 41, 779 (1973). [21] Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). [22] Johnson, K. E., Electrochimica Acta, 11, (1966). [23] Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). [24] Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). [25] Andreev, Y. Y., Fokin, M. N.,, Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). [26] Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). [27] Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). [28] Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). [29] Johnson, K. E., "Fleetrochemical Approaches to Corrosion in Molten Salts'", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). [30] Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). [31] Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). [32] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). [33] Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). [34] Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). [35] Sm%igggi M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 152 (72) Ca(N03)2 [36] Janz, G. J., Kelly, F. J., and Pérano, J. L., Trans. Farad. Soc. 59(12), 2718 (1963). B [37] Kelley, K. K., U. S. Bur. Mines Bull. 393 (1936). [38] Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 153 System 73 LiNO2 1. Melting Temperature (Tm) Melting point: 220° + 5°C [7] References [1-12]. 2. Density (p) No data 3. Surface Tension (v) No data 4. Viscosity (n) Measurement method: capillary technique [13] -4..3 n = -14909.1 + 87.5812T - 0.171073T2 + 1.11184 x 10 T (73.1) precision: n~ * 0.5% uncertainty: ~ £ 3,0% Table 73.1. Viscosity from equation (73.1) T n (K) (cp) 510 9.89 520 8.34 References [13] 5. Electrical Conductance («x) Measurement method: classical ac technique [14] < = -0.397585 - 1.51836 x 10 °T + 7.33374 x 10 %1% (73.2) precision: ~ * 0.1% uncertainty: ~ * 5.0% Table 73.2. Electrical conductance from equation (73.2) T K (K) (ohm™ cm—l) 510 0.736 520 0.796 530 0.858 References [14] 154 (73) LiNo, 6. Safety and Hazards (1) (ii) (1) (1i) (i1ii) A. Hazard rating Toxicity: ingestion: to be some implication with chronic ingestion severe toxicity,; there appears of increased cancer incidence of nitrites, Vapor pressure: LiNO, (m.pt., 220°C) melts without de- composition and appears stable to ~ 300°C; at ~ 350°C, 1t 1s reported to decompose slowly, and this increases rapidly with increasing temperatures. The product gases are oxides of nitrogen (toxic); see B. Disaster hazards. B. Disaster hazards Molten salt bath "explosions'": 1i.e., explosive generation of steam due to bulk water "carry-over' and/or equipment failure; i.e., explosive expansion of '"trapped" air. On decomposition, nitrites emit toxic fumes (oxides of nitrogen) viz: 2 MNO, —M 7 2O + NO + NO2 (73.3) ZMNO2 + Oz———+-2MNO (73.4) 3 The subsequent decomposition reactions are complex; if the gas phase is not removed, the nitrite may be oxidized to nitrate (LiNOS). Nitrites, like nitrates, are powerful oxidizing agents; viclent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [15-21] 7. Corrosion Table 73.3. Corrosion studies from primary resecarch literature Studies in molten nitrates and nitrites References Fe [22,24,26] Fe, Co, Ni, Cr, Al,... [23,31,32] Cu, Pt, Au, W,... [25,31,32] Zn, Pb, Cu, Ni, Al [29] Pt, S, steel [27] Zr [30] Oxide species [28] Electrochemical approach [33,34] Thermodynamic redox diagrams [35,36] Annotated corrosion biblio. [37] Reviews/molten salts [38-40] References [22-40] 155 10. g I s 13. 14. 1o. 16. (73) LiNO2 Diffusion No Heat No Heat No of Fusion (AH Data }2 Data Capacity CCp2 Data Volume Change on Melting (AVf) No Data Vapor Pressure (p ) vap No Data Thermal Conductivity (liquid) (Az) No Data Thermal Conductivity (solid) (ls) No Data Cryoscopic Constant (kf) No Data Re ferences [1] [2] [3] [4] [5] [6] | [7] [8] [9] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). Rossini, F, D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties”, NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganic Substances", Springer-Verlag, New York (1973). Janz, G. J., "Molten Salts Handbook'", Academic Press, N. Y. (1967). Gray, D. W. (ed.), "American Institute of Physics Handbook", 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). Weast, R. C. (ed.) "Handbook of Chemistry and Physics", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Stern, K., "J. Phys. Chem. Reference Data”, 1, 47 (1972). Landolt-Bdrnstein, "Zahlenwerte Und Funktionen Aus Phystik, Chemie, Astronomie, Geophysik, Und Technik”, 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). Rao, C. N. R., Prakesh, B., Natarajan, M., "Crystal Structure in Inorganic Nitrites, Nitrates, and Carbonates”, NSRDS-NBS- 53; U. S. Gov't Printing Office, Washington, D. C. (1975). 156 [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] (73) LiNO2 Natarajan, M., Rao, C. N. R., unpublished work, cited in [9]. Ferrari, A., Cavalca, L., Tani, M. E., Gazz. Chim. Itali., 87, 310 (1957). Protsenko, P. I., Bordyushkova, E. A., Venerouskaya, L. N., Ukr. Xhim. Zh., 31, 1200 (1965). Protsenko, P. I., Protsenko, A. V. and Razumouskaya, O. N., Russ. J. Inorg. Chem. 10, 405 (1965). Bloom, H., Knaggs, W., I., Molloy, J.J., and Welch, D., Trans. Faraday Soc., 49, 1458 (1953). Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites”, J. Phys. Chem., Ref. Data, 1, 747-772 (1972). i "Dangerous Properties of Matertials”, Sax, N. I : ., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances"”, Christensen, H. E., and.Lublnybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). Protensko, P.I., Bordyushkova, L. V., Zhur. Neorg. Khim., 10, 1215 (1965). o "Potential Hazards itn Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectie Data"”, ERDA TID-27163-P1; NTI1S, U. S. Dept. Commerce, Springfield, Va. (1977). Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, , Denki Kagaku, 41, 779 (1973). T. Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). Johnson, K. E., Electrochimica Acta, 11, (1966). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H., A., J. Electrochem. Soc., 110, 816 (1963). 157 [33] [34] [35] [36] [37] [38] [39] [40] (73) LiNO2 Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the-Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). 158 System 74 NaNO2 1. Melting Temperature (Tm) Melting point: 282° + 4°C [11] References [1-15]. 2. Density (p) Measurement method: Archimedean technique [16] o = 2.226 - 0.746 x 10°°T (74.1) precision: not estimated uncertainty: « Table 74.1. Density from equation (74.1) T p -3 T p -3 (X) (g cm 7) (K) (g cm 7) 570 1.801 650 1.741 580 1.793 660 1.734 590 1.786 670 1.726 600 1.778 680 1.719 610 1.771 690 1.711 620 1.763 700 1.704 630 1.756 710 1.696 640 1.749 720 1.689 References [16,17] 3. Surface Tension (Y) Measurement method: maximum bubble pressure [18] y = 141.7 - 0.0378 T (74.2) precision: =~ 0.5% uncertainty: ~ * 2% Table 74.2. Surface tension from equation (74.2) T Y T Y (K) (dyn cm *) (K) (dyn em ) 550 120.9 670 116 .4 560 120.5 680 116.0 570 120.2 690 115.6 580 119.8 700 115.2 590 119.4 710 114.9 600 119.0 720 114.5 610 118.6 730 114.1 620 118.3 740 113.7 630 117.9 750 113.4 649 117.5 760 113.0 650 117.2 770 112.6 660 116.8 References [18,19] 159 4. 5. 6. (74) NaNO2 Viscosity (n) Measurement method: capillary technique [21]] 3.2 = [ n =187.118 - 0.876094T + 1.41024 x 10 "T" - 7.71608x 10 'T~ (74.3) precision: ~ + (0.9 e uncertainty; ~ * 5% Table 74.3. Viscosity from equation (74.3) i n T n (K) (cp) (K) (cp) 570 3.04 600 2.48 580 2.84 610 2.31 590 2.66 References [17,20,21] Electrical Conductance (k) Measurement method: classical ac technique [16] precision: not estimated uncertainty: ~v % 5 k = 13.20 exp (-2600/RT) (74.4) Qe lable 74.4. Electrical conductance from equation (74.4) T K T K (K) (ohm lem™ 1) (K) (ohm lem™ 1) 570 1.33 650 1.76 580 1.38 660 1.82 590 1.44 670 1.87 600 1.49 680 1.93 610 1.54 690 1.98 620 1.60 700 2.04 630 1.65 710 2,09 640 1.71 720 2.14 References [16] Safety and Hazards (1) (i1) A. Hazard rating Toxicity: NaNO, is permitted in food for human consumption; there appears to be some implication of increased cancer in- cidence with chronic ingestion of nitrites Vapor pressure: NaNO, (m.pt. 281°C) appears to melt without onset of decomposition; decomposition is reported at ~ 300°C; with formation of oxides of nitrogen (toxic); this increases with increasing temperatures (see B. Disaster hazards) 160 (1) (ii) (ii1) (74) NaNoO, B. Disaster hazards Molten salt bath "explosions'": i.,e., explosive generation of steam due to bulk water 'carry-over'" and/or equipment failure; i.e., explosive expansion of "trapped" air. On decomposition, nitrites emit toxic fumes (oxides of nitrogen)viz: ZMNOZ——+'M20 + NO + NO (74.5.1) 2 ZMNO2 + Oz——-)-MNO3 (74.5.2) The subsequent decomposition reactions are complex; if the gas phase is not continuously removed, the nitrite may be oxidized to NaNOy, i.e. to the nitrate Nitrites, like nitrates, are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous References [41-49] 7. Corrosion Table 74.5. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [22,24,26] Fe, Co, Ni, Cr, Al,... [23,31,32] Cu, Pt, Au, W,. [25,31,32) Zn, Pb, Cu, Ni, Al [29] Pt, S, steel [27] Zr [30] Oxide species [28] Electrochemical approach [33,34] Thermodynamic redox diagrams [35,36] Annotated corrosion biblio. [37] Reviews/molten salts [38-40] References [22-40] 8. Diffusion No data 161 (74) NaNoO, 9. Heat of Fustion (AH;) Measurement method: drop calorimetry [50] Table 74.6. Heat of fusion AR® f Uncertainty (kcal mol'l) 2.97 N~ o+ 5% References [50] 10. Heat Capacity (Cp) Measurement method: drop calorimetry [50] c, = 115.21 - 200.49 x 10°3T + 126.86 x 107 °T% (74.6) Temp. range: 564-630 K- o® precision: ~ * 0.1% uncertainty: ~ £ 5 Table 74.7. Heat capacity from equation (74.6) C © T 3] -1 T Ry -1 (K) (cal K mol ) (K) (cal K mol 7) 570 42.1 610 40.1 580 41.6 620 39.7 590 41.1 630 39.2 600 40.6 In the solid state, for the temperature range: 383-533 K, the heat capacity for NaNO2 [L] is expressed by: C_ = 38.42 + 230.19 x 10 37 - 188.76 x 10°°1% (74.7) Py precision: &~ *1 uncertainty: ~ % 5% References [50] 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [51] Table 74.6. Volume change on melting (AVf/VS) Uncertainty 16.5% o+ 10% References [51] 12. Vapor Pressure (pvap) No data 162 Thermal Conductivity Measurement method: A 1+ precision: v Table 74.7. (74) NaNO2 (1iquid) (A ) steady-state method; coaxial cylinders [52] 22,9249 x 107 % + 3.745 x 10°%T (74.8) 1 o uncertainty: ~ Thermal conductivity of melt from equation (74.8) T (K) (cal 4 _]_K Z S—l K—l) A x 10 — ., cm T A x 10 (K) (cal cm 560 570 580 590 References [52-56] 14, Thermal Conductivity Measurement method: preclsion: not Table 74.8. (solid) (i) co-axial cylinders; steady-state method [52] estimated + uncertainty: ~ 10 Thermal conductivity of solid NaNO, A x 104 -1 -1 -1 (cal cm s K ) 15.9 References [52,54] 15. Measurement method: Cryoscopic Constant (k (Melting point, NaNO,: 9 558 K) f) calculated from AHS 2 [51] Table 74.9. Cryoscopic constant kg (K mol_lkg) Uncertainty 14,2 References [51] 163 16. (74) NaN02 References [1] (2] [3] [4] (5] [6] (7] (8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I:, "Selected Values of Chemical Thermodynamic Properties", NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). Barin, I., and Knacke, 0., "Thermochemical Properties of Inorganie Substances", Springer-Verlag, New York (1973). Janz, G. J., "Molten Salts Handbook”, Academic Press, N. Y. (1967). Gray, D. W. (ed.), "American Institute of Physics Handbook", 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). Weast,-R. C. (ed.) "Handbook of Chemistry and Physics'", 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964). Stern, K., "J. Phys. Chem. Reference Data", 1, 47 (1972). Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik'", 6th Ed. II. Pt. 3; Springer- Verlag, Berlin, Gottingen, Heidelberg (1956). Alexander, Jr., J., Hinden, S. C., Ind. Eng. Chem., 39, 1044 (1947). Brumi, G., Meneghini, D., Z. anorg. Allg. Chem., 64, 193 (1909). Kozlowski, T. R., Bartholemew, R. F., J. Electrochem. Soc., 114, 937 (1967). Rao, C. N..R., Prakash, B., Natarajan, M., "Crystal Structure in Inorganic Nitrites, Nitrates, and Carbonates', NSRDS-NBS- 53; U..S. Gov't Printing Office, Washington, D. C. (1975). Natarajan, M., Rao, C. N. R., unpublished work, cited in [9]. Ferrari, A., Cavalca, L., Tani, M. E ., Gazz. Chim. Itali., 87, 310 (1957). Protsenko, P. I., Bordyushkova, E. A., Venerouskaya, L. N., Ukr. Khim. Zh., 31, 1200 (1965). Bloom, H., Knaggs, I. W., Molloy, J. J. and Welch, D., Trans Faraday Soc., 49, 1458 (1953). Frame, J. P., Rhodes, E. , and Ubbelohde, A. R., Trans. Faraday Soc., 55, 2039 (1959). Addison, C. C., and Coldrey, J. M., J. Chem. Soc. 468 (1961). Bloom, H., Davis, F. G., and James, D. W., Trans. Faraday Soc. 530, 1179 (1960). Ubbelohde, A. R., Imperial College, London (private communication. 1966). Protsenko, P. I., Protsenko, A. V., Razumouskaya, 0. N., Russ. J. Inorg. Chem., 10, 405 (1965). Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). 164 [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37) [38) [39] [40] [41] [42] [43] [44] [45] [46] [47] (74) NaNO2 Marchiano; S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Denki Kagaku, ,4_1, 779 (1973). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). Johnson, K. E., Electrochim, Acta, 11, 129 (1966). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts'", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H., A., J. Electrochem. Soc., 110, 816 (1963). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochim. Acta, 13, 1551 (1968). Janz, G, J., and Tomkins, R. P, T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M, V. and Ozeryanaya, I., Nauki. Tekh. Korros. Zasch. Korros., 2, 171 (1973). Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites”, J. Phys. Chem. Ref. Data, 1, 747-772 (1972). B "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L. , Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectic Data”, ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Freeman, E. S., J. Amer. Chenmn. Soc., 79, 638 (1957). 165 (48] [49] [50] [51] [52] [53] [54] [55] [56] (74) NaNoO, Oza, T. M., J. Indian Chem. Soc., 22, 173 (1945). Oza, T. M., Walawalkar, B. R., J. Indian Chem. Soc., 22, 243 (1945)}. Voskresenskaya, N. K., Yekovkaya, G. N., and Amosov, V. Y., Zhur. Prikl. Khim. 21, 18 (1948). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). Bloom, H., Doroszkowski, A., and Tricklebank, S. B., Australian J. Chem. 18, 1171 (1965). Cornwell, K., J. Phys. D., Appl. Phys. 4, 441 (1971). Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liquid Thermal Conductivity Data Survey"”, HMSO, Edinburgh (1975). Turnbull, A. G., Ph.D. Thesis, Imperial College of Science and Technology, London (1959). Turnbull, A. G., Australian J. Appl Sci. 12, 30 (1961). 166 B/ 3. 4. System 75 KNO Melting Temperature (Tm) Melting point: 440° + 5°C [1] References [1-13]. Density (p) Measurement method: 2 Archimedean technique [14] p = 2.167 - precision: not estimated 6.60 x 10 4 T (75.1) uncertainty: ~ = 2.0% Table 75.1. Density from equation (75.1) T P (K) (g cm ™) 700 1.705 710 1.698 720 1.692 730 1.685 740 1.679 750 1.672 References [14] Surface Tension (v) Measurement method: precision: ~ * Q. maximum bubble pressure [15] 0.0623 T y = 151.6 (75.2) uncertainty: ~ * 2% Table 75.2. Surface tension from equation (75.2) T Y 1 T Y 1 (K) (dyn cm ") (K) (dyn cm ) 720 106.8 750 104.9 730 106.1 760 104.3 740 105.5 770 103.6 References [15] Viscosity (n) Measurement method: precision: ~ % capillary technique [17] n = 864.798 - 3.61760T + 5.06274 X 10—3T2 S 0.3% 2.36530 x 10°°T° (75.3) uncertainty: ~ = 2% Table 75.3. Viscosity from equation (75.3) T n (K) (cp) 700 1.92 710 1.86 720 1.81 References [16-19] 167 (75) KN02 5. Electrical Conductance (k) Measurement method: classical ac technique [18]] K . 4.167433 + 1.148389 x 10 °T - 5.451471 x 10 072 (75.4) precision: ~ %= 0.1% uncertainty: ~ * 5% Table 75.4. Electrical conductance from equation (75.4) K K T T -1 1 =JL (K) (ohm™ T cn™ 1) (K) ol =) 710 1.238 740 1.345 720 1.275 750 1.379 730 | 1.311 References [18] 6. Safety and Hazards (1) (i1) (1) (1i) (1i1) A. Hazard rating Toxicity: 1ingestion toxicity rating, severe; there appears some implication of increased cancer incidence with chronic ingestion of nitrites. Vapor pressure: KNO; (m.pt.440°C) melts without de- composition, but at ~ 500°C, thermally decomposes into oxides of nitrogen, and at higher temperatures, to nitrogen and oxygen as gaseous products (see: B. Disaster hazards). B. Disaster hazards Molten salt bath "explosions'": i.e., explosive generation of steam due to bulk water ''carry-over' and/or equipment failure; i.e., explosive expansion of ''trapped' air. On decomposition, nitrites emit toxic fumes (oxides of nitrogen) viz: 2MNO,—>M,0 + NO + NO (75.5) 2 (75.6) + L0 MNOZ——+~MNOZ 2 The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above to NO and NO2 is dominant. In the temperature range 550-600°C, and under oxygen, the conversion of KNO, to KNOz goes to completion; be- tween 650-750°C, the two salts interconvert (see above), KNOg becoming increasingly unstable; above 800°C, the nitrite decomposition: 2 KNO,—»K;0 + Ny + 3/,0; goes to completion. Nitrites, like nitrates, are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, . carbon,...); aluminum alloys and bath sludges (e.g. 1iron oxides); magnesium alloys. Dangerous. References [20-29] 168 (75) KNO2 7. Corrosion Table 75.5. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [30,32,34] Fe, Co, Ni, Cr, Al,... [31,39,40] Cu, Pt, Au, W,... [33,39,40] Zn, Pb, Cu, Ni, Al [37] Pt, S, steel [35] Zr [38] Oxide species [36] Electrochemical approach [41,42] Thermodynamic redox diagrams [43,44] Annotated corrosion biblio. [45] Reviews/molten salts [46-48] References [30-48] 8. Diffusion No data 9. Heat of Fusion (AH;) No data 10. Heat Capactity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [49] Table 75.6. Volume change on melting (AVf/VS) Uncertainty 8.0% vt 107 References [49] 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (AR) No data 169 14. 156, 16. Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Stull, D. R., and Prophet, H., "JANAF Thermochemical Tables", 2nd Ed., NSRDS-NBS 37; U. S. Gov't Printing Office, Washington, D. C. (1971). [2] Rossini, F. D.,, Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties”, NBS, Circ. 500; U. S. Gov't Printing Office, Washington, D. C. (1952). [3] Barin, I., and Knacke, 0., "Thermochemical Properties of Inorgantec Substances”, Springer-Verlag, New York (1973). [4] Janz, G. J., "Molten Salts Handbook'", Academic Press, N. Y. (1967). [5] Gray, D. W. (ed.), "dmerican Institute of Physics Handbook”, 3rd Ed., McGraw-Hill Book Co., N. Y. (1972). [6] Weast,.R. C. (ed.) "Handbook of Chemistry and Physics”, 45th Ed. The Chemical Rubber Co. publ.; Cleveland (1964), [7] Stern, K., J. Phys. Chem. Reference Data, 1, 47 (1972). [8] Landolt-Bornstein, "Zahlenwerte Und Funktionen Aus Physik, Chemie, Astronomie, Geophysik, Und Technik”, 6th Ed. II. Pt. 3; Springer-Vergag, Berlin, Gottingen, Heidelberg (1956). [9] Alexander, Jr., J., Hindes, S. C., Ind. Eng. Chem., 39, 1044 (1947). [10] Rao, C. N. R., Prakesh, B., Natarajan, M., "Crystal Structure in In- organie Nitrites, Nitrates, and Carbonates”, NSRDS-NBS-53; U. S. Gov't Printing Office, Washington, D. C. (1975). [11] Natarajan, M., Rao, C. N. R., unpublished work, cited in [9]. [12] Ferrari, A., Cavalca, L., Tani, M. E., Gazz. Chim. Itali., 87, 310 (1957). [13] Protsenko, P. I., Bordyushkova, E. A., Venerouskaya, L. N., Ukr. Khim. Zh., 31, 1200 (1965). [14] Protsenko, P. I., and Malakhova, A. Ya., Russ. J. Inorg. Chem., 6, 850 (1961). [15] Addison, C. C., and Coldrey, J. M., J. Chem. Soc. 468 (1961). [16] Frame, J. P., Rhodes, E. and Ubbelohde, A. R., Trans. Faraday Soc. 55, 2039 (1959). [17] Ubbelohde, A. R., Imperial College, London (private communication, 1966). [18] Protsenko, P. I., Protsenko, A. V., and Razumouskaya, O. N., Russ. J. Inorg. Chem. 10, 405 (1965). [19] Protsenko, P. I. and Shokina, O. N., Russ. J. Inorg. Chem. 9, 82 (1964). [20] Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites"”, J. Phys. Chem. Ref. Data, 1, 747-772 (1972). [21] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand (75) KNO, Reinhold Co., N. Y. (1969). 170 (75) KNO2 [22] "Registry of Toxic Effects of Chemical Substances”, Christensen, H.'E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [23] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2. (1954). [24] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [25] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards', Chapter in "Eutectic Data”, ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [26] Freeman, E. S., J. Amer. Chem. Soc., 79, 838 (1957). [27] Protsenko, P. I., Bordyushkova, E. A., Zhur. Neorg. Khim., 10, 1215 (1965). [28] Oza, T. M,, J.Indian Chem. Soc., 22, 173 (1945). [29] Oza, T. M., Walawalkar, B. R., J. Indian Chem. Soc., 22, 243 (1945). [30] Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). [31] Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent.,, 192, 263 (1971). [32] Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). [33] Notoya, T., Denki Kagaku, 41, 779 (1973). [34] Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). [35] Johnson, K. E., Electrochimica Acta, 11, (1966). [36] Johnson, X. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts'", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). [37] Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). [38] Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). [39] Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). [40] Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). [41] Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts”, "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). [42] Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts”", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975) [43] Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). [44] Conte, A., and Ingram, M. D., Electrochimica Actay 13, 1551 (1968). [45] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). 171 [46] [47] [48] [49] (75) KNO2 Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M, V, and Ozeryanaya, I., Nauki. Tekh. Korros. Zasch. Korros., 2, 171 (1973). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 172 System 76 LiF-NaF 1. Melting Temperatures (Tm) Pure substance melting points: LiF: 848°C NaF: 995°C Eutectic melting point: 649°C, composition: 39 mol % NaF 1000 T I T | 1 1 R ! ! LiF -NaF 9200 (°C) 800 700 LiF = NaF €00 ! | L } : | L ! L 0 20 40 60 80 100 LiF ' NaF Mol% NaF Figure 76.1 LiF-NaF phase diagram References [1-26] 2. Density (p) Measurement method: Archimedean technique [27] Equation: o =a + bT (76.1) precision: in table 76.1 uncertainty: ~ = 1.0% Table 76.1. Parameters of equation (76.1) and precisions (mel % NaF) a -b x 104 Precision T range (K) 10 2.3981 5.102 0.01% 1130-1320 20 2.4254 5.118 0.02% 1130-1320 30 2.4709 5.277 0.01% 1130-1320 40 2.5325 5.552 0.01% 1130-1320 50 2.5565 5.596 0.01% 1130-1320 60 2.5791 5.575 0.01% 1130-1320 70 2.5784 5.434 0.01% 1130-1320 80 2.6766 6.043 0.28% 1230-1320 90 2.9187 7.789 0.01% 1280-1320 173 3. (76) LiF-NaF Table 76.2. Density (g cm 3) from equations in table 76.1 Mol % NaF T (K) 10 30 50 70 80 90 1130 1.822 1.875 1.924 1.964 1140 1.816 1.869 1.919 1.959 1150 1.811 1.864 1.913 1.953 1160 1.806 1.859 1.907 1.948 1170 1.801 1.853 1.902 1.9493 1180 1.796 1.848 1.896 1.937 1190 1.791 1.843 1.891 1.932 1200 1.786 1.838 1.885 1.926 1210 1.781 1.832 1.879 1.921 1220 1.776 1.827 1.874 1.915 1230 1.770 1.822 1.868 1.910 1.933 1240 1.765 1.817 1.863 1.905 1.927 1250 1.760 1.811 1.857 1.899 1.921 1260 1.755 1.806 1.851 1.894 1.915 1270 1.750 1.801 1.846 1.888 1.909 1280 1.745 1.795 1.840 1.883 1.903 1.922 1290 1.740 1.790 1.835 1.877 1.897 1.914 1300 1.735 1.785 1.829 1.872 1.891 1.906 1310 1.730 1.780 1.823 1.867 1.885 1.898 1320 1.725 1.774 1.818 1.861 1.879 1.891 References [27-31] Surface Tension (vy) Measurement method: Equation: precision: Table 76.3. Y = in table 76.3 a + bT maximum bubble pressure [32] (76.2) uncertainty: © Parameters of equation 76.2 and precision (mol 7% NaPF) LiF-NaF b x lO3 Precision T range (K) 40 321.52 -99.33 970-1210 * not estimated; parameters from graphical data 174 (76) LiF-NaF Table 76.4. Surface tension LiF-NaF (40mol% NaF) from equation in table 76.3 T Y _1 T Y 1 (K) (dyn cm 7) (K) (dyn cm 7) 970 225.17 1110 211.27 990 223.19 1130 209.28 1010 221.20 1150 207.29 1030 219.21 1170 205.31 1050 217.23 1190 203.32 1070 215.24 1210 201.33 1090 213.25 References [32,33] Viscosity (n) Measurement method: capillary, and oscillational sphere tcchniques [34] Data set was limited to 2 points; the experimental values [34] are given in table 76.5. Table 76.5. Viscosity at 40 mol% NaF T n (K) (cp) 973.2 3.20 1073.2 2.35 References [34] Electrical Conductance («x) Measurement method: c¢lassical ac technique [35] Equation: «k = a + bT (76.3) precision: in table 76.6 uncertainty: ~ £ 3.0% Table 76.6. Parameters of equation (76.3) and precisions Mol 7 NaF -a b x 103 Precision T range(K) 15.0 0.4123 6.964 0.03% 1060-1340 30.0 0.4307 6.115 0.027% 1020-1340 38.0 0.1798 5.551 0.037% 1030-1340 50.0 0.6533 5.653 0.03% 1070-1340 60.0 0.2936 4.354 0.02% 1130-1340 80.0 0.8848 5.166 0.03% 1180-1340 175 (76) LiF-NaF Table 76.7. Specific conductance (ohm ! cm 1) from equations in table 76.6 . Mol 7 NaF (K) 15.0 30.0 38.0 50.0 60.0 80.0 1020 5.81 1040 5.93 5.59 1060 6.97 6.05 5.70 1080 7.11 6.17 5.82 5.45 1100 7.25 6.30 5.93 5.57 1120 7.39 6.42 6.04 5.68 1140 7.53 6.54 6.15 5.79 5.26 1160 7.67 6.66 6.26 5.90 5.34 # 1180 7.81 6.79 6.37 6.02 5.43 5.21 1200 7.95 6.91 6.48 6.13 5.52 5.31 1220 8.09 7.03 6.59 6.24 5.61 5.42 1240 8.22 7.15 6.70 6.36 5.69 5.52 1260 8.36 7.27 6.81 6.47 5.78 5.62 1280 8.50 7.40 6.93 6.58 5.87 5.73 1300 8.64 7.52 7.04 6.70 5.95 5.83 1320 8.78 7.61 7.15 6.81 6.04 5.93 1340 8.92 7.76 7.26 6.92 5.13 6.04 References [35] 6. Safety and Hazards A. Hazard rating (1) Toxicity: inorganic fluorides are generally irritants and toxic. . -3 (ii1) Vapor pressure: LiF, at m.pt. (848°C), ~ 8.8 x 10 “mm; NaF at m.pt. (995°C), ~ 0.5 mm. B. Disaster hazards (1) Molten salt bath "explosions': 1i.e., explosive gen- eration of steam due to bulk water 'carry-over' and/or equipment failure: 1i.e., explosive expansion of "trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [36-41] 176 (76) LiF-NaF 7. Corrosion Table 76.8. Corrosion studies from primary research literature Studies References Cr [42] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [43,44] SSNI-12P [45] Quartz [46] Al [47] Various metals [48] Corrosion studies in molten salts with NaF as one component (e.g., d Ccl, CO3,...) [49-64,71,72] Electrochemical behavior of oxide ions and reiated species in molten fluorides [65-67] Electroanalytical studies in molten fluorides [68] Annotated corrosionm biblio. [69] Corrosion: molten fluorides (survey) [70] Compatability studies: various molten fluorides and principally with LiF and NaF., For thermodynamic (theoretical) considerations, and some considerations relative to commercial grade fluorides, and the use of "gettering" to lower impurity levels, see [70] References [42-72] 8. Diffusion No data 9. Heat of fusion (AH}) No data 177 (76) LiF-NaF 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [73] Table 76.9. Volume change on melting Binary eutectic (mol % NaF) (AVf/VS) Uncertainty 397 19.6% N+ 10% References [73] 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (Az) No data 14, Thermal Conductivity (solid) CAs) No data 15. Cryoscopie Constant Ckf) No data 16. References [1] Bergman, A. G. and Dergunov, E. P., Compt. Rend. Acad. Sci. USSR, 31, 753 (1941). [2] Nikonova, I. N., Berul, S. I., Zhur. Neorg. Khim., 12, 2846 (1967). [3] Matiasovsky, K., Cakajdova, I., Malinovsky, M., "Phase Diagram in the NaF-LiF-AZFs-AZZOS System. I. System NaF-L em L (K) Cohm > o ) 1180 4.859 1280 5.366 1200 4.960 1300 5.467 1230 5.062 1320 5.568 1240 5.162 1340 5.670 1260 5.264 1360 5.771 References [16,19,42] 6. Safety and Hazards (1) (11) (1) (11) A, Hazard rating Toxocity: 1inorganic fluorides are generally irritant and toxic Vapor pressure: NaF at m.pt. (995°C), ~ 0.5mm; CaF, at m.pt. (1418°C) ~ < 0.5mm B, Disaster hazards Molten salt bath "explosions'": 1.e., explosive generation of steam due to bulk water '"carry-over' and/or equipment failure: 1i.e., explosive expansion of '"trapped" air Fluorides evolve highly toxic fumes when heated to de- composition, or contacted with acids References [43-49] 240 (83) CaF,-NaF & 7. Corrosion Table 83.5. Corrosion studies from primary research literature Studies References Cr [50] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [51,52] SSNI-12P [53] Quartz [54] Al [55] Mild steel [56] Various metals [57] Corrosion studies in molten salts with NaF as one component (e.g., . Ccl, CO3,...) [58-74] Electrochemical behavior of oxide ions and related species in molten fluorides [75-77] Electroanalytical studies in molten fluorides [78] Annotated corrosion biblio. [79] Corrosion: molten fluorides (survey) [80] Compatibility studies: various molten fluorides, but principally NaF, CaF and BaF For studies 2’ specifically with molten CaF 2° Z-NaF mixtures, see [56] References [50-80] 8. Diffusion No data 9. Heat of Fusion (AH}) No data, 10, Heat Capacity (Cp) No data 241 11 12, 13. 14, Is. 16, (83) CaF,-NaF 2 . Volume Change on Melting (AV,) f‘ Measurement method: estimated from densities [81] Table 83.6. Volume change on melting Binary eutectic (AVf/VS) Uncertainty (mol % NaF) 67 8.8 8 e I+ = o R References [81] Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Az) No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant (kf) No data References [1] Barton, C. J., Bratcher, L. M. and Grimes, W. R., Unpublished work, "Ref. in Phase Diagrams of Nuclear Reactor Materials”, ed. by Thoma, R. E., U.S. At. Energy Comm. ORNL-2548 (1959). [2] Gross, G. and Rolin, M., ‘Bull. Soc. Chim., France, 568 (1966). [3] Nicollin, C., Lenoir, J. and Euraud, C., Bull. Soc. Chim., France, (11), 4184, (1967). [4] Millet, J. P., Pham, R. and Rolin, M., Rev. Int. Hautes Pemp. et Refract., 11, 277 (1974) [5] Fedotiev, P. P. and Illinskii, V. P., Izv. SPB polit. inst., 20, 745 (1913). [6] Shulga, N. A. and Bukhalova, G. A., Zh. Neorg. Khim., 2, 2136 (1957). [7] Grube, G. and Henne, H., Z. Elektrochem., 36, 129 (1930). [8] Rea, R. F., J. Am. Ceram. Soc., 21, 98 (1938). [9] Manoylov, K. E. and Smirnov, M. N., Trudy Vsesoyuz. Nauch.-Issledovatel. Alyumin.-Magn. Inst., VAMI. [10] Krauze, I. E., DANN, SSSR, 35, 21 (1942). 242 [26] [27] [28] [29] [30] [31] [32] (83) CaF,-NaF Kido, H., Matsumoto, O. and Hayakava, Y., J. Electrochem. Soc., Japan, 26, 4 (1958). Bukhalova, G. A., Berezhnaya, V. T., Zhur. Neorg. Khim., 4, 2596 (1959). J. Inorg. Chem., USSR, 4, 1196 (1959). Bukhalova, G. A., Berezhnaya, V. T., Mateiko, Z. A., Zhur. Neorg. Khim., 7, 1156 (1962). Bukhalova, G. A., Berezhnaya, V. T., Bergman, A. G., Zhur. Neorg. Khim., 6, 2359 (1961). Ishaque, M., Bull. Soc. Chim., France, 127 (1952). Thompson, M., Kaye, A. L., Tr. Electrochem. Soc., 67, 22 (1935). Fedotiev, P. P. and Illinskii, V. P., 7. Anorg. Allg. Chem., 129, 93 (1923). Bukhalova, G. A., Zhur. Neorg. Khim., 4, 117 (1959). Arndt, XK., Kalass, Z., Z. Elektrochem., 30, 12 (1924}. Bukhalova, G. A., Berezhnaya, V. T., Matieiko, Z. A., Zhur. Neorg. Khim., 7, 2233 (1962). Bukhalova, G. A., Sulaimankulov, K., Bostandzhiyan, A. K., Zhur. Neorg. Khim., 4, 1138 (1959). J. Inorg. Chem., USSR, 4, 516 (1959). Bukhalova, G. A., Berezhnaya, V. T., Zhur. Neorg. Khim., 5, 456 (1960). J. Inorg. Chem., USSR, 5, 218 (1960). Silber, P., Ishaque, M., Compt. Rend., 232, 1485 (1951). Bukhalova, G. A., Berezhnaya, V. T., Mateiko, Z. A., Zhur. Neorg. Khim., 7, 1156 (1962). Mateiko, Z. A., Bukhalova, G. A., Sementsova, D. V., Izv. Vyssh. Uchebn. Zaved., Khim i Khim. Tekhnol., 10, 856 (1967). Bergman, A, G., and Banachek, E. I., Izv. Sekt. Fiz. Khim. A., 23, 201 (1953). Janz, G. J. Downey, J. R., Jr., Allen, C. _B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Futectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978}. "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Phystik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibltography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966}, NTIS. 243 [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] (83) CaF,-NaF 2 Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorgantc Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems'", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions'", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Stilicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov ''Nauka' Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Abramov, G. A., and Kozunov, P. T., Trans. Leningrad Ind. Inst., 1, 60 (1939). Robbins, G. D., U.S.A.E.C. Review, ORNO-TM-2180, March, 1968. "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975) Janz,-G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems', NSRDS-NBS 61, Part II (April 1979), U, S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D. C. 20402. "Potential Hazards tn Molten Salt Baths for Heat Treatment of Metals",National Board of Fire Underwriters Research Report No. 2 (1954) "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data",ERDA TID-27163-P1; NTIS., U. S. Dept. Commerce, Springfield, Va. (1977) vide: this work, System 51, CaF 2. 244 [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] (83) CaF,-NaF 2 Brasunas, A., Metal Progr., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Nat'l Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech.-Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov, 119 (1973). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). Koger, J. W., Corrosion, 30, 125 (1974). Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Renort ORNL-TM- 3863, (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc. 102, 42 (1955). Litman, A. P., "Cqrrosion of Volatility Pilot Plant Mark I INOR-S Hydro- fluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs”, ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluoridation in the Oak Ridge Nat'l Lab. Fluoride Volatility Process", ORNL-2832, Oak Ridge Nat'l Lab., (1961). Manly, W. D., Coobs, H. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche,.T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 2nd U, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). I Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- isties of Thermal Energy Storage Eutectic Mixtures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Oak Ridge National Laboratory, Molten Salt Reactor Program, Semiannual Progress Report, ORNL-3708 (1964). 245 b [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] (83) CaFZ-NaP Boser, 0., "Study of Safety Aspects of High-Temperature Thermal Energy Storage Systems", NSF No. AER 75-20605, (December, 1975). Grimes, W. R., and Cuneo, D. R., '"Molten Salts as Reactor Fuels", Reactor Hdbk., 1, 425 (1955). Kochergin, Vv, P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L., and Mamantov, G., J. Electrochem, Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroananl. Chem. (in press) (1978). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Eichelberger, J. L., (Pennwalt Corpn.) "Investtigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry”, ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va. (Dec. 1976). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 246 System 84 NaP-BaP2 1. Melting Temperatures (Tm) Pure substance melting points: NaF 995°C BaPZ: 1320°C Eutectic melting point: 812°C, composition: 63 mol % NaF (31.5 equiv. % NaZPZ) L U B BaFa - NaF 1200 (°C) 1000 800 e | | | ] ] 0 20 60 100 Figure 84.1. NaF-BaF, phase diagram References [1-23] 2. Density (p) Measurement method: Archimedean technique [24] Equation: p = a + bT (84.1) precision: in table 84.1 uncertainty: ~ £ 2.0% Table 84.1. Parameters of equation (84.1) and precisions Mol 7% NaF a -b x lO4 Precision T range (K) 50.0 4.3643 6.2311 0.437% 1230-1450 66.8 3.9022 5.9959 0.87% 1250-1430 83.5 3.3934% 5.7600 0.73% 1230-1430 247 (84) NaF-Ban Table 84.2. Density (g cm_s) from equation in table 84.1 Mol % NaF T (K) 50.0 66.8 83.5 1230 3.598 2.685 1250 3.585 3.153 2.673 1270 3.573 3.141 2.662 1290 3.560 3.129 2.650 1310 3.548 3.117 2.639 1330 3.536 3.105 2.627 1350 3.523 3.093 2.616 1370 3.511 3.081 2.604 1390 3.498 3.069 2.593 1410 3.486 3.057 2.581 1430 3.473 3.045 2,570 1450 3.461 References [24] Surface Tension (y) No data Viscosity (n) No data Electrical Conductance (k) Measurement method: classical ac technique [25] Equation: k = a + bT (84.2) precision: in table 84.3 uncertainty: ~ % 3, Table 84.3. Parameters of equation (84.2) and precision Mol 7% NaF a b x 10 Precision T range(K) 67.6 -3.7363 6.6000 4.36% 1180-1370 248 (84) NaF-BaF, Table 84.4. Specific conductance at 67.6 mol% NaF : from equation in table 84.3 T . T “ -1 -1 -1 -1 (K) (ohm cm ) (K) (ohm cm ) 1180 4.052 1280 4.712 1190 4.118 1290 4,778 1200 4.184 1300 4.844 1210 4.250 1310 4.910 1220 4.316 1320 4,976 1230 4,382 1330 5.042 1240 4.448 1340 5.108 1250 4.514 1350 5.174 1260 4,580 1360 5.240 1270 L.046 1370 5.306 References [25-27] Safety and Hazards A. Hazard rating (1) Toxicity: 1inorganic fluorides are generally irritants and toxic. (ii) Vapor pressure: NaF, at m.pt. (995°C), ~ ) 0.5mm; BaFZ, at m.pt. (1320°C) ~ < 0.5mm. B. Disaster hazards (1) Molten salt bath '"explosions'": i.e. explosive gén- eration of steam due to bulk water ''carry-over" and/or equipment failure; i.e., explosive expansion of "trapped'" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [28-33] 249 (84) NaP-BaF2 7. Corrosion Table 84.5. Corrosion studies from primary research literature Studies References Cr [34] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [35,36] SSNI-12P [37] { Quartz [38] i Al [39] Various metals [40] Corrosion studies in molten salts with NaF as one component (e.g., Cl, COg,...) [41-46,53,54] . Electro-chemical behaviour of | oxide ions and related species i in molten fluorides [47-49] . Electroanalytical studies in molten fluorides [50] Annotated corrosion biblio. [51] Corrosion: molten fluorides (survey) [52] Compatibility studies: various molten fluorides and principally with molten NaF, No studies specific to BaF2 were found. For thermodynamic (theoretical) considerations, and some considerations relative to commercial grade fluorides, and the use of "gettering" to lower impurity levels, see [52]. References [34-52] 8. Diffuston No data 250 10. JLdL 12. 13. 14. 16. 16. (84) NaF-BakF, Heat of Fusion (AH}) No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data |4 P e apor Pressure (pvap) No data Thermal Conductivity (liquid) (Al) No data Thermal Conductivity (solid) CAS) No data Cryoscopie Constant Ckf) No data References [1] Berezhnaya, V. T., Bukhalova, G. A., Zhur. Neorg. Khim., 6, 687 (1961). [2] Bukhalova, G. A., Berezhnaya, V. T., Bergman, A. G., Zhur. Neorg. Khim., 6, 2359 (1961). [3] Bukhalova, G. A., Mateiko, Z. A., Berezhnaya, V. T., Zhur. Neorg. Khim., 7, 1655 (1962). [4] Thompson, M., Kaye, A. L., Tr. Electrochem. Soc., 67, 22 (1935). [5] Bergman, A. G., Banashek, E, I., Izv., Sekt. Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim., 22, 196 (1953). ' [6] Berezhnaya, V. T., Bukhalova, G. A., Zhur . Neorg. Khim., 4, 2600 (1959). J. Inorg. Chem. USSR, 4, 1198 (1959). [7] Bergman, A. G., Banashek, E. I., Izv. Sck. Fiz.-Khim. Anal., Akad. Nauk SSSR, 22, 196 (1953). [8] Trunin, A."A., Shter, G. E., Kosmynin, A. S., Izv. Vyssh, Uchebn. Zaved., Khim. Khim. Tekhnol., 18, 1347 (1975). [9] Grube, G. Z., Z. Elekroch., 33, 481 (1927). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., [10] "Eutectic Data - 2 VOI;; ERDA-TID-27163-P1 & P2; NTIS, Washington, [ GRS [11] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectic Data'", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [12] "International Critical Tables of Numerical Data, Phystics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). 251 [13] [14] [15] [16] [17] (18] [19] [20] [21] [22] [23] [24] [25] (26] [27] (28] [29] [30] (84) NaF-BaF, "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Futectic Compositions and Melting Points Bibltography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Haltide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials', Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Antons”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973, Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems™", Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Porter, B., and Meaker, R. E., United States Department of the Interior, Report of Investigations 6838 (1966). Thompson, M. deK., and Kaye, A. L., Trans. Electrochen. Soc., 67, 169 (1935). T Taniuchi, K., Keilinzokii, 20, 157 (1970). Robbins, G. D., U.S.A.E.C. Review, ORNL-TM-2180. March 1968. "Dangerous Properties of Materials', Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W.,, U. S. Gov't Printing Office, Washington, D. C. (1975). Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems”, NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl13-48-61, Washington D. C. 20402. 252 (84) NaF—BaF2 [31] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board of Fire Underwriters Research Report No.2 (1954), [32] "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworth Co., London (1975). [33] Janz, G. J., Tomkins, R. P. T., Downey, J. R. Jr., and Allen, C. B., "Safety and Hazards', Chapter in "EFutectic Data”, ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) [34] Brasunas, A., Metal Progr., 62, 88 (1952). [35] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). 135] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [37] Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors", Rpt. ORNL-4812-UC-80; NTIS, U. &. Dept. Commerce, Springfield, Va., (Aug. 1972). [38] Heimann, R., Glastech. Ber., 43, 83 (1970). [39] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov, 119 (1973). [40] Koger, J. W., Corrosion, 30, 125 (1974). [41] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [42] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [43] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Renort ORNL-TM- 3863, (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [44] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochen. Soc., 102, 42 (1955) [45] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [46] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems”, ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [47] Mathews, A. L., and Baes, C. F., Inorg. éhem., 7, 373 (1968). [48] Manning, D. L., and Mamantov, G., J. Electrochem. Soc., 124, 480 (1877). [49] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [50] Manning, D. L., and Mamantov, G., J. Electroananl. Chem. (in press) (1978). [51] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). [52] Eichelberger, J. L., (Pennwalt Corpn.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry", ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va. (Dec. 1976). [53] Kochergen, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). B [54] Oziayan?ya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov SSR), 2, 230 (1969). 253 System 85.NaF-A1F3 1. Melting Temperatures (Tm) Pure substance melting points: NaF: 995°C 3 does not melt; sublimes with 1 atm equilm press., at v 1255°C Eutectic melting point: E. 888°C, composition: 15 mol % AlF3 Wi%AIFy 20 40 ' €0 80 1400 NaF-AlF """"’PAIF, +latm ] ] 1 ! [} ] 1000 ,' | LigUAlF, L} ] I ] 1 (OC) [ 739 N 600 560 200 " \ 25 S0 75 NaF AIF, Mol % AlFy Figure 85.1. NaF-AlF3 phase diagram References [1-31]. 2. Denstity (p) Measurement method: Archimedean technique [40,47] Equation: p = a + bT (85.1) precision: in table 85.1 uncertainty: ~ = 254 (85) NaF-ALF 3 Table 85.1. Parameters of equation (85.1) and precisions Mol % NaF a -b x lO4 Precision T range (K) 50 2.4950 6.90 0.18% 1275-1370 55 2.7198 7.82 0.10% 1275-1370 60 2.9921 8.90 0.147% 1275-1370 64 3.1679 9.35 0.19% 1275-1370 70 3.2258 9.20 0.15% 1275-1370 76 3.2733 9.20 0.05% 1275-1370 77 3.2612 9.12 0.07% 1275-1270 80 3.2415 8.98 0.15% 1275-1370 85 3.0535 7.65 0.13% 1275-1370 90 2.8780 6.48 0.15% 1275-1370 100 2.7550 6.36 0.15% 127501370 Table 85.2. Density (g cm_s) from equations in table 85.1 Mol 7% NaF T (K) 50 60 65 70 75 77 85 90 1275 1.615 1.857 1.976 2.053 2.100 2.098 2.078 2.042 1280 1.612 1.853 1.971 2.048 2.096 2.094 2.074 2.039 1290 1.605 1.844 1.962 2.039 2.087 2.085 2.067 2,032 1300 1.598 1.835 1.952 2.030 2.077 2.076 2.059 2.026 1310 1.591 1.826 1.943 2.021 2.068 2.060 2.051 2.019 1320 1.584 1.817 1.934 2,011 2.059 2.057 2.044 2.013 1330 1.577 1.808 1.924 2.002 2.050 2.048 2.036 2.006 1340 1.570 1.800 1.915 1.993 2.040 2.039 2.028 2.000 1350 1.563 1.791 1.906 1.984 2.031 2.030 2.021 1.993 1360 1.557 1.782 1.896 1.975 2.022 2.021 2.013 1.987 1370 1.550 1.773 1.887 1.965 2.013 2.012 2.005 1.980 References [32- 3. Surface Tension Measurement method: Equation: precision: 53] (y) Y maximum bubble pressure [54] = a + bT (85.2) in table 85.3. uncertainty: ~ = 5.0% Table 85.3. Parameters of equation (85.2) and precisions Mol % AlF3 a -b x lO2 Precision T range(K) 27 .4 262.5 10.6 2 * 1275-1350 25.0 297.0 12.8 * 1275-1350 21.9 309.3 13.0 ® 1275-1350 19.0 328.8 14.0 * 1275-1350 13.6 304.5 11.3 * 1275-1350 not estimated; insufficient data 255 (85) NaF-AlF, Table 85.4. Surface tension (dyn cm-l) from equations in table 85.3. 1 Mol % AlF3 T (K) 13.6 19.0 21.9 25,0 27.4 1275 160.4 150.4 143.6 133.8 127.3 1280 159.8 149.6 142.9 133.1 126.8 1290 158.7 148.2 141.6 131.8 125.7 1300 157.6 146.8 140.3 130.6 124.7 1310 156.4 145.4 139.0 129.3 123.6 1320 155.3 144.0 137.7 128.0 122.5 1330 154.2 142.6 136.4 126.7 121.5 1340 153.0 141.2 135.1 125.4 120.4 1350 151.9 139.8 133.8 124.2 119.4 References [44,54] 4., Viscostty (n) Measurement method: oscillating cylinder [53] Equation: no=a+ bl + cT? (85.3) precision: in table 85.5 uncertainty: ~ * 10% Table 85.5. Parameters of equation (85.3) and precisions NaF 3 6 - (mol %) a -b x 10 c x 10 Precision T range (K) 65 44,192 62.11 22.50 0.9% 1220-1310 70 10.475 6.825 0.164 1.0% 1270-1330 80 27.405 31.85 9.538 0,6% 1270-1370 85 40.3892 53.97 18.46 0.6% 1220-1370 90 20.254 24 .03 7.526 0.3% 1220—1370 95 15.457 18.16 5.727 0.1% 1270-1370 100 8.392 8.245 2.198 0.2% 1270-1370 References [53] 256 (85) NaF-ALF, Table 85.6. Viscosity (cp) from equations in table 85.5 Mol % NaF T (K) 65 70 80 85 90 95 100%* 1220 1.907 2.524 ] 2.139 1240 1.772 2.353] 2.029 1260 1.654 2.197 ] 1.924 1280 1.555}{ 2,008} 2.264| 2.055}| 1.826 | 1.595 1.440 1300 1.474 | 1.880| 2.119) 1.928| 1.734 | 1.528 1.388 1320 1.752] 1.982| 1.816| 1.648 | 1.465 1.338 1340 1.852} 1.719| 1.567 | 1.406 1.290 1360 1.730}) 1.636] 1.493 | 1.352 1.244 1370 1.672} 1.601} 1.458 | 1.327 1.222 * The values for 100%Z NaF, based on the work of Brockner, et’al [53], supersede the previous recommendations [57]. References [44,45,52,53,55-57] 5. Electrical Conductance (k) Measurement method: classical ac technique [35,51] Equation: k = a + bT (85.4) precision: in table 85.7 uncertainty: ~ * 3.0% Table 85.7. Parameters of equation (85.4) and precisions Mol % NaF -a b x lO—3 Precision T range (K) 86.2 0.5838 3.488 0.047% 1270-1350 80.0 0.2956 2.738 0.04% 1270-1350 78.1 0.2346 2.639 0.107% 1270-1350 75.0 0.3512 2.475 0.06% 1270-1350 70.3 0.1693 2.237 0.13% 1270-1350 67.7 ~-0.0230 2.025 0.067% 1270-1350 257 (85) NaF-AlF3 Table 85.8. Specific conductance (ohm cm-l) from equations in table 85.7 Mol % NaF T (K) 67.7 70.3 75.0 78.1 80.0 86.2 1270 2.595 2.672 2.792 3.116 3.182 2.846 1280 2.615 2.694 2.817 3.142 3.2009 3.881 1290 2.635 2.716 2.842 3.168 3.236 3.916 1300 2.656 2.739 2.866 3.195 3.264 3.951 1310 2.676 2.761 2.891 3.221 3.291 3.985 1320 2.696 2.78¢4 2.916 3.248 3.319 4,030 1330 2.716 2.806 2.941 3.274 3.346 4.055 1340 2.737 2.828 2.965 3.300 3.373 4.090 1350 2.757 2.851 2.990 3.327 3.401 4,125 References [8,35,36,42—44,51,58-75] Safety and Hazards A. Hazard rating (1) Toxicity: inorganic fluorides are generally quite irritant and toxic. (11) Vapor pressure: no information for this system; but see NaF [78], and AlF, [82]. B. Disaster hazards (1) Molten salt bath "explosions'": 1i.e, explosive generation of steam due to bulk water "carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes, References [76-82]. 258 (85) NaF-AlF, 7. Corrosion Table 85.9. Corrosion studies from primary research literature Studies References [Cr [83] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [84,85] A | SSNI-12P [86] Quartz [87] Al [88] | Various metals [89] [Pt [35,51,68,70,74,90] B ] Boron nitride, carbon, Inconel [8,91,92] | Fused MgO [60] T&mpurities in electrolyte [93,94] C| Graphite [93,94] | Tic, TiBz, CrBZ, ZTN, NbB2 [95-97] rborrosion studies 1in molten salts with NaF as one component (e.g., Cl, CO,,,..) [98-113,120,121] Electrochemical behavior of oxide ions and related species in molten DY fluorides [114-116] Electroanalytical studies in molten fluorides [117] Annotated corrosion biblio. [118] | Corrosion: molten fluorides (survey) [119] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys References [8,35,51,60,68,70,74,83-121] 259 (85) NaF-AlF3 Diffusion Measurement method: + £TC* (90.2) Table 90.2. Parameters of two-independent-variables equation (90.2) a b x 10° | ¢ x 107 | d x10° | e x 107 | £ x 108 Precision 1.85184 | -5.72548 | -2.48988 | 2.44756 | -3.61076 | 2.01655 0.15% Table 90.3. Density (g cm"S) from equations in table 90.1 Mol 7 NaCl T (K) 17.7 37.7 48.5 58.2 66.3 71.1 95.0 1020 1.698 1030 1.693 1.674 1.637 1.588 1040 1.689 1.669 1.649 1.632 1.608 1.583 1050 1.684 1.664 1.644 1.627 1.612 1.603 1.578 1060 1.680 1.659 1.638 1.623 1.607 1.599 1.572 1070 1.675 1.653 1.633 1.618 1.602 1.595 1.567 1080 1.671 1.648 1.628 1.613 1.597 1.591 1.561 1090 1.667 1.643 1.623 1.608 1.593 1.587 1.556 1100 1.662 1.638 1.617 1.604 1.588 1.582 1.551 1110 1.658 1.633 1.612 1.583 1.545 1120 1.628 1.607 1.540 References [25-30] 305 3. Surface Tenston (y) Measurement method: Equation: (90) NaCl-MgCl > maximum bubble pressure [32] Y precision: in table 90.4. Table 90.4. a + bT (90.3) uncertainty: ~ + 2.0% Parameters of equation (90.3) and precision Mol 7% NacCl a -b x lO2 Precision T range (K) 10 81.8 1.20 * 980-1170 20 88.1 1.40 * 880-1170 30 98.5 2.00 * 880-1170 40 105.5 2.30 * 980-1170 50 114.7 2.70 * 980-1170 60 124.4 3.30 * 980-1170 70 130.1 3.50 * 980-1170 80 142.7 4.30 * 980-1170 90 163.9 5.60 * 1030-1170 * not estimated; insufficient data. Table 90.5. Surface tension (dyn cm-l) from equations in table 90.4 Mol %Z NacCl T (K) 10 40 50 60 70 90 980 70.0 83.0 88.2 92.1 95.8 990 69.9 82.7 88.0 91.7 95.5 1000 69 8 82.5 87.7 91.4 95.1 1010 69 .7 82.3 87.4 91.1 94.8 1020 69.6 82.0 87.2 90.7 94 .4 1030 69.4 81.8 86.9 90.4 94.1 106.2 1040 69.3 81.6 86.6 90.1 93.7 105.7 1050 69.2 81.4 86.4 89.8 93.4 105.1 1060 69.1 81.1 86.1 89.4 93.0 104.5 1070 69.0 80.9 85.8 89.1 92.7 104.0 1080 68.8 80.7 85.5 88.8 92.3 103.4 1090 68.7 80.4 85.3 88.4 92.0 102.9 1100 68.6 80.2 85.0 88.1 91.6 102.3 1110 68.5 80.0 84.7 87.8 91.3 101.7 1120 68.4 79.7 84.5 87.4 90.0 101.2 1130 68.2 78985 84,2 87.1 90.6 100.6 1140 68.1 79.3 83.9 86.8 90.2 100.1 1150 68.0 79.1 83.7 86.5 89.9 S0 05 1160 67.9 78.8 83.4 86.1 89.5 98.9 1170 67.8 78.6 83.1 85.8 89.2 98.4 References [26,31-34] 306 (90) NaCl-MgCl2 4, Viscosity (n) Measurement method: oscillating sphere technique [36] Equation: n = a + bT (90.4) precision: in table 90.6 uncertainty: ~ £ 15% Table 90.6. Parameters of equation (90.4) and precisions NacCl 3 (mol %) a b x 10 Precision T range(K) 10 6.166 -4.200 0.00% 980-1080 Equation: n =-A exp (E/RT) (90.5) precision: in table 90.7 uncertainty: -~ £ 25% Table 90.7. Parameters of equation (90.5) and precisions NaCl A x 102 E _1 Precision T range (K) (mol %) (cal mol 7) 20 10.89 5604 1.81% 980-1020 30 11.89 5234 2.50% 980-1020 40 10.28 5297 1.667% 980-1020 50 08.64 5385 0.127% 980-1020 60 08.27 5196 0.777% 980-1020 70 10.09 5070 1.77% 980-1020 80 13.57 4603 3.14% 980-1020 Table 90.8. Viscosity (cp) from equations in tables 90.6 and 90.7 Mol % NacCl T (K) 10 20 30 40 50 60 70 80 980 1.936 1.748 1.561 1.373 1.192 1.363 1.443 1000 1.828 1.656 1.478 1.299 1.130 1.294 1.376 1020 1.882 1.729 1.573 1.403 1.231 1.074 1.231 1.315 1040 1.798 1.640 1.497 1.334 1.170 1.022 1.173 1.259 1060 1.714 1.558 1.427 1.271 1.114 0.975 1.120 1.207 1080 1.630 1.483 1.363 1.213 1.062 0.931 1.071 1.159 At 1073°K, the experimental values for 90 mol % and 100 mol % NaCl were 1.19 and 1.20 respectively. These values are within 167 of NSRDS wvalues [36]. References [31,35,36] 307 5. Electrical Conductance (k) Measurement method: Equation: (90) NaCl-MgCl 2 classical ac technique [37] K: precision: in table 90.9 a + bT (90.6) uncertainty: ~ Table 90.9. Parameters of equation (90.6) and precisions 3 . Mol % NaCl a b x 10 Precision T range(K) 20 -0.8585 2.378 0.30% 980-1040 40 -1.1875 3.063 0.317% 960-1060 60 0.1275 2.029 0.35% 990-1090 80 0.4203 2.409 0.087% 1020-1060 Table 90.10. equations in table 90.9 Specific conductance (ohm * cm 1) from Mol 7% NacCl T (K) 20 40 60 80 960 1.753 970 1.784 980 1.472 1.815 990 1.496 1.845 2.136 1000 1.520 1.876 2.156 1010 1.544 1.907 2.177 1020 1.567 2.197 2.877 1030 1.591 2.217 2.902 1040 1.615 2.238 2.926 1050 1.639 2.258 2.950 1060 2,278 2.974 1070 2.299 1080 2.319 1090 2.339 1100 1110 1120 1130 References [4,25,28,36-39] 308 (90) NaCl-MgCl, 6. Safety and Hazards (1) (i1) (1) (i1) A. Hazard rating Toxicity: NaCl, permitted in foods; MgClZ, slight. Vapor pressure: NaCl at m.pt. (800°C), ~ 0.34mm; MgCl at m.pt. (714°C), ~ 0.llmm. 2 B. Disaster hazards Molten salt bath '"'explosions': 1i.e., explosive generation of steam due to bulk water '"carry-over" and/or equipment failure; 1i.e., explosive expansion of '"trapped" air. Chlorides, when heated to decomposition or contacted with acids, highly toxic chloride fumes are evolved. References [40-45] 7. Corrosion Table 90.11. Corrosion studies from primary research literature Studies References Mo [46] Armco Fe [47-49] NiCr [50] Ti, Zr, Hf, ThCl4 [51,52] Cr [53] Cr, Fe-~Cr [54] Ni alloys [55] Ni-Cr-Al, Ni-Cr-W-Fe, Ni-Cr, Mg, Ni, Zr, Ti, [56] Au, Pt, Mg0O, Al1,0.,, Zirconia (NaCl with adde% aazo) [57] Electrochemical aspects of corrosion [58,59] 'Corrosion - annotated biblio. [60] Thermodynamic redox potentials ‘(diagrammatic analysis) [56,61,62] Reviews: corrosion in molten salts [63-65] Compatibility studies for various molten chlorides and mixtures. For some studies specifically with molten NaCl-MgCl2 mixtures, see [51] References [46-65] 309 (90) NaCl-MgCl, Diffusion Measurement method: in table 90.12 List of diffusing species investigated in NaCl-MgCl2 as solvent precision: in table 90.13 uncertainty: in table 90.12 Table 90.12. Diffusion techniques, uncertainties and species Diffusion technique Uncertainty of recommended study (in values of D) Species faradaic o n o+ A impedance e Cl2 rotating disc 3+ electrode vt 207 Fe Equation: D = A exp (-E/RT) (90.7) Table 90.13. Parameters of diffusion equation (90.7), precisions, and recommended study Species A x lO3 E Temp. range Precision Recommended (cm2 S_l) (cal mol—l) (K) study (a) NaCl-—NgCl2 (50 mol ¥ NacCl) 3+ o Fe 0.404 5130 970-1120 0. 1% [66] Cl2 47.930 13510 863-1125 vt20.17% [67] (b) NaCl—MgCl2 (75 mol 7 NacCl) cl, 0.000165 ~-13600 949-1053 vt1l.1% [67] 310 (0) NaCl-MgCl, 5 Table 90.14, Diffusion coefficients, D x 10 from equations in table 90.13 (cm 2 1 s ) T 25 mol 7% NaCl 50 mol % NaCl | 75 mol 7% NaCl (X) 3+ Cl2 Fe C12 Cl2 863 1.82 875 2.03 900 2.52 925 3.09 950 0.50 at 952 3.75 22.21 975 1.00 at 973 2.86 4,50 18.46 1000 3.06 5.36 15.49 1025 3.25 6.32 13.11 1050 3.46 7.40 11.18 1075 3.66 8.61 1100 3.86 9.94 1125 4 .07 11.40 References: Fe3+[66]; Cl2 [67]. 9. Heat of Fustion (AH}) Measurement method: calculated [69] Table 90.15. Heat of fusion Composition Tm AH'f -1 Uncertainty (mol % NacCl) (°c) (kcal mol ) 607 450° 8.0 v oE 5,07 References [69] 10. Heat Capacity (Cp) Measurement method: calculated [70] Table 90.16. Heat capacity C Composition El 1 T range NaCl:MgClz(mol %) (cal K mol ) (K) Uncertainty 60:40 16.8 Tm(723) ~v o823 N+ 10% For the above composition, Cp(s) 15.4 (cal K—l mol_l); uncertainty of estimated value, v + 10%. References [70] 511 (90) NaCl-MgCl, 11. Volume Change on Melting (AV ) f Measurement method: estimated from densities [71] Table 90.17. Volume change on melting Binary eutectic (AVf/V ) Uncertainty (mol % NaCl) = 60 19.5% v+ 10% References [71] 12. Vapor Pressure (pvap) Measurement method: boiling point technique [72] Equation: log p = A + B/T (90.8) precision: in table 90.18 uncertainty: ~ * 10% Table 90.18. Parameters of equation (90.8) and precision Mol 7 MgCl2 A -B Precision T range (K) 71.0 7.2701 7730 * 1170-1320 58.9 7.3101 7830 * 1170-1320 46.9 7.20(a) 7940 * 1170-1320 35.8 8.2200 9370 * 1170-1320 29.0 8.1800 9180 % 1170-1320 * data reported in equation form; insufficient information for estimate (a) reported as 3.30 [72], possibly due to typographical error Table 90.19. Vapor pressure (mm) from equations in table 90.18 Mol % Mg012 T (K) 71.0 58.9 46.9 35.8 29.0 1170 4.604 4.147 3.263 1.627 2.157 1180 5.238 4.725 3.726 1.902 2.514 1200 6.735 6.095 4.823 2.580 3.388 1220 8.580 7.798 6.192 3.465 4.523 1240 10.87 9.897 7.885 4.608 5.981 1260 13.65 12.47 9.964 6.074 7.839 1280 17.02 15.59 12.50 7.938 10.19 1300 21.08 19.36 15.57 10.29 13.14 1320 25.94 23.89 19.27 13.23 16.81 .References [72] 312 (90) NaCl-MgCl2 13. Thermal Conductivity (liquid) (AR) No data 12, Thermal Conductivity (soZid)(Asj No data 15. Cryoscopic Constant (kf) Measurement method: calculated from AH% [71] Table 90.20. Cryoscopic constant Binary eutectic kf Uncertainty (mol % NacCl) (K mol-lkg) 60.0 9.50 N+ 17 References [71] 16. References [1] Bondarenko, N. V., Zhur. Neorg. Khim., 7, 714 (1962). [2] Menge, O., Z. Anorg. Chem., 72, 162 (1911). [3] Drobot, D. V., Korshunov, B. G., Borodulenko, G. P., Zh. Neorg. Khim., 13, 1635 (1968). [4] Batashev, K. P., Metallurgika, 10, 100 (1935). [5] Neil, D. E., "Thermodynamic Properties of Molten Chloride Solutions"”, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y., Dissertation Abs., 20, 259 (1960). [6] Klemm, W., Beyersdorfer, K., and Asyschkewitsch, Ja., Z. anorg. allgm. Chem., 256, 24 (1948). [7] Scholich, K., Neues Jahrber. Min. Geol. Pal., Beil, 43, 251 (1920). [8] Abramov, G. A., Metallurg., 6, 82 (1935). [9] Speranskaya, E. I., A. N. SSSR. Ser. Khim., 463 (1938). [10] Klemm, W. and Weiss, P., Z. anorg. allg. Chem., 245 278 (1940). [11] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [12] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Comptlations Relevant to Energy Storage. I. Molten Salts: FEutectie Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). 313 [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] (90) NaCl-MgCl, "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Lando lt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts"; Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N, Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index; Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', lzdatel'stov "Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists'”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Huber, R. W., Potter, E. V., and St. Clair, H. W., U. S. Bur. Mines Rept. Invest. No. 4858 (1952). Lillebuen, B., Ph.D. Thesis, The Technical University of Norway, Trondheim, Norway, (1969). Grjotheim, K., Holm, J. L., Lillebuen, B., and @#ye, H. A., Trans. Faraday Soc., 67, 640 (1971). Bondarenko, N. V., and Strelets, Kh. L., J. Appl. Chem. (USSR), 35, 1224 (1962), Zhur. Priklad. Khim., 35, 1271 (1962). B Lundina, Z. F., and Mashovets, V. P., Ukrain. Akad. Nauk. Inst. Khim., %Eggg%k Trudov, Pervot Vsesoyuznoj Konferentzii Neuoduim Rastkoram., 191 Lu?%éggi Z. F., and Mashovets, V. P., Ukrain. Akad. Nauk. Inst. Proc., 191 314 (90) NaCl-MgCl 2 [31] Strelets, Kh. L., Taiz, A. J., and Guljanitzki, H., Metallurgie des Magnesiums, Veb Verlag Technik, Berlin (1953). [32] Desyatnikov, 0. G., Zhur, Priklad. Khim. 29, 870 (1956). [33] Mukaibo, T., and Massuno, T., J.Electrochem. Soc. 17, 127 (1948). [34] Grjotheim, K., Holm, J. L., Lillibuen, B., and @ye, H. A., Inst. Inorg. Chem., Technical University of Norway, N-7034, Trondheim, Norway (1971). [35] Strelets, Kh. L., Zhludneva, V. N. and Reznikov, I. L., Zhur. Priklad. Khim. 28, 643 (1955). [36] Bondarenko, N. V., and Strelets, Kh. L., J. Appl. Chem. (USSR), 38, 1254 (1965), Zhur. Priklad. Khim. 38, 1273 (1965). [37] Nikolio, R., Grjotheim, K., and @Pye, H. A., Acta. Chem. Scand., 24, 489 (1970). [38] Markov, B. E., and Sherbakov, A. A., Zhur. Fiz. Khim., 13, 621 (1939). [39] Hayashi, S., and Sakai, K., J. Chem. Soc. Japan, 76, 101 (1953). [40] "Dangerous Properties of Materials'", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) [41] "Registry of Toxiec Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975) [42] Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Emnergy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems'", NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl3-48-61, Washington D. C. 20402, [43] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals'",National Board of Fire Underwriters Research Report No. 2 (1954) [44] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) [45] Janz, G, J., Tomkins, R, P, T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data'",ERDA TID-27163-P1; NTIS, U, S. Dept. Commerce, Springfield, Va. (1977) [46] Ozeryanaya, I. N., Zalazinskii, G. G., Smirnov, M. V., Finkel'shtein, S. D., and Shamanova, N. D., Zashch. Metal., 11, 66 (1975). [47] Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1085 (1961). [48] Kochergin, V. P., and Shevrina, Z.,, Uch, Zap. Ural. Gos. Univ., 92, 3 (1969). o [49] Kochergin, V. P., et al., Zhur. Priklad. Khim., 34(6), 1258 (1961); ibid., 37(8), 1837 (1964). [50] Seybolt, A. U., Oxid. Metals, 2, 119 (1970). 315 [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64) [65] [66] [67] [68] [69] [70] [71] [72] (90) NaCl-MgCl2 Smirnov, M. V., Kudyakov, V. Ya., Loginov, Ya. A., Rossokhin, E. G., Posokhin, Yu. V., and Puzanova, T. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Shlakov, 1, 115 (1969). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Blectrochen. Soc., 102, 42 (1955). Krasil'nikova, N. A., Ozeryanaya, I. N., and Smirnov, M. V., Zashch. Metal., 17, 446 (1974). Krasil'nikova, N. A., Ozeryanayd, I. N., Smirnov, M. V., and Shamanova, N. D., Zashch. Metal., 10, 446 (1974). Bogdanov, N. I., Varganov, B. Ya., and Kholomonova, N. D., Zh. Prikl. Khim. (Leningrad), 46, 1698 (1973). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Stern, K. H., Panayappan, R., and Flinn, D. R., '"Proceedings Intern. Symp. Molten Salts”, The Electrochem. Soc., Princeton, N. J., p. 64 (1976). Pizzini, S., "Materials Problems in the Industrtal Applications of Molten Salts", Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Flectrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society Inc., Princeton, N. J., p. 581 (1975). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Smirnov, M. V., and Ozeryanaya, I. N., Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Bezvoritnii, V. A., Bezukladnikov, A. B., and Stupina, A. M., Russ. J. Phys. Chem. 48, 290 (1974) Ukshe, E. A., Leonova, L. S., Yavonova, G. N., and Bukun, N. G., Soviet Electrochem. 7, 373 (1971). Petrescu, V., and Petrescu, S., Rev, de Chim. 27, 296 (1976) Maru, H. C., et al., Inst. Gas Technology; "Molten Salt Thermal Energy Storage Systems : Salt Selection” ERDA Rpt. COO-2888-1, Aug. (1976); NTIS, U.S. Dept. Commerce, Springfield, Va. Wicks, C. E. and Block, F. E., U.S. Bur. Mines, Bull. 605 (1963). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). Kushkin, B. N., Rodyakin, V. V., and Kuznetsov, S. I., Zhur. Neorg. Khim., 12, 791 (1967); Russ. J. Inorg. Chem. (Eng.), 12, 414 (1967). 316 System 91 BaClZ-NaC1 1. Melting Temperatures (Tm) Pure substance melting points: NaCl: 800°C BaCl,: 962°C Eutectic melting point: 654°C, composition: 39 mol % BaCl, 1000 |- - BaCl, - NaCl (°C) 800 600 -1 0o 20 40 60 80 100 NaCl BaCl, Mol % BaCl, Figure 91.1. BaCl,-NaCl phase diagram References [1-25] 2. Density (p) Measurement method: Archimedean technique [28] Equation: p =a+ bT (91.1) precision: in table 91.1 uncertainty: ~ = 1.0% 317 (91) BaCl 2 -NaCl Table 91.1. Parameters of equation (91.1) and precisions Mol 7% NaCl a -b x 103 Precision T range(K) 40.0 3.6349 0.8399 0.15% 1040-1120 47 .0 3.6532 0.9586 0.19% 1040-1120 54 .0 3.7799 1.1645 0.12% 1000-1120 57.5 3.2956 0.7440 0.01% 1000-1070 60 3.4208 0.9123 0.09% 990-1100 61.0 3.2735 0.7840 0.01% 1000-1070 64.5 3.3008 0.8840 0.02% 1000-1070 67 3.1909 0.8150 0.06% 990-1110 68.0 2.9889 0.6400 0.00% 1000-1070 71.5 3.0067 0.7200 0.00% 1000-1070 74 2.5799 0.3698 0.01% 1060-1110 75.0 2.6709 0.4680 0.01% 1000-1070 81 2.6378 0.5837 0.09% 1060-1070 82.0 [2.2436] [0.2400] 0.00% 1050-1070 89.0 [2.1654] [0.3200] 0.00% 1050-1070 100 2.2259 0.640 0.00% 1080-1120 Table 91.2. Density (g cm-s) from equations in table 91.1 Mol % NacCl (E) 54.0 57.5 60.0 61.0 64.5 67.0 68.0 71.5 990 2.518 2.384 1000 2.615 2.552 2.509 2.490 2.417 2.376 2.349 2.287 1010 2.604 2.544 2.499 2.482 2.408 2.368 2.343 2.280 1020 2.592 2.537 2.490 2.474 1.399 2.360 2.336 2.272 1030 2.580 2.529 2.481 2.466 2.390 2.352 2.330 2.265 1040 2.569 2.522 2.472 2.458 2.381 2.343 2.323 2.258 1050 2.557 2.514 2.463 2.450 2.373 2.335 2.317 2.251 1060 2.546 2.507 2,454 2,442 2.364 2.327 2.310 2.244 1070 2.534 2.500 2.445 2.435 2.355 2.319 2.304 2.236 1080 2.522 2.436 2.311 1090 2.511 2.426 2.303 1100 2.499 2.417 2.294 1110 2.487 2.286 1120 2.476 References [26-31] 3518 (91) BaCl,-NaCl 3. Surface Tension (y) Measurement method: maximum bubble pressure [33] Equation: y = a + bT (91.2) precision: in table 91.3 uncertainty: ~ = 3,0% Table 91.3, Parameters of equation (91.2) and precisions Mol 7% NaCl a -b x 102 Precision T range(K) 20 235.4 6.70 0.20% 1200-1230 30 213.8 5.50 0.14% 1180-1230 40 210.7 5.90 0.23% 1100-1240 50 197.1 6.00 0.10% 1080-1190 70 178.3 4 .80 0.10% 1080-1190 80 191.3 6.40 0.20% 1080-1180 Table 91.4. Surface tension (dyn cm_l) from equations in table 91.3 Mol 7% NaCl T (KX) 20 30 40 50 70 80 1080 132.7 126.5 122.0 1100 131.5 125.6 120.7 1120 144 .7 130.3 124.6 119.4 1140 143.5 129.1 123.7 118.1 1160 142.3 127.9 122.7 116.8 1180 148 .8 141.2 126.7 121.7 115.6 1200 155.5 147.7 140.0 1220 154.1 146.5 138.8 1240 137.6 References [32-35] 319 4. Viscosity (n) Measurement method: Equation: n precision: in tab Table 91.5. (o) BaClz-NaCI oscillating sphere technique [28] 2 = a + bT + cT? + daT° (91.3) le 91.5 uncertainty: ~ * 35% Parameters of equation (91.3) and precisions NaCl (mol %) a -b x 102 -¢ X 105 d x 108 Precision T range(K) 40 45,232 2.585 5.013 3.541 0.9% 1050~1140 47 -27.572 -18.504 25.252 9.968 1.5% 1030~-1140 54 48.026 1.215 8.274 5.137 11.97 1000~1140 60 36.842 1.118 5.828 3.659 1.3% 1000~1140 67 32.640 2.127 3.196 2.397 0.6% 1000~-1140 74 34.626 2.797 2.448 2.101 1.0% 1000-1140 81 33.133 3.572 0.658 1.209 0.7% 1030-1140 Equation: n = A exp (E/RT) (91.4) precision: in .table 91.6 uncertainty: ~v £ 35% Table 91.6. Parameters of equation (91.4) and precisions NaCl A x 102 E _; Precision (mol %) (cal mol ) 100 1.134 10553 1.58% 320 (91) BaCl.,-NaCl 2 Table 91.7. Viscosity (cp) from equations in tables 91.5 and 91.6 Mol % NacCl T (K) 40 47 54 60 67 74 81 1000 4.51 3.97 3.38 3.19 1010 4.28 3.80 3.25 3.05 1020 4.06 3.63 3.13 2.92 1030 4.05 3.87 3.48 3.02 2.80 2.57 1040 3.87 3.68 3.34 2.91 2.69 2.47 1050 3.80 3.71 3.51 3,21 2.82 2.59 2.37 1060 3.67 3.56 3.36 3.19 2.73 2.50 2.28 1070 % 455 3.43 3.23 2.98 2.66 2.41 2.19 1080 3,44 3.30 3.11 2.88 2.59 2.33 2.11 1090 3.34 3.19 3.00 2.80 2.53 2.26 2.04 1100 3.26 3.10 2.92 2.73 2.48 2.20 1.97 1110 3.19 3.02 2.85 2.67 2.44 2.15 1.91 1120 3.13 2.96 2.80 2.62 2.40 2,11 1.86 1130 3.09 2.91 2.77 2.59 2.38 2.08 1.81 1140 3.06 2.88 2.75 2.57 2.37 2.05 1.77 References [27,28,36] Electrical Conductance (x) Measurement method: + eC® + £CT® (93.2) (C = mol % CaClz) 344 o® (93) KCl-CaCl2 Table 93.2. Parameters of two-independent variables equation (93.2) and precisions a b x 103 c X 105 d x 10lO e X 107 f x 109 Precision 1.72672 | 4.92335 | -2.48640 | -1.71243 | 1.85373 | 1.10542 0.097% Table 93.3. Density (g cm's) from equations in table 93.1 Mol % XC1 T (K) 22.3 31.9 49.9 71.8 83.8 92.8 1070 1.612 1.561 1080 1.878 1.786 1.606 1.555 1090 1.923 1.874 1.780 1.663 1.600 1.549 1100 1.919 1.869 1.774 1.657 1.594 1.542 1110 1.915 1.864 1.769 1.652 1.588 1.536 1120 1.911 1.859 1.763 1.646 1.582 1.530 1130 1.907 1.854 1.757 1.641 1.576 1.524 1140 1.903 1.849 1,752 1.635 1.570 1150 1.899 1.844 1.746 1.630 1.564 1160 1.895 1.839 1.741 1.624 1.558 1170 1.891 1.834 1.735 1.619 1.552 References [14,30-36] Surface Tenstion (y) Measurement method: flat pin (detachment) [30] Lquation: y = a + bT (93.3) precision: in table 93.4 uncertainty: ~ * 2.0% Table 93.4. Parameters of equation (93.3) and precisions Mol % XC1 a -b x 103 Precision T range (K) 9.8 186.26 49.86 0.037% 1080-1179 22.6 183.46 55.78 0.11% 1050-1170 31.9 183.55 58.97 0.097% 1070-1170 44 .5 182.70 63.44 0.05% 1070-1170 44 .7 181.36 63.50 0.05% 1080-1140 57.8 185.42 71.42 0.01% 1050-1140 83.6 182.51 75.77 0.077% 1070-1150 92.8 170.68 67.45 0.097 1070-1140 345 (93) KCl-CaCl, Table 93.5. Surface tension (dyn cm-l) from equations in table 93.4 MolR7R SET T (X) 22.6 31.9 44.5 44,7 57.8 1050 124 .9 110.4 1060 124.3 109.7 1070 123.8 120.5 114.8 109.0 1080 123.2 119.9 114.2 112.8 108.3 1090 122.7 119.3 113.6 112.2 107 .6 1100 122.1 118.7 112.9 111.5 106.9 1110 121.6 118.1 112.3 110.9 106.1 1120 121.0 117.5 111.7 110.2 105.4 1130 120.4 116.9 111.0 109.6 104.7 1140 119.9 116.3 110.4 109.0 104.0 1150 119.3 115.7 109.7 1160 118.8 115.1 . 109.1 1170 118.2 114.6 108.5 References [30,34,37-43] Viscosity (n)J No data Electrical Conductance (k) Measurement method: + eTc? + £CT%® (97.3) (C = mol CaClz) Table 97.4. Parameters of two-independent-variables equation (97.3) a b x 10-1 c X 103 d x 1010 e X 106 f x 108 precision 63.14053 5.00268 6.83865 -7.82398 -2.43231 -6.82139 0.437% 380 Table 97.5. (97) CaCl % -MgC1, Surface tension (dyn cm-l) from equations in table 97.2 Mol % MgCl, T (K) 15.2 34.6 53.0 65.4 83.4 86.7 1080 127.4 70.8 1090 127.1 107.9 90.7 70.7 68.6 1100 126.8 107.7 90.5 81.3 70.6 68.5 1100 126.5 107.6 90. 4 81.2 70.5 68.5 1120 126.2 107 .4 90. 2 81.1 70.5 68 .4 1130 125.9 107.2 90.1 81.0 70.4 68.3 1140 125.6 107.0 89.9 81.0 70.3 68.3 1150 125.3 106.8 89.8 80.8 70.2 68.2 1160 125.0 106.6 89.6 80.7 68.1 1170 124.7 106.4 89.5 80.6 68.1 1180 80.4 1190 References [20,23,24] 4. Viscosity (n/ Measurement method: Equation: precision: in oscillating sphere technique [25] 2 = a + bT + cT" + dT table 97.6 3 uncertainty: ~ % (97.4) Table 97.6. Parameters of equation (97.4) and precisions MgClz 5 8 (mol %) a b x 10 -¢c x 10 d x 10 Precision T range (K) 30 52.661 ~5.244 2.348 2.698 0.80% 1070-1110 45 1.945 0.646 0.556 0.29% 1070-1110 60 3.389 0.406 0.473 0.26% 1090-1110 75 8.968 -0.569 0.334 0.246 0.467% 1070-1120 90 18.555 -1.616 0.969 0.952 0.29% 1070-1120 381 5. (97) CaClZ-MgC1 % References [25] Electrical Conductance Measurement method: Equation: precision: in Table 97.8. Table 97.7. Viscosity (cp) from equations in table 97.6 Mol % MgCl, T (K) 30 45 60 75 90 1070 2.718 2.491 2.066 1.830 1080 2.624 2,437 2.262 2.023 1.790 1090 2.543 2.381 2.200 1.980 1.754 1100 2.475 2.323 2,137 1.938 1.7225 1110 2.4290 2.265 2.073 1.897 1. 605 1120 1.857 1.673 () classical ac technique [26] « =a+ bT + cT® (97.5) table 97.8 uncertainty: ~ = 5.0% Parameters of equation (97.5) and precisions Mol 7 MgCl2 a b x 103 c X 106 Precision T range(K) 20 -3.2418 5.025 0 0.287% 1050-1080 40 5.3906 -10.262 6.677 0.117% 1000-1050 60 -1.5310 3.275 0 0.247 980-1040 80 2.5710 -4.414 3.346 0.127% 1000-1050 Table 97.9. Specific conductance (ohm'1 cm_l) from equations in table 97.8 Mol % Mg012 T (K) 20 490 60 80 980 1.678 990 1.711 1000 1.805 1.744 1.503 1010 1.836 1.776 1.527 1020 1.869 1.809 1.550 1030 1.903 1.842 1.575 1040 1.939 1.875 1.600 1050 2.034 1.976 1.626 1060 2.084 1070 2,135 1080 2,185 1090 2.235 References [18,26] 382 (97) CaCl,-MgCl, 6. Safety and Hazards A, Hazard rating (1) Toxicity: CaClz, very low; MgClz, slight. (ii) Vapor pressure: at m.pt. (782°C), ~ 2 x 10'4mm; MgCl2 at m.pt. (714°C), ~ 0.11lmm. B. Disaster hazards (1) Molten salt bath "explosions': 1i.e., explosive generation of steam due to bulk water 'carry-over: and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Chlorides evolvehighly toxic fumes when heated to de- composition, or contacted with acids. References [27-32]} 7. Corrosion Table 97.10. Corrosion studies from primary research literature Studies ‘ References Zr [33] Ti, Zr, HE, ThCl4 [34] Pb, Pb-Bi [35] Fe [36] Electrochemical aspects [37,38] Thermodynamic approach [39-41] Corrosion in molten salts, annotated biblio. [42] Reviews: corrosion in molten salts [43=-45] Compatibility studies for various molten chlorides and mixtures. For studies specifically with molten CaC12- MgCl2 see [36]. References [33-45] 8. Diffusion No data 9. Heat of Fusion (AH}) No data 383 (97) CaCl,-MgCl, 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (AR) No data 14. Thermal Conductivity (solid) (AS) No data 15. Cryoscopic Constant (kf) No data 16. References [1] Menge, O., Z. Anorg. Chem,, 72, 162 (1911). [2] Ivanoc, A. I., Sbornik Statei Obshchei Khim., Akad. Nauk, SSSR, 1, 754 (1953). [3] Matiasovsky, K., Chem. Zvesti., 13, 69 (1959). [4] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [5] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectic Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [6] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [7] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [8] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [9] Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [10] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. 384 [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] f22] [23] [24] [25] [26] [27] [28] (97) CaClz-MgCI2 Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems', Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials"”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions’, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov ''Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Huber, R. W., Potter, E. V., and St. Clair, H. W., U. S. Bur. Mines Rept. Invest. No, 4858 (1952). Maurit, A. A., Zhur. Priklad. Khim., 39, 1285 (1966}, J. Appl. Chem. USSR, 39, 1203 (1966). Lillebuen, B., Ph.D. Thesis, The Technical University of Norway, Trondheim, Norway (1969). Grjotheim, K., Holm, J. L., Lillebuen, B., and ¢ye, H. A., Trans. Faraday Soc., 67, 640 (1971). Markov, B. F., Prisyazhnyi, V. D., and Prikhod'ko, G. P., Ukrain. Khim. Zhur., 36, 251 (1970). Grjotheim, K., Holm, J. L., Lillibuen, B., and Pye, H. A., Inst. Inorg. Chem., Technical University of Norway, N-7034, Trondheim, Norway (1971). Zezyanov, S. P., and Il'ichev, V. A., Russ. J. Inorg. Chem. 11, 936 (1966). Dumas, D., Fjeld, B., Grjotheim, K., and @ye, H. A., Acta. Chemica Scand., 27, 319 (1973). Nikolio, R., Grjotheim, K., and @ye, H. A., Acta. Chem. Scand., 24, 489 (1970). "Dangerous Properties of Materials'", Sax, N, I,, Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances"”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H, E., W., U. S. Gov't Printing Office, Washington, D. C. (1975). 385 [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] (97) CaCl,-MgCl 2 2 Janz, G. J., et al., "Physical Properties Data Compilationec Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems", NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D. C. 20402. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board of Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J, R, Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectic Data”, ERDA TID-27163-P1; NTIS, U. S, Dept. Commerce, Springfield, Va. (1977) Thai, V., Ozeryanaya, I. N., and Smirnov, M. V., Tri. Inst. Elektrokhim., Ural. Nauch. Tsentr. Akad. Nauk SSSR, 19, 69 (1973). Smirnov, M. V., Kudyakov, V. Ya., Loginov, Ya. A., Rossokhin, E. G., Posokhin, Yu. V., and Puzanova, T. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Shlakov, 1, 115 (1969). Vasin, B. D., Nichkov, I. F., and Raspopin, S. P., Izv. Vyssh. Ucheb. Zaved., Tsvet., Met., 15, 102 (1972). Kochergin, V. P., Khaibuilina, V. P., and Potapova, 0. G., Zh. Neorg. Khim., 1, 2617 (1956). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts'", Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Electrochemical Approaches to Corroston in Molten Salts', Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society Inc., Princeton, N. J., p. 581 (1975). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Smirnov, M. V., and Ozeryanaya, I. N., Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). 386 System 98 BaCl,-MgCl 2 2 1. Melting Temperatures (Tm) Pure substance melting points: BaCl,: 962°C MgCl1,: 714°C Eutectic melting point: E: 556°C, composition: 65 mol % MgC12 P: 590-600°C, composition: 60 mol % MgCl2 1000 — {*C) 800 600 0 20 40 60 80 100 BaCl, MgCl, Mol % MgCl, Figure 98.1. BaCl,-MgCl 2 phase diagram 2 References [1-19] 2. Density (p) Measurement method: Archimedean technique [20] Equation: p=a+ bT (98.1) precision: in table 98.1 uncertainty: ~ = 1.0% Table 98.1. Parameters of equation (98.1) and precision Mol % MgCl2 a -b x 10 Precision T range (K) 19.6 3.836 7.1 * 1030-1190 42.2 3.569 7.5 * 1030-1190 68.6 3.010 6.4 * 1030-1190 86.8 2.461 4.7 3 1030-1190 95.2 2.171 3.6 * 1030-1190 100.0 1.988 3.0 * 1030-1190 ¥ not estimated, insufficient data 387 (98) BaCl,-MgCl, Table 98.2. Density (g cm-s) from equations in table 98.1 Mol % MgCl2 T (K) 19.6 42.2 68.6 86.6 95.2 1030 3.105 2.797 2.351 1.977 1.801 1050 3.090 2.782 2.338 1.968 1.793 1070 3.076 2.767 2.325 1.958 1.786 1090 3.062 2.752 2.312 1.949 1.779 1110 3.048 2,737 b5 9% 1.940 1.772 1130 3.034 2.722 2.287 1.930 1.765 1150 3.019 2.707 2.274 1.921 1.757 1170 3.005 2.692 2.261 1.911 1.750 1190 2.991 2.677 2.248 1.902 1.743 References [20-22] 3. Surface Tenstion (y) Measurement method: maximum bubble pressure [23] Equation: Yy = a + bT (98.2) precision: in table 98.3 uncertainty: ~ & 3.0% Table 98.3. Parameters of equation (98.2) and precision Mol 7% MgCl2 a -b x 102 Precision T range (K) 25.0 217.5 7.0 * 1030-1190 40.0 164.2 4.1 * 1030-1190 60.0 143.1 4.0 g 1030-1190 80.0 121.4 3.5 ¢ 1030-1190 ¥ not estimated; insufficient data 388 4. (98) BaClZ-MgCl2 Table 98.4. Surface tension (dyn cm'l) from equations in table 98.3 Mol % MgCl2 T (K) 25.0 40.0 60.0 80.0 1030 145.4 122.0 101.9 85.4 1050 144.0 121.2 101.1 84 .7 1070 142.6 120.3 100.3 84.0 1090 141.2 119.5 99.5 83.3 1110 139.8 118.7 98 .7 82.6 1130 138.4 117.9 97.9 81.9 1150 137.0 117 .1 97.1 81.2 1170 135.6 116.2 96.3 80.5 1190 134.2 115.4 95.5 A79.8 References [22,23] Viscostty (n) Measurement method: oscillating sphere technique [24] Equation: n = a + bT «+ cT precision: in table 98.5 2 (98.3) uncertainty: ~ £ 10% Table 98.5. Parameters of equation (98.3) and precisions BaCl, 2 5 (mol %) a -b x 10 c x 10 Precision T range (K) 10 35.938 6.006 2.633 0.96% 970-1070 20 - 47.397 §.192 3.686 1.23% 970~-1070 30 46.139 7.752 3.403 1.00% 970-1070 40 51.269 8.474 3.658 0.96% 970-1070 50 88.348 14.88 6.443 1.36% 970-1070 60 24 .375 1.940 ¥ *Precision not estimated insufficient data set. 389 (98) BaCl.-MgCl /. Z Table 98.6. Viscosity (cp) from equations in table 98.5 Mol % BaCl2 T (K) 10 20 30 40 50 60 970 2.45 2.62 2.96 3.49 4.63 980 2.37 2.52 2.85 3.36 4.40 990 2.29 2.42 2.75 3.23 4.18 1000 2.21 2.34 2.65 3.11 3.98 1010 2.14 2.26 2.56 3.00 3.78 1020 2.07 2.19 2.47 2.89 3.61 4.59 1030 2.01 2.12 2.40 2.80 3.44 4,39 1040 1.95 2.07 2.33 2.70 3.28 4.20 1050 1.90 2,02 2.26 2.62 3.14 4.01 1060 1.86 1.98 2.20 2.55 3.01 3.81 1070 1.82 1.94 2.15 2.48 2.90 3.62 References [24] 5. Electrical Conductance (k) Measurement method: classical ac technique [21] Equation: kK = a+ bT + cT? (98.4) precision: in table 98.7 uncertainty: ~ £ 3,0% Table 98.7. Parameters of equation (98.4) and precisions Mol % MgCl2 -a b x 103 c X 106 Precision T range(K) 35.5 1.046 2.42 0 0.81% © 1180-1320 L. b 0.687 2.15 0 1.27% 1140-1340 68.6 2.302 5.20 -1.37 0.24% 1040-1340 390 (98) BaClz-MgC12 Table 98.8. Specific conductance (ohm-1 cm-l) from equations in table 98.7 Mol % MgCl, T (K) 35.5 bbb 68.6 1040 1.63 1060 1.67 1030 1.72 1100 1.76 1120 1.81 1140 1.85 1160 1.80 1.89 1180 1.80 1.84 1.93 1200 1.85 1.88 1.97 1220 1.90 b €)% 2.01 1240 1.95 1.97 2.04 1260 2.00 2.01 2.08 1280 2.05 2.05 2.11 1300 2.09 2.10 2.15 1320 2.14 2.14 2.18 1340 2.18 2.21 References [21,22,24)] 6. Safety and Hazards A. Hazard rating (1) Toxicity: MgCl slight; BaCl toxic (orally). 2’ 2’ (ii) Vapor pressure: MgCl, at m.pt. (714°C) ~ 0.1lmm; BaCl, at m.pt. (962°C), ~ < 0,5mm. B, Disaster hazards (1) Molten salt bath "explosions'": 1i.,e., explosive generation of steam due to bulk water '"carry-over' and/or equipment failure; i.e., explosive expansion of '"trapped" air. (ii) Chlorides evolve highly toxic fumes when heated to decomposition, or contacted with acids. References [25-31] 391 (98) BaClz-MgCI2 7. Corrosion Table 98.9. Corrosion studies from primary research literature Studies References Zr [32] Fe, steels [33-37] Mg, Ni, Zr, Ti [38] Ti, Zr, Hf, ThCl4 [39] Pb, Pb-Bi [40] Thermodynamics of corrosion [39,41,42] Electrochemical approach [43,44] Corrosion in moltemn salts, annotated biblio. [45] Compatibility studies: Principally with molten BaCl, or molten MgClz, for some studies with molten 2 mixtures of BaCl,-MgCl see [33]. 2 2’ References [32-45] 8. Diffusion No data 9. Heat of Fusion (AH}) No data 10. Heat Capactity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [46] Table 98.10. Volume change on melting Binary eutectic (AVf/VS) (mol % BaClz) Uncertainty 35 9.0% References [46] 392 (98) BaClz-MgC12 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (Al) No data 14, Thermal Conductivity (solid) (AS) No data 15. Cryoscopiec Constant (kf) No data 16. References [1] Kordes, E., Z. Anorg. U. Allgem. Chem., 154, 92 (1926). [2] Bondarenko, N. V., Tr. Vses. Nauch.-Issled. Alyumin-Magnievy1i Inst., 77 (1962). [3] Bondarenko, N. V., Zhur. Neorg. Khim., 7, 714 (1962). [4] Valentin, J., Compt. rendu., 175, 1061 (1922). [5] Sandonnini, C., atti dela Reak. Acad. dei Lincei, (5), 21, 11 634 (1912). [6] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 & P2; NTIS, Washington, D. C. (1977). [7] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectie Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [8] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [9] "Landolt-Bornstein Zahlenwert und Funktionen aus Phystk, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961}. [10] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [11] Robertson, W. D., "Binary Phase Diagrams of Halide Salts"”, Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966}, NTIS. [12] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [13] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). 393 [14] [L5] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] (98) BaCl.-MgCl 2 2 Voskresenskaya, N. K., ed., "Handbook of Solid-Liqutd Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organie Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., '"Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'", Izdatel'stov ''Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer., Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Reding, J. N., J. Chem. and Eng. Data, 10, 1 (1965). Huber, R. W., Potter, E. V., and St. Clair, H. W., U. S. Bur. Mines Rept. Invest. No. 4858 (1952). Bondarenko, N. V., and Strelets; Kh. L., J. Appl. Chem. (USSR), 35, 1224 (1962), Zhur. Priklad. Khim., 39, ULyl (1962). T Reding, J. N., J. Chem. and Eng. Data 11, 239 (1966). Bondarenko, N. V., and Strelets, Kh. L., J. Appl. Chem. (USSR), 38, 1254 (1965), Zhur. Priklad. Khim., 38, 1273 (1965). vide: this work, System 54, BaClZ. "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S, Gov't Printing Office, Washington, D. C. (1975) Janz, G, J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII., Molten Salts: Data on Single and Multi-Component Salt Systems”, NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl3-48-61, Washington D. C, 20402. "Potential Hazards in Molten Salt Baths for Heat Treatment of gefals"jNational Board of Fire Underwriters Research Report No. 1954 "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworth Co., London (1975) Janz, G. J., Tomkins, R. P, T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectiec Data'",ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) 394 [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] (98) BaCl,-MgCl 2 2 Thai, V., Ozeryanaya, I. N., and Smirnov, M. V., Tri. Inst. Elektrokhim., Ural. Nauch. Tsentr. Akad. Nauk SSSR, 19, 69 (1973). Kochergin, V. P., Khaibuilina, V. P., and Potapova, 0. G., Zh. Neorg. Khim., 1, 2617 (1956). Jackson, J. H., and LaChance, M. H., Trans. Am. Soc. Metals, 16, 157 (1954). Kochergin, V. P., Putina, O. A., Devyatkin, V. N., and Kanaeva, E. T., Tr. Vses. Nauch. Issled. Proekt. Inst. Alyum., Magn. Electrodn., 75, 51 (1971). Kochergin, V. P., Kabirov, A. V., Skornyakova, 0. N., J. Appl. Chen. USSR, 27, 883 (1954). Kochergip, V. P., Druzhinina, E. P., Men'shenina, G. V., Asanova, E. P Zh. Prikl. Khim., 33, 1580 (1960). * Smirnov,_M. V., Kudyakov, V. Ya., Loginov, Ya. A., Rossokhin, E. G Posokhin, Yu. V., and Puzanova, T. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Shlakov, 1, 115 (1969). * Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Vasin, B. D., Nichkov, I. F., and Raspopin, S. P., Izv. Vyssh:. Ucheb. Zaved., Tsvet. Met.,, 15, 102 (1972). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts'", Proceedings of the European Conference on the Development of Molten Salts Applications”, p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts”, Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society Inc., Princeton, N, J., p. 581 (1975). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 395 System 99 KCl-MgClz-CaC12 1. Melting Temperature (Tm) Pure substance melting points KC1: 770°C MgCl,: 714°C CaClzz 782°C Eutectic melting point: E,: 440°C, composition: 28 wt % KC1l, 49 wt % MgCl1,, 23 wt % CaCl, EZ 434°C, composition: 62 wt % KCl, 35 wt % MgClz, 3 wt % CaCl2 Plz 446°C, composition: 26 wt % KCl, 49 wt $% MgClz, 25 wt % CaCl2 P2 437°C, composition: 59 wt % KC1l, 38 wt % MgClz, 3 wt % CaCl2 P €, KCI Figure 99.1. KCl-MgClZ-CaCl2 phase diagram References [1-16] 2. Denstty (p) No data 3. Surface Tension (y) No data 4. Viscosity (n) No data 5. Electrical Conductance (k) No data (99) KCl-MgClZ-CaC12 6. Safety and Hazards (1) (i1) (1) (ii) A, Hazard rating Toxicity: KC1l, slight; MgClz, slight, CaClZ, slight. Vapor pressure: KCl at m.pt. (770°C), ~ 0.42mm; MgC1, at m,pt. (714°C), ~ 0.llmm; CaCl, at m.pt. (782°C), v 2 x 107 %mm, B. Disaster hazards Molten salt bath "explosions': i.e., explosive generation of steam due to bulk water "carry-over'" and/or equipment failure; i.e., explosive expansion of '"trapped" air. Chlorides evolve highly toxic fumes when heated to decomposition, or contacted with acids. References [17-22] 7. Corrosion Table 99.1. Corrosion studies from primary research literature Studies References Armco Fe, various steels [23,24,29,30] Cr [25] Cr, Fe-Cr [26] Mg, Ni, Zr, Ti [27] Ti, Zr, HE, ThCl4 [28] Solubility of oxides (Ni, Ca, Zn, Mg) [27,31] Zr [32] Fe, steels [33-37] Pb, Pb-Bi [38] Electrochemical aspects [31,39] Thermodynamic approach [27,40,41] Corrosion in molten salts, annotated biblio. [42] Reviews: corrosion in molten salts [43-47] Compatibility studiés for various molten chlorides and their mixtures. No compatibility studies found specifically for molten KCl—MgClZ—CaClZ. For studies with the binaries see: KCl—MgCl2 [92]; KCl-CaCl2 [93]; MgCl,-CaCl, [97]. References [23-47] 397 (99) KCl—MgClz—CaC12 8. Diffusion ‘ No data 9. Heat of Fusion (AH;) Measurement method: calculated [48] Table 99.2. Heat of fusion A T ARS . Composition m f -1 Uncertainty KC1 : CaClzzMgCl2 (mol Z) (°c) (kcal mol ) 24:25:51 487° 7.7 v+ 5% References [48] 10. Heat Capacity (Cp) Measurement method: calculated [49] Table 99.3. Heat capacity C Composition El -1 T range KCl:CaClzzMgClz(mol %) (cal K mol ) (K) Uncertainty 23.9:24.,7:51.3 20.3 Tm(733) - 823 vt 107 A -1 -1 . For the above composition, Cp(s) = 17.5 (cal K mol 7); uncertainty of estimate, Vv + 107. References [49] 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (AR) No data 14, Thermal Conductivity (solid) (As) No data 398 (99) KC1-MgCl,-CaCl, 15. Cryoscopic Constant (kf) Measurement method: calculated from AH% [50] Table 99.4. Cryoscopic constant k Composition fl Uncertainty (K mol “kg) Ternary eutectic (a) 14 ~o+ 27 (a) KCl: MgCl CaCl_ : 24:51:25 mol 7 2° 2 References [50] 16. References [1] Ivanov, A. I., Izvest. Sektora Fiz.-Khim. Anal., Inst. Obshchei Neorg. Khim., Akad. Nauk SSSR, 23, 197 (1953). Dokl. Akad. Nauk SSSR, 86, 539 (1952). [2] Strelets, Kh. L., Bondarenko, N. V., Khim. Rasplavlen, Sol I Shlakov. Akad. Nauk SSSR Ural, 1960, 107 (1962). [3] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, Dl Go (880 7 e [4] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [5] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [6] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik!", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [7] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [8] Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [9] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng- 26. [10] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems™, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1979). [11] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS), 399 [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] (99) KC1-MgCl,-cCaCl, | Sinistr%, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility | Gaps in Molten Salt Systems”, Institute of Physical Chemistry, | University of Pavia (Italy) (1968). Shaffey, P. T. B., "High Temperature Materials", Plenum Press Handbooks '1 of High Temperature Materials, No. 1, Materials Index, Plenum i Press, New York, 1964. Franzoz%ni, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organte Antons”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A._et al., "Handbook of Phase Diagrams of the Siliecates, Vqlqme 1: Binary Systems, Volume 2, Metal-0Oxygen Compounds in Stlicate Systems”, Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists'", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H, E. W., U, S. Gov't Printing Office, Washington, D. C. (1975) Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems”, NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D. C., 20402. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals",National Board of Fire Underwriters Research Report No. 2 (1954) "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectie Data”,ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Kochergin, V. P., and Shevrina, Z., Uch. Zap. Ural. Gos. Univ., 92, 3 (1969). Kochergin, V. P., Bochkareva, N. N., and Yarysheva, I. A., Zashch. Metal., 6, 457 (1970). Krasil'nikoya, N. A., Ozeryanaya, I. N, , and Smirnov, M. V., Zashch. Metal., 17, 466 (1974). Krasil'nikova, N. A., Ozeryanaya, I. N., Smirnov, M. V., and Shamanova, N. D., Zashch. Metal., 10, 446 (1974). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Smirnov, M. V., Kudyakov, Y. Ya., Loginov, Ya. A., Rossokhin, E. G., Posokhin, Yu. V., and Puzanova, T. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Shlakov, 1, 115 (1969)}. Kochergin, V. P., Garpinenko, M. G., Skornyakova, O.N., and Minulina, M. L., Zhur. Priklad. Khim., 37, 566 (1956). 400 [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] (99) KC1-MgCl,-CaCl 2 2 Kocherg%n, V. P., and Maletina, L. E., Zhur. Priklad. Khim., 37(8), 1837 (1964). T Pizzini, S., "Materials Problems in the Industrial Application of Molten Salts', '"Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203 (1973) Battelle, Geneva. Thai, V., Ozeryanaya, I. N., and Smirnov, M. V., Tri. Inst. Elektrokhim., Ural. Nauch. Tsentr. Akad. Nauk SSSR, 19, 69 (1973). Kochergin, V. P., Khaibuilina, V. P., and Potapova, 0. G., Zh. Neorg. Khim., 1, 2617 (1956). Jackson, J. H. and LaChance, M. H., Trans. Am. Soc. Metals, 16, 157 (1954). Kochergin, V. P., Putina, O. A., Devyatkin, V. N., and Kanaeva, E. T., Tr. Vses. Nauch. Issled. Proekt. Inst. Alyum., Magn. Electrodn., 75, 51 (1971). Kochergin, V. P., Kabirov, A. V., Skornyakova, O: N., J. Appl. Chen. USSR, 27, 883 (1954). Kochergin, V. P., Druzhinina, E. P., Men'shenina, G. V., Asanova, E. P., Zh, Prikl. Khim., 33, 1580 (1960). Vasin, B. D., Nichkov, I. F., and Raspopin, S. P., Izv. Vyssh. Ucheb. Zaved., Tsvet, Met., 15, 102 (1972). - Johnson, K. E., "Electrochemical Approaches to Corrosion in Mthen Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J., p. 581 (1975). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Smirnov, M. V., and Ozeryanaya, I. N., Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). Ketelaar, J. A. A,, Chemie. Ing. Techn., 45, 667 (1973). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Smirnov, M. V., Kudyakov, Ya. V., Podlesnyak, N. P., Ozeryanaya, I. N., and Posokhin, Yu.V., Tr. Inst. Elektrokhim. Ural Filial, Akad. Nauk SSSR, 14, 19 (1970). Vander Poorten, H., Ind. Chim. Belge, 32, 470 (1967). Maru, H. C., et al., Inst. Gas Technology; "Molten Salt Thermal Energy Storage Systems : Salt Selection” ERDA Rpt. C00-2888-1, Aug. (1976); NTIS, U.S. Dept. Commerce, Springfield, Va. Wicks, C. E. and Block, F. E., U.S. Bur. Mines, Bull. 605 (1963). Janz, G, J., et al. (MSDC-RPI), unpublished work (1980). 401 System 100 BaCl,-CaCl 2 2 1. Melting Temperatures (Tm) Pure substance melting points: CaCIZ: 782°C BaCl,: 962°C Eutectic melting point: E: 594 C, composition: 36.5 mol % BaCl 2 P: 624 C, composition: 54 mol % BaCl2 1000 ] ] | Ly L BCClz-CGCIz (°C) 800 |~ 600 7] ] 1 ] . 0 20 a0 60 80 100 CaCl, BaCl> Mol % BaClz Figure 100.1. BaClZ—CaCI2 phase diagram References [1-21] 2. Density (p) No data 3. Surface Tension (Y) Measurement method: maximum bubble pressure [22] Equation: Yy = a + bT (100.1) precision: in table 100.1 uncertainty: ~ * 3,0% Table 100.1. Parameters of equation (100.1) and precisions Mol % CaCl2 a -b x 102 Precision T range (K) 60 210.4 5.01 % 980-1070 75.0 203.7 4.70 * 930-1070 *# not estimated; insufficient data 402 (100) BaCl,-CaCl 2 2 Table 100.2. Surface tension (dyn cm_l) from equations in table 100.1 Mol 7% CaCl2 T (K) 60 75.0 880 166.31 900 165.31 920 164.31 940 163.30 159.51 960 162.30 158.57 980 161.30 157.63 1000 160.30 156.69 1020 159.29 155.75 1040 158.29 154.81 1060 157.29 153.87 References [22] 4. Viscosity (n) No data 5. Electrical Conductance (k) Measurement method: classical ac technique [25] Equation: 2 K = a + bT + cT (100.2) precision: in table 100.3 uncertainty: ~ % 10% Table 100.3. Parameters of equation (100.2) and precisions Mol % CaCl2 ~-a b x 103 ~-c X lO6 Precision T range (K) 10 1.639 2.940 0 0.66% 1240-1360 20 5.449 8§.867 2.273 0.607% 1180-1360 30 1.690 3.057 0 0.68% 1140-1360 40 2.470 4.322 0.476 0.45% 1080-1360 50 3.188 5.538 0.954 0.72% 1040-1360 60 2.607 4.671 0.598 0.73% 980-1360 70 1.835 3.348 0 0.62% 980-1360 80 1.825 3.391 0 0.64% 980-1360 90 3.377 6.057 1.097 0.72% 1040-1360 403 (100) BaCl,-CaCl 2 2 Table 100.4. Specific conductance (ohm_1 cm'l) from equations in table 100.3 Mol 7 CaCl2 T (K) 10 30 40 50 60 70 80 980 1.40 1.45 1.50 1000 1.47 1.51 1.57 1040 1.54 1.60 1.65 1.70 1080 1.64 1.68 1.74 1.78 1.84 1120 1.77 1.82 1.87 1.92 1.97 1160 1.86 1.90 1.95 2.01 2.05 2.11 1200 1.98 2.03 2.08 2.14 2.18 2.24 1240 2.01 2.10 2.16 z.21 2.27 2.32 2.38 1280 2.13 2.22 2.28 2.34 2.39 2.45 2,52 1220 2.24 2.35 2.41 2.46 D 08 2.58 2.65 1260 2.36 2.47 2.53 2.58 2.64 2.72 2.79 References [23-25] 6. Safety and Hazards (1) (i1) (1) (i1) References A. Hazard rating Toxicity: CaCl slight; BaCl toxic (orally). 2° 2’ Vapor pressure: CaCl, at m.pt. (782°C), ~ 2 x 10—4mm; BaCl, at m.pt. (962°C), ~ < 0.5mm. B. Disaster hazards Molten salt bath "explosions'": 1i.e., explosive generation of steam due to bulk water "carry-over" and/or quipment failure; i.e., explosive expansion of 'trapped" air, Chlorides evolve highly toxic fumes when heated to decomposition, or contacted with acids. [26-32] 404 i 10. 11. 12, 13. 14, 16. Corrosion (100) BaClZ—CaCl2 Table 100.5. Corrosion studies from primary research literature Studies References Zr [33] Fe, steels [34-38] Mg, Ni, Zr, Ti [39] Ti, zr, Hf, ThCl, [40] Pb, Pb-Bi [41] Thermodynamics of corrosion [40,42,43] Electrochemical approach [44,45] Corrosion in molten salts, annotated biblio. [46] Compatibility studies: principally with molten BaCl CaCl 2’ 5 OF MgClz. No compatibility studies with molten mixtures of CaCl.,-BaCl, found. 2 2 References [33-46] Diffusion No Heat No Heat No Volume Change on Melting (AV No Vapor Pressure (p No data of Fusion (AHS) data f Capacity (Cp) data data data f) vap) Thermal Conductivity (liquid) (Al) No data Thermal Conductivity (solid) (As) No data Cryoscopie Constant (k No data f) 405 16. (100) BaCl,-CaCl 2 % References [1] [2] [3] [4] [17] [18] [19] Budinkov, P. D., Volodin, P. and Tresvyatskii, S. G., Ukraine Khim. Zhur., 22, 293 (1956). Bergman, A. G., and Pawlenko, S. P., Ber. Akad. Wiss., USSR, 27, 972 (1940). I Kordes, E., Z. Anorg. U. Allgem. Chem., 154, 93 (1926). Bergman, A. G., Takareva, M. B., Zhur. Neorg. Khim., 2, 1888 (1957). Kochinashvili, V. A., Barzakovskii, V. P., Zhur. Priklad. Khim., 30, 1755 (1957). J. Appl. Chem., USSR, 30, 1824 (1957 ). __ Bukhalova, G. A., Bergman, A. G., J. Gen. Chem., USSR, 21, 1723 (1951). Zhur. Obshchei Khim., 21, 1570 (1951). R Bukhalova, G. A., Berezhnava, V. T., Zhur. Neorg. Khim.. 7. 720 (1962, Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectie Data'", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: FEutectic Compositions and Melting Points Bibliography 1907-18968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorgante Salts", Volumes 1, 2, Izc., Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "Adn Atlas of Miscibility Gaps in Molten Salt Systems', Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964.: Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. 406 (100) BaClz-CaCI2 [20] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems™, Izdatel'stov ''Nauka" Leningradskoe OFdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [21] Levin, E., et al., "Phase Diagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [22] Lantratov, M. F., Zhur. Priklad. Khim. 34, 1249 (1961), J. Appl. Chem., USSR, 34, 1190 (1961). [23] Alabyshev, A. F., and Kulakovskaya, N. Ya., Trudy, Leningrad. Tekhnol. Inst. Im. Leningrad. Soveta, 12, 152 (1946). [24] Lantratov, M. F., and Moiseeva, O. F., J. Appl. Chem. (USSR), 33, 2194 (1960); Zh. Priklad. Khim., 33, 2225 (1960). I [25] Barzakovskii, V. P., and Kochinashvili, V. A., J. Appl. Chem. (USSR), 30, 1825 (1957); Zhur. Priklad. -Khim., 30, 1755 (1957). [26] "Dangerous Properties of Materials', Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) [27] "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975) [28] Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems'", NSRDS-NBS 61, Part II ‘ (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl3-48-61, Washington D. C. 20402. [29] "Potenttal Hazards in Molten Salt Baths for Heat Treatment of Metals'",National Board of Fire Underwriters Research Report No. 2 (1954) [30] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) [31] Janz, G, J., Tomkins, R, P, T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data",ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) [32] vide: this work, System 54, BaClZ. [33] Thai, V., Ozeryanaya, I. N., and Smirnov, M. V., Tri. Inst. Elektrokhim., Ural. Nauch. Tsentr. Akad. Nauk SSSR, 19, 69 (1973). [34] Kochergin, V. P., Khaibuilina, V. P., and Potapova, O. G., Zh. Neorg. Khim., 1, 2617 (1956). [35] Jackson, J. H. and LaChance, M. H., Trans. Am. Soc. Metals, 16, 157 (1954). [36] Kochergin, V. P., Putina, 0. A., Devyatkin, V. N., and Kanaeva, E. T., Tr. Vses. Nauch. Issled. Proekt. Inst. Alyum., Magn. Electrodn., 75, 51 (1971). I [37] Kochergin, V."P., Kabirov, A. V., Skornyakova, 0. N., J. Appl. Chemn. USSR, 27, 883 (1954). [38] Kochergin, V. P., Druzhinina, E. P., Men'shenina, G. V., Asanova, E. P., Zh. Prikl. Khim., 33, 1580 (1960). 407 [39] [40] [41] [42] [43] [44] [45] [46] (100) BaCl,-CaCl 2 2 Smirnov, M. V., Kudyakov, V. Ya., Loginov, Ya. A., Rossokhin, E. G., Posokhin, Yu., V., and Puzanova, T. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Shlakov, 1, 115 (1969). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Vasin, B. D., Nichkov, I. F., and Raspopin, S. P., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 15, 102 (1972). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts”", Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society Inc., Princeton, N. J., p. 581 (1975). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). 408 e e ——————————— System 101 LiNOS-NaNO 1. Melting Temperatures (Tm) Pure substance melting points: 3 LiNO4: 253°C NaNO4: 307°C Eutectic melting point: v 192°C, composition: ~ 55 mol % LiNO3 300 LiNO,= NaNO, (°C) 200 0 20 LiNO 3 Mol % NaNO, Figure 101.1. LiNO,-NaNO 3 3 References [1-19]. 2. Density (p) Measurement method: Equation: p = a + bT precision: in table 101.1 Table 101.1. Parameters of 100 NaNQO, Archimedean technique [20] (101.1) phase diagram uncertainty: ~ * 1.5% equation ( 101.1) and precisions Mol % LiNO3 a -b x lO4 Precision T range (K) 20 2.2680 6.778 0.02% 550-730 40 2.2214 6.510 0.02% 500-740 60 2.1781 6.183 0.02% 610-700 80 2.1400 6.088 0.01% 550-710 409 (101) LiNO.-NaNO 3 3 Two-independent-variables equation 3 i + dTC + eT™C 0, mol % CaClz) a + bT + ¢T (C = 5 = (101.2) Table 101.2. Parameters of two-independent variables equation (101.2) and precisions 4 10 6 9 a b x 10 c x 10 d x 10 e x 10 Precision 2.1797 -4.0766 -2.1051 -5.3868 4.9943 0.2% Table 101.3. Density (g cm—3) from equations in table 101.1 Mol 7% LiNO3 T 20 40 60 80 (K) 500 1.896 520 1.883 540 1.870 560 1.888 1.857 1.799 580 1.875 1.844 1.787 600 1.861 1.831 1.775 620 1.848 1.818 1.795 1.763 640 1.834 1.805 1.782 1.750 660 1.821 1.792 1.770 1.738 680 1.807 1.779 1.758 1.726 700 1.794 1.766 1.745 1.714 720 1.780 1.753 740 1.740 References [20,21] 3. Surface Tension (Y) No data 4., Viscosity {(n) Measurement method: oscillating sphere technique [20] Equation: 2 3 n=a+ bT + cT® + 4T (101.3) precision: in table 101.4 uncertainty: ~ * 10% Table 101.4. Parameters of equation (101.3) and precisions NaNOj 9 5 8 (mol %) a b x 10 c x 10 d x 10 Precision T range (K) 40 48.2920 -15.255 16.055 -5.3434 1.367% 530-690 60 17.2248 -1.3799 | -4.7702 5.1212 0.50% 530-690 80 18.1724 -2.5460 | -1.9191 3.1344 0.687% 580-690 410 Equation: (101) LiNO n = A exp (E/RT) precision: in table 101.5 -NaNO K 3 (101.4) uncertainty ~ Table 101.5. Parameters of equation (101.4) and precision NaNOj A x 102 E -1 Precision T range(K) (mol %) (cal mol 7) 20 9.815 4164 0.75% 530-690 Table 101.6. Viscosity (cp) from equations in tables 101.4 and 101.5 Mol 7% NaNO3 T (K) 20 40 60 80 530 5.125 4.584 4.136 540 4,763 4.318 3.927 550 4.438 4.066 3.726 560 4.147 3.829 3.529 570 3.882 3.606 3.345 580 3.644 3.397 3.167 3.065 590 3.428 3.202 2.996 2.908 600 3.230 3.019 2.834 2.758 610 3.051 2.849 2.682 2.615 620 2.886 2.693 2.538 2.480 630 2.735 2.548 2.404 2.353 640 2.596 2.415 2.280 2.234 650 2.469 2,294 2.165 2.123 660 2.352 2.184 2.062 2.020 670 2.243 2.085 1.969 1.926 680 2.141 1.996 1.887 1.841 690 2,047 1.918 1.816 1.765 References [20] Electrical Conductance (k) Measurement method: Equation: K: precision: in table 101.7 Table 101.7. a + bT + cT 2 classical dc technique [23] (101.5) uncertainty: ~ * 3.0% Parameters of equation (101.5) and precisions Mol % NaNO3 -a b x lO2 -c X 105 Precision T range(K) 25.13 2.7074 0.7792 0.2217 0.087% 560-670 50.0 2.3808 0.6906 0.1757 0.35% 560-670 75.0 2.8718 0.8549 0.3217 0.087% 550-690 411 (101) LiNO,-NaNO, Table 101.8. Specific conductance (ohm™ ! em D) from equations in table 101.7 Mol 7% NaNO3 T (K) 25.3 50.0 75.0 550 0.857 560 0.961 0.935 0.907 570 1.014 0.985 0.956 580 1.066 1.033 1.005 590 1.118 1.082 1.052 600 1.170 1.130 1.100 610 1.221 1.178 1.146 620 1.271 1.225 1.192 630 1.321 1.272 1.237 640 1.371 1.319 1.282 650 1.421 1.366 1.326 660 1.469 1.412 1.369 670 1.518 1.457 1.412 680 1.454 690 1.496 References [22-25] 6. Safety and Hazards (1) (11) (1) (ii) (111i) A. Hazard rating Toxicity: LiNO3, moderate; NaNOgz, permitted in food additive. Vapor pressure: LiNOz decomposed just above its m.pt. (253°C) to the nitrite and oxygen; NaNOg (m.pt., 307°C), decomposition to nitrite onsets v 500°C. B. Disaster hazards Molten salt bath "explosions'": 1i.e., explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of "trapped' air. On decomposition, nitrates emit toxic fumes f{oxides of nitrogen) viz: MNO, —% MNO, + %0 (101.6) 2 2MNO, — M,0 + NO + No, (101.7) 2 The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO; is dominant. If the gas phase is not immediately removed, the NO may re-oxidize the nitrite to nitrate. Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic c¢pds, oils, carbon;...)}; aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [26-31] 412 7 8. Corroston Table 101.9. (101) LiNO,-NaNO, Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [32-34] Fe, Co, Ni, Cr, Al,.. [35-37] Cu, Pt, Au, W,. [36-38] Zn, Pb, Cu, Ni, Al [39] Pt, S, steel [40] Zr [41] Oxide species [42] Electrochemical approach [43,44] Thermodynamic redox diagrams [45,46] Annotated corrosion biblio. [47] Reviews/molten salts [48-50] The studies in Table 101.9 (above) relate to studies molten LiNO with various molten nitrates, principally NaNO, KNO3, and their mixtures. No compatibility studies with 3—NaNO3; for studies in molten L1N03—KN03, see [34] . References [32-50] Diffuston Measurement method: capillary [51] Diffusing species investigated in LiNOS-NaNO3 as solvent: precision: insufficient data for estimate Lit, Na”, NO3 uncertainty: ~ = 20% 5 2 -1 Table 101.10. Self-diffusion coefficients, D x 10~ (cm™ s 7) T Li* Na© No; (K) LiNO3—NaNO3(20 mol % NaNO3) 624 2.64 2.45 1.21 LiNO3-NaN03(53 mol % NaNO3) 626 2.61 2.41 1.31 References [51] 413 (101) LiNOS-—NaNO3 8. Heat of Fusion (AH;) Measurement method: drop calorimetry [52] Table 101.11. Heat of fusion . AE 2 . Composition f -1 Uncertainty Tf mol % (LiNO3} (kecal mol ™) 193.5°C 547% 4.775 N+ 27 Saturation concentrations of the eutectic solid solutions 9.1 mol % LiNO3 and 1.7 mol % NaNO3; heat of mixing of the eutectic solid solutions at 9.1 mol % LiNO3, 122 cal mol_l; and at 1.7 mol % NaNO3, 35 cal mol_l, heat of mixing in the liquid state: AHX = -x (1l-x) (464+11.5x) cal mol-l; x = mol % LiNO3. References [52] 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [53] Table 101.12. Volume change on melting Binary eutectic (AVf/V ) Uncertainty (mol % NaNO3) = 46 13.0% N+ 15% References [53] 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (AZ) No data 14. Thermal Conductivity (solid) (AS) No data 156. Cryoscopic Constant (kf) Measurement method: calculated from aHg [53] Table 101.13. Cryoscopic Constant k Binary eutectic fl Uncertainty (mol % NaN03) (K mol Kg) 46,0 | 6.9 VI S References [53] 414 (101) LiNO,-NaNO 3 3 16. References [1] Shisholina, R. P., Protsenko, P. I., Zhur, Neorg. Khim., 8, 1436 (1963). [2] Sinistri, C., Franzosini, P., Ric, Sci. Rend. Sez A., 3, 419 (1963). [3] Brovkina, I. A., Selivanova,S. I., Semenova, M. A., Farmakovskaya, A. A., Zh. Fiz. Khim., 44, 1372 (1970). [4] Storonkin, A. V., Vasil'lova, I. V., Shamko, V. I., Vestn. Leningrad. Univ., Fiz., Khim., 67 (1973). [5] Lehrman, A. and Breslow, D., J. Am. Chem. Soc., 60, 873 (1938). [6] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Euteetic Data’” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [7] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectice Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). (8] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [9] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). . [10] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. - [11] Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [12] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Labaratory, ORNL-2548, Contract No. W-7405-eng-26. [13] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv., Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [14] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). ; [15] Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems', Institute of Physical Chemistry, University of Pavia (Italy) (1968). [16] Shaffer, P. T, B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964, [17] Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organtec Antons", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973, [18] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'”, Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [19] Levin, E., et al., "Phase Diagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). 415 (101) LiNO_-NaNO 3 3 Murgulescu, I. G., and Zuca, S., Elektrochim. Acta, 11, 1383 (1966). Boxall, L. G., and Johnson, K. E., J. Chem. and Eng. Data, 16, 204 (1971). Doucet, Y., and Bizouard, M., Bull. Soc. Chim. France, 1570 (1959). King, L. A., and Duke, F. R., J. Electrochem. Soc., 111, 712 (1964). Bizouard, M., Ann. Physique, 6, 851 (1961). De Nooijer, B., Ph.D. Thesis, University of Amsterdam, Amsterdam. 1965. Stern, K., "High Temperature Properties and Decomposition of Inorganic Salte. III. Nitrates and Nitrites", J. Phys. Chem. Ref. Data, 1, 747-772 (1972). "Dangerous Properties of Materials', Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazdrds in Molten Salt Baths for Heat Treatment of Metals"”, National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutecetie Data", ERDA TID-27163-P1l; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Notoya, T., Denki Kagaku, 41, 779 (1973). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Johnson, K. E., Electrochimica Acta, 11, (1966). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Gemneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts', Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). 416 (101) L1N03-NaNO3 [45] Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). [46] Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). [47] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). [48] Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). [49] Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). [50] Smirnov, M, V, and Ozeryanaya, I., Nauki. Tekh. Korros. Zasch. Korros., 2, 171 (1973). [51] Lantelme, F. and Chemla, M., Electrochim. Acta 11, 1023 (1966). [52] Schirmann, E., and Nedeljkovic, Lj., Ber. Bunsenges. Physik. Chem. 74, 462 (1970). [53] Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 417 System 102 LiNOS- KNO3 1. Melting Temperatures (T ) Pure substance melting points: LiNOs: 253°C KNOS: 335°C Eutectic melting point: 133°C, composition: 58.8 mol % KNO3 KNO,-LINO, 300 (¢C) 200 100 . 1 L | 1 1 L ] L 0 20 40 80 80 100 LiNO, KNO, Mol% KNO, Figure 102.1. LiNOS-KNO3 phase diagram References [1-20]. Density (p) Measurement method: Archimedean technique [21] Equation: p=a+ bT (102.1) precision: in table 102.1 uncertainty: ~ % Table 102.1.. Parameters of equation (102.1) and precisions o\ Mol % LiNO3 a -b x 104 Precision T range (K) 20 2.1473 6.217 0.02% 530-710 40 2.2085 6.723 0.02% 520-720 60 2.2823 7.495 0.01% 540-710 80 2.3056 7.475 0.027% 540-710 Two-independent-variables equation p =a + bT + cC + dc? + ecd (102.2) (C = mol % CaClz) 418 3. (102) LiNO -KNO 3 3 Table 102.2. Parameters of two-independent variables equation (102.2) and precision a b x lO4 c X 103 d x 104 e X lO6 Precision 2.27224 | -6.6950 | -8.0899 | 2.1427 -1.4547 0.5% Table 102.3. Density (g cm73) from equation in table 102.1 Mol 7 LiNO3 T (K) 20 40 60 80 520 1.859 540 1.812 1.845 1.878 1.902 560 1.799 1.832 1.863 1.887 580 1.787 1.819 1.848 1.872 600 1.774 1.805 1.833 1.857 620 1.762 1.792 1.818 1.842 540 1.749 1.778 1.803 1.827 660 1.737 1.765 1.788 1.812 680 1.725 1.751 1.773 1.797 700 1.712 1.738 1.758 1.782 720 1.724 References [21-24] Surface Tension (vy) Measurement method: Equation: Wilhelmy slide-plate (detachment) [25] Y= precision: in table 102.4 Table 102.4. a + bT (102.3) uncertainty: ~ + 3.0% Parameters of equation (102.3) and precision; Mol 7% KNO3 a -b x 103 Precision T range (K) 25 143.2 56.0 * 460-670 50 146.5 62.0 * 440-670 75 152.7 70.0 %* 490-670 * not estimated; insufficient data Two-independent-variables equation y = a + bT + cC> + dCT® + eC? + £TC (C = mol % KNOS) (102.4) Table 102.5. Parameters of two-independent variable equation (10Z2.4)) a b x 102 c X 106 d x 108 e X 103 f x 104 Precision 142.69394 -5.12562 -6.25975 1.12949 2.22139 ~2.52894 0.1% 419 (102) LiNO,-KNO, Table 102.6. Surface tension (dyn cm 1) from equations in table 102.4 Mol.A KNO3 T (x) 25 50 75 440 119.2 460 117 .4 118.0 480 116.3 116.7 500 115.2 115.5 117.7 520 114.1 114.3 116.3 540 113.0 113.0 114 .9 560 111.8 111.8 113.5 580 110.7 110.5 112.1 600 109.6 109.3 110.7 620 108.5 108.1 109.3 640 107 .4 106.8 107.9 660 106.2 105.6 106.5 670 105.7 105.0 105.8 References [25] Viscosity (n) Measurement method: oscillating sphere [21] Equation: n=a+bT + cT? + dT> (102.5) o precision: 1n table 102.7 uncertainty: v * 5.0 Table 102.7. Parameters of equation (102.5) and precisions (mol %) a b x 10 c x 10 d x 10 Precision | T range(K) 40 76.5978 | -28.379 | 35.751 -14.972 2.187 530-690 60 99.3868 | -37.296 | 47.197 -19.751 2.47% 530-690 80 64.1768 | -20.614 | 21.143 -6.2709 2.30% 550-690 Equation: n = A exp (E/RT) (102.6) precision: in table 102.8 uncertainty: ~ t 5% Table 102.8. Parameters of equation (102.6) and precision; 2 LiNO4 A x 10 E 1 Precision T range (K) (mol %) (cal mol ) 20 9.139 4081 1.517% 550-690 420 5. Table 102.9. (102) LiNOS-KNO3 Viscosity (cp) from equattons in tables 102.7 and 102.8 Mol 7% LiNO3 T (K) 20 40 60 80 530 4.324 4,889 540 4.026 4.514 550 3.825 3.750 4.169 4.324 560 3.579 3.497 3.853 4.030 570 3.356 3.265 3.565 3.575 580 3.153 3.054 3.304 3.505 590 2.970 2.862 3.069 3.274 600 2.802 2.688 2.858 3.062 610 2.649 2.532 2.670 2.871 620 2.509 2.392 2.504 2.698 630 2.381 2.269 2.360 2.545 640 2.263 2.160 2.235 2.410 650 2.154 2.065 2.129 2.294 660 2.053 1.984 2.040 2.195 670 1.960 1.915 1.967 2.113 680 1.873 1.856 1.910 2.049 690 1.793 1.809 1.866 2.002 References {21] Electrical Conductance (k) Measurement method: classical dc¢ technique [26] Equation: = a + bT + cT? (102.7) precision: in table 102.10 uncertainty: ~ * 2.0% Table 102.10,. Parameters of equation (102.7) and precisions Mol % LiNO3 -a b x lO3 -c X lO6 Precision T range (K) 23.0 1.8330 4.938 1.245 0.27% 550-690 50.1 1.5558 4.096 0.283 N.11% 560-700 74.8 3.0806 9.076 3.875 0.21% 560-640 421 Table 102.11. Specific conductance (ohm~ (102) LlNOS-KNO3 . cm_l) from equations in table 102.10 Mol % LiNO3 T (K) 23.31 50.1 74.8 550 0.506 560 0.542 0.649 0.787 570 0.577 0.687 0.834 580 0.612 0.725 0.880 590 0.647 0.763 0.926 600 G.682 0.800 0.970 610 0.716 0.838 1.014 620 0.750 0.875 1.057 630 0.784 0.913 1.099 640 0.817 0.950 1.141 650 0.851 0.987 660 0.884 1.025 670 0.917 1.062 680 0.949 1.099 690 0.982 1.136 700 1.173 References [26-29] 6. Safety and Hazards (1) (ii) (1) (ii) (iii) A. Hazard rating Toxicity: LiNOz, slight; KNOS, permitted as food additive. Vapor pressure: LiNOz decomposes just above its m.pt. (253°C) to LiNO, and oxygen. KNOz (m.pt. 335°C), decomposition similarly onsets ~ 530°C. B. Disaster hazards Molten salt bath "explosions': 1i.e., explosive generation of steam due to bulk water '"carry-over" and/or equipment failure; i.e., explosive expansion of "trapped'" air. On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: + %0 MNO; —3— MNO (102.8.1) 2 2 2MNO, —= M,0 + NO + NO, (102.8.2) 2 2 The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NOj; is dominant. If the gas phase is not immediately removed, the NO may re-oxidize the nitrite to nitrate. Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbonj;...); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References {30-35] 422 -KNO (102) L1NO3 3 7. Corrosion Table 102.12. Corrosion studies from primary research literature Studies References Fe [36-38] Fe, Co, Ni, Cr, Al,... [39-41] Cu, Pt, Au, W,.. [40-42] Zn, Pb, Cu, Ni, Al [43] Pt, S, steel [44] Zr [45] Oxide species [46] Electrochemical approach [47,48] Thermodynamic redox diagrams [49,50] Annotated corrosion biblio. [51] Reviews/molten salts [52-54] The studies in Table 102.12 (above) relate principally to molten KN03, NaNO, and their mixtures; for some 3 studies in molten LiNO.-KNO see [40]. 3 3’ References [36-54] 8. Diffusion Measurement method: cited in tabulations List of diffusing species investigated in LiNOs-KNO3 as solvent 2+ . Cd%*(EDTA), Pb%*, PbZ*(EDTA), N03, Cl, Br , I precision: in table 102.14 uncertainty: in table 102.13 Equation: D = A exp [-E/RT] (102.9) Table 102.13. Diffusion techniques, uncertainties and species Diffusion technique Uncertainty of recommended study (in values of D) Species _ + + - capillary v+207 K, Li , Na+, N03 + - - = chronopotentiometry Nv+10% Ag , Br , C1 , I + + dc polarography V4207 Cd2 R sz For numerical values: see tables 423 (102) L1N03-KNO3 Table 102.14. Parameters of diffusion equation (102.9), precisions and recommended study Species A X 103 E Temp. range Precision Recommended (cm2 s_l) (cal mol_l) (K) 2By (a) LiNO3-KNO3 (4 mol % LiNO,) Li’ 1.072 4884 600-660 N3 [55] Na 1.107 5054 600-660 N2 Y [55] Kkt 1.007 5159 600-660 N1 [55] NO} insuffitecient data for t-derendent parameters [56] 1 (b) L1NO3-KNO3 (20 mol % L1NO3) Ag+ 0.591 4107 560-630 2% [59] (c) LiNO3-KNO3 (25 mol % LiNO3) it 1.020 4754 550-620 ey [55] Na 1.424 5239 550-620 vt+1% [55] KT 1.516 5552 550-620 1% [56] Nog insuffictent data for t-dependent parameters [56] i (d) L1NO3-KNO3 (34 mol % L1N03) it 1.415 5135 470-625 Ny [55] Na 1.340 5151 470-625 vt 3% [55] gt 1.395 5415 470-625 Nt 2%, [55,56] No; 1.077 5349 550-620 V1% [55] (e) LiNO3-KNO3 (38.6 mol % LiNO3) 2+ . cd 35.056 8820 430-480 N4 [57] ca’t@EpTa) 6.604 8773 430-480 ey [57] | (f) LiNO,-KNO, (40 mol % LiNO,) Ag+ 0.508 3837 530-630 t+3 % [59] (g) LiNO,-KNO, (43 mol % LiNO,) Ag” 1.891 5226 437 [58] Cc1 2.726 6235 3 [58] Br 8.770 7589 vt+67% [58] 1~ 12.294 7821 4 [58] cont'd 424 Table 102.14. (102) LiNO 3~ KNO, and recommended study - cont'd Parameters of diffusion equation (109.9), precisions Species A x 103 E Temp. range Precision Recommended (cm2 s'l) (cal mol-l) (K) study (h) LiNO,-KNO, (50 mol % LiNO,) Lit 1.168 4792 550-620 1Y [55] Na 1.387 5076 550-620 Yy [55] kt 1.722 5576 550-620 oy [56] NO% insuffictent data for t-dependent parameters [56] } (i) LiNO3—KNO3 (60 mol % LiNOB) agt J 0.821 4410 530-630 Yy [59] ] T (j) L1N03-KNO3 (75 mol % L1N03) it 1.367 4903 550-620 el [55] Na© 1.654 5222 550-620 Nt1% [55] kt 1.269 5182 550-620 NE1Y [55] (k) LiNO,-KNO, (80 mol % LiNO,) Ag 2.098 5636 530-630 nt6% [59] 1 (1) LiNO4-KNO, (99 mol % LiNO,) Li 1.332 4826 535-625 2% [55] Na 1.236 4835 535-625 nt2 % [55] gkt 1.176 5082 535-625 NE2Y, [55] No; 1.523 6044 550-625 “t1% [56] Table 102.14a. Diffusion coefficients in LiNO;-KNO; (4 mol % LiNO,) D x 10S (cm2 s-l) T % % -% )y | it Nat gt NOJ 600 | 1.78 1.60 1.33 610 | 1.91 1.71 1.43 620 | 2.03 1.83 1.53 1.35($) 630 | 2.17 1.95 1.63 640 | 2.30 2.08 1.74 650 2.44 2.21 1.85 660 2.59 2.35 1.97 *:-self-diffusion coefficients ?:—based on sole data point at 623K 425 (102) L1N03-KNO3 Table 102.14b. Diffusion coefficients in LiNOS-KNOS(ZO mol % LiNOs) 5 5 T D+ x 10 T D, + x 10 (K) Ae (K) Ag 2 - - (ecm™ s l) (cm2 s l) 560 1.47 600 1.89 570 1.57 610 2.00 580 1.67 620 2.11 590 1.78 630 2.22 Table 102.14c. Diffusion coefficients 1in LiNOS-KNO3 (25 mol % LiNOS) T D x 105 (cm2 s_l) * - (5 Li* Na© gt NOJ 550 1.32 1.18 0.94 560 1.42 1.28 1.03 570 1.53 1.40 1.13 580 1.65 1.51 1.23 590 1.77 1.63 1.33 600 1.89 1.76 1.44 610 2.02 1.89 1.55 620 2.15 2.03 1.67 1.41(¢) *:-self-diffusion coefficients i:—based on sole data point at 624K Table 102.14d. Diffusion coefficients in LiNOS-KN03(34 mol % LiNOS) T D x 105 (cm2 s_l) (K) 9 - Li Na© KT NO 470 0.58 0.54 0.42 480 0.65 0.60 0.48 490 0.72 0.68 0.54 500 0.81 0.75 0.60 510 0.89 0.83 0.67 520 0.98 0.92 0.74 530 1.08 1.01 0.82 540 1.18 1.10 0.90 550 1.29 1.20 0.98 0.81 560 1.40 1.31 1.07 0.88 570 1.52 1.42 1.17 0.96 580 1.64 1.53 1.27 1.04 590 1.77 1.66 1.38 1.12 600 1.91 1.78 1.49 1.21 610 2.05 1.91 1.60 1.31 620 2.19 2.05 1.72 1.40 625 2.26 2.12 1.78 *t1=-gelf-diffusion coefficients 426 (102) LiNO,-KNO, Table 102.1l4e. Diffusion coefficients in LiNO -KN03(38.6 mol % LiNOS) 3 T D x 105 (cm2 s l) (K) 2+ 2+ 2+ 2+ Cd Cd (EDTA) Pb Pb~ (EDTA) 430 0.12 0.02 440 0.15 0.03 0.25(?) 0.04(#) 450 0.18 0.04 460 0.23 0.04 470 0.28 0.05 480 0.34 0.07 i:—based on sole data point at 443K [3] Table 102.14f, Diffusion coefficients in LiNO;-KNO;(40 mol % LiNO;) T Do+ X 10° T D gt X 10° (K) -1i (K) - (cm2 s 1) (cm2 s 1) 530 1.33 590 1.93 540 1.42 600 2.03 550 1.52 610 2.14 560 1.62 620 2.26 570 1.72 630 2.37 580 1.82 Table 102.14g. Diffusion coefficients in LiNOS-KN03(43 mol % LiNOS) T D x 10° (em® s™1) (K) — — » Ag Cl Br 1 420 0.35 0.15 0.09 0.10 430 0.41 0.18 0.12 0.13 440 0.48 0.22 0.15 0.16 450 0.56 0.26 0.19 0.20 460 0.64 0.31 0.23 0.25 470 0.72 0.35 0.27 0.29 480 0.80 0.40 0.32 0.34 490 0.89 0.46 0.37 0.39 500 0.98 0.51 0.42 0.45 510 1.07 0.57 0.47 520 1.17 0.63 0.53 427 (102) LiNO,-KNO 3 3 Table 102.14h. Diffusion coefficients in LiNOS-KNOS(SO mol % LiNOS) T D x lO5 (cm s—l) (K) % & -% L1+ Na+ K+ N03 550 1.46 1.33 1.05 560 1.57 1.45 1.15 570 1.70 1.57 1.25 580 1.83 1.70 1.36 590 1.96 1.83 1.48 600 2.10 1.96 1.60 610 2.24 2.11 1.73 620 2.39 2.25 1.86 l.33(#) *:-self-diffusion coefficients ;:—based on 2 data points at 617 and 623K, respectively. Table 102.141. Diffusion coefficients in LiNOS—KNQS(GO mol % LiNOS) T DA + X 105 T DA + X 105 (K) & (K) 8 (cm2 s-l) (cm2 S_l) 530 1.25 590 1.91 540 1.35 600 2.03 550 1.45 610 2.16 560 1.56 620 2.29 570 1.67 630 2.42 580 1.79 Table 102.147. Diffusion coefficients in LiNO;(75 mol % LiNO,) T D x 105 (cm s_l) (K) * = Li+ Na+ K+* NO3 550 1.54 1.39 1.11 560 1.67 1.51 1.20 570 1.80 1.64 | 1.31 580 1.94 1.78 1.41 590 2,09 1.92 1.53 600 2.24 2.07 1.64 610 2.39 2.23 1.76 620 2.55 2.39 1.89 *:-gelf-diffusion coefficients. 428 (102) LiNO,-KNO 3 3 Table 102.14k. Diffusion coefficients in LiNOS-KN03(8O mol % LiNOS) 5 5 T D, + x 10 T D, . x 10 (K) Ag (K) Ag (cm2 s_l) (cm2 s—l) 530 0.99 590 1.71 540 1.10 600 1.86 550 1.21 610 2.01 560 1.32 620 2.16 570 1.45 630 2.33 580 1.58 Table 102.141. Diffusion coefficients in LiNOs-KNOS(QQ mol % LiNOS) T D x lO5 (cm2 s_l) (X) % * -% Li+ Na+ K+ NO3 535 1.42 1.31 0.99 540 1.48 1.36 1.03 550 1.61 1.48 1.12 0.60 560 1.74 1.60 1.22 0.67 570 1.88 1.73 1.32 0.73 580 2.02 1.86 1.43 0.80 590 2.17 2.00 1.54 0.88 600 2.33 2.14 1.66 0.96 610 2.48 2.29 ®. .78 1.04 620 2.65 2.44 1.90 1.13 625 2.73 2.52 1.96 1.17 %#:-gelf-diffusion coefficients References [55-59] 9. Heat of Fusion (AH}) No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [60] Table 102.15. Volume change on melting Binary eutectic (AVf/V ) Uncertainty (mol % KNO,) S 58.5 13.5% v+ 207 References [60] 429 12. 13. 14. 16. 16. (102) LiNO_-KNO 3 3 Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Al) No data Thermal Conductivity (solid) (AS) No data Cryoscopice Constant (kf) No data References [1] Doucet, Y., Vallet, C., Compt. Rend., 259, 1517 (1964). [2] Sinistri, C., Franzosini, P., Ric, Sci. Rend. Sez A., 3, 419 (1963). [3] Protsenko, P. I., Shisholina, R. P., Zhur. Neorg. Khim., 8, 1438 (1963). [4] Diogenov, G. G., Sarapuliva, I. F., Polygalova, L. V., Tr. Irkutskogo Politekhn. Inst., 27, 54 (1966). [5] Korobka, E. I., Kislova, A. I., Bergman, A. G., Zh. Neorg. Khim., 12, 3207 (1967). [6] Protsenko, P. I., Zh. Obshch. Khim., 22, 1313 (1952). [7] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [8] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P, T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Euteetic Data"”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [9] "International Critical Tables of Numerical Data, Phystics, Chemtistry, and Teehnology'", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [10] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [11] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [12] Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS,. [(13] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [14] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G, P, Smith, eds.), Plenum Press, N. Y., (1975). [15] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). 430 [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] (102) LiNO -KNOg Sinistri, °'C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials"”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964, Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts Qith Organic Anions'", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N, A. et al., "Handbook of Phase Diagrams of the Silticates, Volume 1: Binary Systems,. Volume 2, Metal-Oxygen Cdmpounds in Silicate Systems'”", Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Murgulescu, I. G., and Zuca, S., Elektrochim. Acta, 11, 1383 (1966). Protsenko, P. I., and Malakhova, A. Ya., Zhur. Neorg. Khim., 6, 1662 (1961). Smith, G. P., and Petersen, G. F., J. Chem. and Eng. Data, 6, 493 (1961). Boxall, L. G., and Johnson, K. E., J. Chem. and Eng. Data, 16, 204 (1971). Bertozzi, G., and Sternheim, G., J. Phys. Chem. 68, 2908 (1964). King, L. A., and Duke, F. R., J. Electrochem. Soc., 111, 712 (1964). Bizouard, M., Ann. Physique, 6, 851 (1961). Papaiocannou, P. C., and Harrington, G. W., J. Phys. Chem., 68, 2424 (1964). DeNooijer, R., Ph.D. Thesis, University of Amsterdam, Amsterdam, 1965. Stern, K., "High Temperature Properties and Decomposition of In- organte Salts. III. Nitrates and Nitrites", J. Phys. Chen, Ref. Data, 1, 727-772 (1972). "Darngerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H.E.W., U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L. Butterworths Co., London (1975). 3 Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectie Data', ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). 431 [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] (102) LiNO,-KNO 3 3 Maichia§o, S. L., and Arvia, A. J., An. Soc., Cient. Argent., 192, 263 1971). ‘ Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Notoya, T., Denki Kagaku, 41, 779 (1973). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Johnson, K. E., Electrochimica Acta, 11, (1966). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim.. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts'", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Pizzini, S., '"Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts!", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A.,, Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). Lantelme, F. and Chemla, M., C. R. Acad. Sc. Paris, t258, 1484 (1964). Lantelme, F. and Chemla, M., Electrochim. Acta, 11, 1023 (1966). Susic, M. V., Markovic, D. A., and Hercigonja, N. N., J. Electroanal. Chem. 41, 119 (1973). Mazzocchin, G. A. and Schiavon, G., J. Electroanal. Chem. 39, 367 (1972). Kawamura, K., Denki Kagaku Oyalii Kogyo Butsuri Kagaku, 38, 12 (1970). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 432 System 103 NaNOS-Ca(NOS)2 1. Melting Temperatures (Tm) Pure substance melting points: NaNO.: 307°C Ca(NOS)Z: 561°C Eutectic melting point: 226°C, composition: 30 mol % Ca(N03]2 500 Ca(NO), - NaNO, 7 400 (*C) 3001 0 m I l | | 0 20 40 60 80 100 Ca(NO) NaNO, i Mol % NaNO, Figure 103.1. NaNOS-Ca(NOS)2 phase diagram References [1-19]. Density (p) Measurement method: manometric densitometer [20] Equation: p = a+ bT (103.1) precision: in table 103.1 uncertainty: ~ = 1.,0% Table 103.1. Parameters of equation (103.1) and precisions (mol 7% NaNOB) " a -b x 10° Pretision T range (K) 55.4 2.4269 0.6700 0.027% 630-660 66 .9 2.4017 0.6738 0.017 530-640 72.8 2.3956 0.6850 0.027 530-640 77.0 2.3980 0.7070 0.03% 530-660 83.8 2.4226 0.7330 0.027% 550-670 89.1 2.3920 0.7553 0.02% 570-670 92.0 2.3573 0.7173 0.02% 580-670 96.5 2.3475 0.7249 0.02% 590-670 433 (103) NaNOy-Ca(NO4), Table 103.2. Density (g cm_3) from equations in table 103.1 Mol 7 NaNO3 T (K) 55.4 66.9 72.8 83.8 89.1 92.0 96.5 530 2.045 2.033 540 2.038 2.026 550 2.031 2.019 2.019 560 2.02¢4 2.012 2.012 570 2.018 2.005 2.005 1.961 580 2.011 1.998 1.997 1.954 1.941 590 2.004 1.991 1.990 1.946 1.934 1.920 600 1.997 1.985 1.983 BIRCIE K 1.927 1.913 610 1.991 1.978 1.975 1.931 1.920 1.905 620 1.98¢4 1.971 1.968 1.924 1.913 1.898 630 2.005 1.977 1.964 1.961 1.916 1.905 1.891 640 1.998 1.970 1.957 1.953 1.909 1.898 1.884 650 1.991 1.946 1.901 1.891 1.876 660 1.985 1.939 1.894 1.88% 1.869 670 1.931 1.886 1.877 1.862 680 1.870 1.855 References [20] Surface Tension (vy) Measurement method: maximum bubble pressure [21] Equations: y = a + bT (103.2) precision: in table 103.3 uncertainty: ~ £ 2.0% Table 103.3. Parameters of equation (103.2) and precisions Mol % Ca(NO3)2 a -b x 102 Precision T range(K) 5.27 163.1 5.59 * 583-703 11.12 160.0 5.25 * 572-700 17.68 160.6 5.29 * 548-683 25,00 163.3 5.54 * 540-689 29.79 164.5 5.62 * \ 520-704 37 .93 168.5 6.00 * ‘ 586-690 46,00 167.1 5.82 * 637-690 *not estimated; insufficient data Two-independent-variables equation 2 a + bT + cC? + dTc% (103.3) Y (C mol % Ca(N03)2 Table 103.4. Parameters of two-independent-variables equation (103.3) a b x 102 c X lO3 d x 106 Precision 146.19339 -5.33522 4.100095 4.7775 0.16% 434 (103) NaNO-Ca(NOy), Table 103.5. Surface tension (dyn cm'l) from equations in table 103.,3 Mol % Ca(NO3)2 T (K) RNy 11.12 17.68 25.00 29.79 37.93 46.00 520 135.3 540 133.4 134.2 560 131.0 132.3 133.0 580 130.7 129.6 129.9 131.2 131.9 600 129.6 128.5 128.9 130.1 130.8 132.5 620 128.4 127.5 127.8 129.0 129.7 131.3 40 127.3 126.4 126.7 127.8 128.5 130.1 129.9 660 126.2 125.4 125.7 126.7 127.4 128.9 122.7 €80 125.1 124.3 124.6 125.6 126.3 127.7 .5 700 124.0 123.3 125.2 References [21] 4. Viscosity (n) No data 5. Electrical Conductance (k) Measurement method: classical ac technique [22] Equation: « = a+ bT + cT> (103.4) precision: in table 103.6 | uncertainty: ~ * 2.0% Table 103.6. Parameters of equation (103.4) and precisions - 3 3 y Mol 7% NaNO3 -a b x 10 -¢c x 10 Precision T range (K) 50 1.7551 4.800 2.182 0.31% 570-640 75 1.3922 2.893 -0.385 0.027% 550-670 90 1.9995 5.336 1.083 0.28% 580-690 1 Table 103.7. Specific conductance (ohm™ ! cm™1) from equations in table 103.6 Mol % NaNO3 T (K) 50 75 90 550 0.316 560 0.349 570 0.272 0.382 580 0.295 0.415 0.731 590 0.317 0.449 0.772 600 0.340 0.482 0.813 610 0.361 0.516 0.853 620 0.382 0.550 0.893 630 0.403 0.583 0.933 640 0.423 0.617 0.972 650 0.651 1.012 660 0.685 1.051 670 0.719 1.090 680 1.129 690 1.167 References [22] 435 (103) NaNOS—Ca(NOS)2 6. Safety and Hazards (1) (ii) (1) (i1) (iii) A. Hazard rating Toxicity: NaNOz, permitted as food additive; Ca(NOz),, rated moderate. Vapor pressure: Nitrates will decompose with heating to nitrites and oxygen; onset of de- composition: NaNOz (m.pt. 307°C) ~ 500°C; Ca(N03)2 (m.pt. 561°C), ~ m.pt. B. Disaster hazards Molten salt bath "explosions': 1.e., explosive generation of steam due to bulk water "carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: 2MNO, —3% 2MNO, + O, (103.5.1) 2MNO, — M,0 + NO + NO, (103.5.2) The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO2 1s dominant. Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,...); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [23-28] 436 (103) NaNO,-Ca(NOg), Corrosion Table 103.8. Corrosion studies from primary research literature Studies References Fe [29-31] Fe, Co, Ni, Cr, Al, [32-34] Cu, Pt, Au, W, [33-35] Zn, Pb, Cu, Ni, Al [36] Pt, S, steel [37] 38 0 [38] [39] Oxide species [40,41] Electrochemical approach . [42,43] Thermodynamic redox diagrams [44] Annotated corrosion biblio. [45-47] Reviews/molten salts The studies in Table 103.8 (above) related to studies with various molten nitrates, principally NaNO KNO 3’ 3’ and their mixtures. For studies with added alkaline earth cations, see [31]. References [29-47] Diffusion Measurement method: chronopotentiometry [48] List of diffusing species investigated in NaNO3-Ca(N03)2 + Ag precision: ~ % 3.4% uncertainty: ~ + 10 Equation: 0.676 x 10 ° exp [-4248/RT] (L03.6) s’ n Table 103.9. Diffusion coefficients in NaNOS-Ca(N03)2(94 mol % NaNOS) T DA + X 105 T DAg+ X lO5 (K) s (K) . L (cm2 s_l) (cm® s ) 570 1.59 630 2.27 580 1.69 640 2.39 590 1.80 650 2.52 600 1.92 660 2.65 610 2.03 670 2.78 620 2.15 References [48] 437 (103) NaNOS-Ca(NOS)2 9. Heat of Fusion (AH}) No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) Measurement method: estimated from densities [49] Table 103.10. Volume change on melting; Binary eutectic (AVf/VS) Uncertainty (mol % NaNOB) 70 9.27% v+ 107% References [49]. 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (Al) No data 14, Thermal Conductivity (solid) (As) No data 15. Cryoscoptiec Constant (kf) No data 16. References [1] Vetyukov, M. M,, Shcherbinin, V. I., Jour. Appl. Chem. USSR, 36 2514 (1963). (2] Protsenko, P. I., Medvedev, B. S., Zhur., Neorg. Khim., 8, 1434 (1963). [3] Thilo, E., Wieker, C., Wieker, W., Proc. of the 7th Conf. on the Silicate Industry, Hungary, 79 (1963). [4] Storonkin, A. V., Vasil'lova, I. V., Shamko, V. I., Vestn. Leningrad. Univ., Fiz., Khim., 67 (1973). ' [5] Protsenko, P. I. and Bergman, A. G., Zh. Obshch. Khim., 20, 1365 (1950). [6] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [7] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [8] "International Critical Tables of Numerical Data, Physics, Chemtstry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [9] "Landolt-Bornstein Zahlenwert und Funktionen aus Phygik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). 438 [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] (103) NaNO,-Ca(NO,), Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems"”, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, , C., Franzozini, P., and Rolla, M., "4n Atlas of Miseibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'", Izdatel'stov '"Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). McAuley, W. J., Rhodes, E., and Ubbelohde, A. R., Proc. Roy. Soc. 289A, 151 (1966). Eliseeva, A. F., Popovskaya, N. P., and Protsenko, P. I., Russ. J. Inorg. Chem. 14, 1186 (1969). DeNooijer, B., Ph.D. Thesis, University of Amsterdam, Amsterdam, 1965. Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites"”, J. Phys. Chem. Ref. Data, 1, 747-772 (1972). "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances', Christensen, H. E., and Lubinybyhl, T. T., eds., U, S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). "Potenttal Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reacttive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R,, Jr., and Allen, C. B. "Safety and Hazards", Chapter in "Eutectic Data'", ERDA TID-27163-Pi; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). 439 [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] (103) NaNO,-Ca(NO,), Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). Mafchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 1971). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Notoya, T., Denki Kagaku, 41, 779 (1973). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Johnson, K. E.é Electrochimica Acta, 11, (1966). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). Bansal, N. P., Rev. Roumaine Chim. 19, 1987 (1974). Janz, G, J., et al, (MSDC-RPI), unpublished work (1980). 440 System 104 KN03—Mg(N03)2 1. Melting Temperatures (Tm) Pure substance melting points: KNOS: 335°C Mg(NOS) : anhydrous Mg(NOS) decomposes at t ~ 400°C 2 2 Eutectic melting point: Eq: 178°C, composition: 56 mol % KNO3 EZ: 195°C, composition: 81 mol % KNO3 4 | I ] ! ] i ] ' 5 KNO, -Mg(NO,), - 300~ O 200} B ] | y ] ] | y } L ] & 2N 20 40 60 80 100 KNO e Mol % KNO -3 Figure 104.1. KNOS-Mg(NOS)2 phase diagram References [1-16]. Density (p) Measurement method: manometric densitometer [17] Equation: p=a + bT (104.1) precision: in table 104.1 uncertainty: ~ = 1.0 Table 104.1. Parameters of equation (104.1) and precisions 3 Mol % Mg(N03)2 a -b x 10 Precision T range (K) 5.3 2.5389 0.8667 0.27% 590-660 11.0 2.6148 0.8786 0.017% 560-620 17.0 2.7417 0.8982 0.02% 520-610 24 .4 2.9356 0.9927 0.02% 480-570 33.4 3.1403 1.0500 0.01% 500-520 441 (104) KNO;-Mg(NOy) 2 Table 104.2. Density (g cm °) from equations in table 104.1 Mol % Mg(NO,), (X) 5.3 11.0 17.0 24 .4 33.4 480 2.459 490 2.449 2.626 500 2.439 2.615 510 2.429 2.605 520 2.275 2.419 2.594 530 2.266 2.4009 540 2.257 2.400 550 2.248 2.390 560 2.12¢4 2.239 2.380 570 2.114 2.230 2.370 580 2.105 2.221 590 2.028 2.096 2.212 600 2.019 2.088 2.203 610 2.010 2.079 2.194 620 2,002 2.070 630 1.993 640 1.984 650 1.976 660 1.967 References [17] Surface Tension (vy) No data ‘Viscosity (n) No data Electrical Conductance (x) No data Safety and Hazards (1) (11) A. Hazard rating Toxicity: KNOz, permitted as food additive; Mg(NOS)z, rated moderate. Vapor pressure: Nitrates decompose, on heating, to nitrites and oxygen; onset of decomposition for KNOz (m.pt. 335°C); is ~ 530°C; little is known agout the high temperature behavior of an- hydrous Mg(NO3z),; onset of decomposition has been reported from v 130°C to ~ 390°C. 442 (104) KNO;-Mg(NO), B. Disaster hazards (1) Molten salt bath '"explosions': violent generation of steam due to bulk water ''carry-over" and/orvequip- ment failure; sudden explosive expansion of "'trapped" air. (1i) On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: MNO3 —3 MNO, + %0, (104.2) 2MNO, — M,0 + NO + NO, (104.3) The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO2 is dominant. In the temperature range 550-600°C, and under oxygen, the conversion of KNO; to KNOz goes to completion; be- tween 650-750°C, the two salts interconvert (see above), KNOz becoming increasingly unstable; above 800°C; the nitrite decomposition: 2 KNO; — K20 + Nz + 3/,0, goes to completion. (iii) Nitrates are powerful oxidizing agents; violent (ex- plosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,...); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [18-23] Corrosion Table 104.3. Corrosion studies from primary research literature Studies References Fe [24-26] Fe, Co, Ni, Cr, Al,... [27-29] Cu, Pt, Au, W,... [28-30] Zn, Pb, Cu, Ni, Al [31] Pt, S, steel [32] Zr [33] Oxide species [34] Electrochemical approach {35,36] Thermodynamic redox diagrams [37,38] Annotated corrosion biblio. [39] Reviews/molten salts [40-42] The studies in Table 104.3 (above) related to studies with various molten nitrates, principally NaNO, KNO3, and their mixtures. For studies with added alkaline earth cations, see [26]. References [24-42] 443 10. 11. 12. 13. e, 1o. 16. (104) KNO-Mg(NO,) 2 Diffusion No data Heat of Fusion (AH}) i No data Heat Capactity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liqutd) (Al) No data ' Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Thilo, E., Wieker, C., Wieker, W., Proc. of the 7th Conf. on the ‘ Silicate Industry, Hungary, 79 (1963). [2] Janecke, E., Z. Elektrochem., 48, 453 (1932). [3] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [4] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [5] "Internattonal Critical Tables of Numerical Data, Physics, Chemistry, and Technology'", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [6] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [7] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [8] Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [9] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [10] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). 444 [11] [12] [(13] [14] [15] [16] [17] (18] [19] [20] [21] [22] [23] (24] [25] (26] (27] (28] [29] (30] (104) KNO5-Mg(NO,), Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organte Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Ozxygen Compounds in Silicate Systems'", Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). McAuley, W. J., Rhodes, E., and Ubbelohde, A. R., Proc. Roy. Soc., 2894, 151 (1966). ‘ e Stern, K., "High Temperature Properties and Decompostition of Inorganic Salts. III. Nitrates and Nitrites’”, J. Phys. Chem. Ref. Data, 1, 747-772 (1972). "Dangerous Properties of Materials', Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals"”, National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards”, Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B. "Safety and Hazards", Chapter in "Eutectie Data”, ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). — Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Notoya, T., Denki Kagaku, 41, 779 (1973). 445 [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] (104) KNO,-Mg(NO5), Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Johnson, K. E., Electrochimica Acta, ll,‘(1966). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", '""Proceedings of the Eurcpean Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Flectrochemical Approaches to Corrosion in Molten Salts'", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966)}. Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). 446 System 105 LiNOz-NaNO2 1. Melting Temperatures (Tm) Pure substance melting points: LiNO 220°C NaNO 282°C 5" 5" Eutectic melting point: 150°C, composition: 63 mol % LiNO2 300 - LINO,-NaNO, (*C) 200 0 20 40 €0 80 ICO NaNO, LINO, Mal% LINO, Figure 105.1. LiNOS—NaNO2 phase diagram References [1-16]. Density (p) No data Surface Tenston (Y) No data Viscosity (n) No data Electrical Conductance (k) Measurement method: ZMNO, (106.7) The subsequent decomposition reactions are complex; if the gas phase is not continuously removed, the nitrite may be oxidized to NaNOS, i.e., to the nitrate. (iii) Nitrites, like nitrates, are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides). References [21-30]. 7. Corrosion Table 106.9. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [31-33] Fe, Co, Ni, Cr, Al,... [34-36] Cu, Pt, Au, W,... [35-37] Zn, Pb, Cu, Ni, Al [38] Pt, S, steel [39] Zr [40] Oxide species [41] Electrochemical approach [42,43] Thermodynamic redox diagrams [44,45] Annotated corrosion biblio. [46] Reviews/molten salts [47-49] No compatibility studies with NaNOz—KNO2 found; the studies in Table 106.9 (above) related principally to Na and K nitrates and their mixtures; for passivation studies in molten NaNO see [32]. 29 References [31-49] 457 10. 11, 12. 18, 14. 15. 16. (106) KNO,-NaNO, Diffusion No data Heat of Fusion (AH No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) Measurement method: estimated from densities [50] Table 106.10. Volume change on melting Binary eutectic (AVf/Vs) Uncertainty (mol % NaNOz) 65 11.6% N+ 15% References [50] Vapor Pressure (p ) vap No data Thermal Conductivity (liquid) (Ag) No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant.(kf) No data References [1] 2] [3] [4] [5] (6] [7] Vetyukov, M. M., Sheherbinin, V. I., Jour. Appl. Chem. USSR, 36, 2314 (1963). Ny Protsenko, P. I., Shukina, 0. N., Neorg. Khim. Trans., 4, 1178 (1959). Bergman, G. A. and Beruli, S. I., Izv. Sekt. Fiz. Khim. A. 21, 172 (1952). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data” - 2 Vols; ERDA-TID-27163-P1 & P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Euteetic Data'", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik', (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). 458 [8] (9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] (23] [24] [25] [26] [27] (106) KNO,-NaNoO, Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P, Smith, eds.), Plenum Press, N, Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganie Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organiec Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Tzdatel'stov '""Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Polyakov, V. D., and Beruli, S. H., Izvest. Siktora Fiz.-Khim. Anal., 26, 164 (1955). Protsenko, P. I., and Shokina, 0. N., Russ. J. Inorg. Chem. 9, 82 (1964). Protsenko, P. I., and Shokina, O. N., Zhur. neorg. Khim., 5, 437 (1960). "Dangerous Properties of Materials', Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxiec Effects of Chemical Substances'", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals'", National Board of Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworth Co., London (1975). Janz, G, J., Tomkins, R. P. T., Downey, J. R, Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectie Data', -ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Freeman, E.S., J. Amer. Chem. Soc., 79, 838 (1957). Protsenko, P. I.,Bordyushkova, E. A., Zhur. Neorg. Khim., 10, 1215 (1965). o 459 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] (106) KNO,-NaNO, Oza, T. M., J. Indian Chem. Soc., 22, 173 (1945). Oza, T. M., Walawalkar, B. R., J. Indian Chem. Soc., 22, 243 (1945). vide: this work, System 74, NaNO2 and 75, KNO2 . Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Notoya, T., Denki Kagaku, 41, 779 (1973). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Johnson, K. E., Electrochimica Acta, 11, (1966). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications'", p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975) Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D,, Electrochimica Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, Nauki Tekh. Korros. Zashch. Korros., 2, 171 (1973). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 460 System 107 KOH-NaOH 1. Melting Temperatures (Tm) Purc substance melting points: KOll: 360°C NaOH: 318°C Eutectic melting point: 170°C, composition: 50.6 mol % KOH 400 NaQH-KOH 300 (°C) 206° 200 i67° 120 1 L L 1 20 40 60 80 KOH NaOH Moi% NaOH Figure 107.1 KOH-NaOH phase diagram References [1-18] 2. Density (p) No data 3. Surface Tension (v) No data 4. Viscosity (n) No data 5o Electrical Conductance («x) No data 461 (1Q7) KOH-NaOH 6. Safety and Hazards A. Hazard rating (i) Toxicity: very caustic; attacks all body tissue. (ii) Vapor pressure: no information for this system; but see NaOH [69] and KOH [70]. B. Disaster hazards (1) Molten salt bath "explosions'": 1i.e. explosive generation of steam due to bulk water '"carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Hydroxides react exothermically with water or steam; the aqueous solution is strongly caustic;attacks living tissue; dangerous. ‘ References [19-24] 7. Corrosion Table 107.1 Corrosion studies from primary research literature Studies References Metals [25] Metals, ceramics, alloys [25-27] Stainless steel, Fe-Cr-Ni alloys [33] Ni-Cr-Fe; Ni-S$i-Cu [32,34] Ni-Mo [35-37] Ni, Cu, Armco Fe 26 Al,0,, Zr0, [26] Ni [26,27,31,35,38-41] Ni-steels [42] Fe (effects of HZO) [43] Pt, ag, and alloys [44-46] Thermodynamic and electrochemical approach [47-49] Reviews (molten salts corrosion) [50-52] Annotated corrosion biblio. [53] With the exception of [41] in which compatibility with molten NaOH-XOH was investigated, LiOH, KOH, and NaOH as single hydroxides were used in the studies listed in Table 107.1 (above). References [25-53] 462 (107) KOH-NaCH 8. Diffustion Measurement method: (129.2) precision: in table 129.3 uncertainty: * 20% 623 (129) Na AlF -NaF Table 129.3. Parameters of equation (129.2) and precision T(K) a b x 10 c x 10 d x lO5 Precision 1273 6.9382 -4.377 1.865 -4.041 1% Table 129.4. Viscosity (cp) from equations in table 129.3 Mol 7% NaF (cp) Mol 7 NaF (cp) 0 6.938 30 6.213 10 6.647 40 5.586 20 6.486 50 4.362 References [27] 5. Electrical Conductance (k) Measurement method: classical ac technique [26] Equation: < =a+ bT (129.3) precision: in table 129.5 uncertainty: ~ £ 3.0% Table 129.5. Parameters of equation (129.3) and precisions Mol % NaF -a b x 103 Precision T range(K) 35.7 0.2343 2.6376 0.10% 1270-1350 50.0 0.2953 2,7374 0.04% 1270-1350 76.9 0.5997 3.4998 0.04% 1270-1350 624 6. (129) Na.AlF_-NaF 3 6 Table 129.6. Specific conductance (ohm 1 cm-l) from equations in table 129.5 Mol 7 NaF T (X) 35.7 50.0 76.9 1270 3.12 3.18 3.85 1280 3.14 3.21 3.88 1290 3.17 3.24 3.92 1300 3.20 3.26 3.95 1310 3.22 3.29 3.99 1320 3.24 3.32 4.02 1330 3.27 3.35 4.06 1340 3.30 3.37 4.09 1350 3.33 3.34 4,13 References [26] Safety and Hazards (1) (ii) (1) (ii) A. Hazard ratjing Toxicity: inorganic fluorides are generally quite irritént and toxic. Vapor pressure: Na;AlF. at m.pt., 1010°C, ~ << 0.5mm; NaF at m.pt., 995°C, ~ 0.5mm. B. Disaster hazards Molten salt bath "explosions'": i.e., explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of '"trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [28-33] 625 (129) NaSAlFG-NaF 7. Corrositon Table 129.7. Corrosion studies from primary research literature Studies References Cr [34] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [35,36] N SSNI-12P [37] | Quartz [38] Al [39] Various metals [40] Pt [41-45] B |Boron nitride, carbon, Inconel [46-48] | Fused MgO [49] Impurities in electrolyte [50,51] ¢ |Graphite [50,51] h?iC, TiB,, CrB,, ZrN, NbB, [52-54] £y Corrosion studies in molten salts with NaF as one component (e.g., cl, COB"") [55-70,77,78] Electrochemical behavior of D |oxide ions and related species in molten fluorides [71-73] Electroanalytical studies in molten fluorides [74] Annotated corrosion biblio. [75] Corrosion: molten fluorides(survey) [76] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [34-78] 626 (129) Na 8. Diffusion 3 AlF_-NaF 6 Measurement method: chronopotentiometry [79] Diffusing species investigated in NazAlF -NaF as solvent: Fe3+, Ni precision: not estimated Table 129.8 Diffusion coefficients uncertainty: D x 105 Species T () | o2 o1 P 1273 1.00 N2t 1273 0.20 zn?t 1273 0.90 References Fe™ , Ni Zn 9. Heat of Fusion (AH}) No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (Ziquid)(kz) No data 14. Thermal Conductivity (solid) (AS) No data 16. Cryoscopic Constant (kf) No data 627 (129) Na3A1F6-NaF 16. References [1] Fedotiev, P. P, and Iljinskii, W, P,, "Uber die Schmelbarkeit des Ternaren Systems:Natriumfluorid, Calciumfluorid, Aluminumfluorid", Z. Anorg. Chem. 129 93-107 (1923). [2] Abramov, G. A., Vetyukov, M. M., Gupalo, I. P., Kostyukov, A. A., and Lozhkin, L. N., "Theoretical Principles of the Electrometallurgy of Aluminium", Metallurgizdat, Moscow, 1953. [3] Grjotheim, K. Contribution to "Theory of Aluminum Electrolysis’, Kgl. Norske Vidensk. Selsk. Skr. Nr 5, Trondheim, 1956. [4] Ginsberg, H. and Wefers, K., Erzmetall., 20 (4), 156 (1967). [5] Dergonov, E. P., Dokl. Akad. Nauk. SSSR 60 (7), 1185 (1948). [6] Fuseya, G., Sugihara, C., Nagao, N. and Teraoka, J., J. Electrochemn. Soc. Japan 18 65 (1950). [7] Phillips, N. W. F., Singleton, R. H. and Hollingshead, E. A., J. Electrochem. Soc. 102 (12), 690 (1955). [8] Kuvakin, M. A. and Kusakin, P. S., Zh. Neorg. Khim. 4(11), 2577 (1959)}; Russ. J. Inorg. Chem. 4 (11), 1188 (1959). [9] Barton, C. J., Bratcher, L. M. and Grimes, W. R., Unpublished work, Ref in "Phase Diagrams of Nuelear Reactor Materials'", ed. by Thoma, R. E U. S. At. Energy Comm. ORNL-2548 (1959). L [10] Holm, J. L., Thesis, The University of Trondheim, NTH Trondheim, 1963. [11] Rolin, M. and Rey, M., Bull. Soc. Chim. France 9 2785 (1966). [12] Yoshioka, T. and Kuroda, T., Denki Kagaku 36(10), 727 (1968). [13] Janz, G. J. Downey, J. R.,, Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectiec Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). | [14] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [15] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [16] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [17] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [18] Robertson, W. D., ."Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [19] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [20] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems™”, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). 628 (129) NaALF,-NaF [21] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [22] Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. [23] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxzygen Compounds in Silicate Systems', Izdatel'stov ''Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [24] Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [25] "Applications of Phase Diagrams in Metallurgy and Ceramics', (2 Vols) NBS Special Pub. 496. U. S. Dept. of Commerce. Nat. Bur. Standards. Ed. Carter G. C. March 1978. [26] Edwards, J. D., Taylor, C. S., and Cosgrove, L. A., J. Electrochem. Soc., 100, 508 (1953). [27] Vayna, A., Allumino, 19, 133 (1950). [28] "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [29] "Registry of Toxic Effects of Chemical Substances', Christensen,.H..E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [30] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). [31] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [32] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectic Data', ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [33] Vapor pressure, estimated (this work) . [34] Brasunas, A., Metal Prog., 62, 88 (1952). [35] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [36] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [37] Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). [38] Heimann, R., Glastech. Ber., 43, 83 (1970). [39] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [40] Koger, J. W., Corrosion, 30, 125 (1974). 629 [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] (129) NaSAlF -NaF 6 Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). - Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957, Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochen. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen issolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Assoctated with Fluor-- idation in the Oak Ridge Nat'l Lab., Fluoride Volattlity Process”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). 630 [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] (77] (78] [79] (129) Na;AlF,-NaF 6 Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems"”, Proc. 2nd 'y, N, Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, O., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Futectic Mixtures”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978} Janz, G. J., and Tomkins, R. P, T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P.,, and Ignat'eva, N. I ., Russ. J. Inorg. Chem., 6(9), 1086 (1961). - Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Delimarskii, Yu. K. and Pavlenko, N. A., Ukr. Khim. Zh., 35, 12 (1969). 631 System 130 Na3A1F6-KF 1. Melting Temperature (Tm) Pure substance melting points: . o NaSAlFfi. 1010°C KF: 856°C Eutectic 1l,melting point: 890°C, composition: 55.9 mol % KF % 25 wt % KF Eutectic 2,melting point: 740°C, composition: 91.9 mol % KF 75.7 wt % KF N03A|§ - KF 000 cc) L 900 . gool - 700°F . a0 8o 80 hthlg KF Mol % KF Figure 130.1. Na3A1P6-KF phase diagram References [1-19] 2. Density (p) Measurement method: Archimedean technique [20] Equation: (density-composition isotherm) Z 3 p = a + bC + cC® + dC (130.1) (C = mol o KF) precision: in table 130.1 uncertainty: ~ + 1.5 632 o 3. 4. 5. (130) NaSAlFé-KF Table 130.1. Parameters of equation (130.1) and precision : 3 4 7 (K) a b x 10 -c x 10 d x 10 Precision 1273 2.0611 3.258 1.124 6.024 0.4% Table 130.2. Density-composition isotherm at 1273K from equation in table 130.1 p_3 p-—3 Mol % KF (g cm Mol 7% KF (g cm 7) 10 2.0831 60 1.9820 20 2,0861 70 1.9450 30 2.0740 80 1.9107 40 2.0501 90 1.8829 50 2.0183 References [20] Surface Tension (y) No data Viscosity (n) No data Electrical Conductance (k) No data 633 (130) Na,AlF,-KF 3 6 6. Safety and Hazards (1) (ii) (1) (i1) References A. Hazard rating Toxicity: 1inorganic fluorides are generally quite irritant and toxic. Vapor pressure: NasAlF , at m.pt. 1000°C, ~ << 0.5mm, KF, at m.pt., 856°C, ~ U.5mm. B. Disaster hazards Molten salts bath '""explosions'": i.e., explosive generation of steam due to bulk water ''carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. [21-26] 634 (130) NagAlF,-KF 7. Corrosion Table 130.3. Corrosion studies from primary research literature Studies References Cr [27] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [28,29] . | SSNI-12P [30] Quartz [31] Al [32] L_Various metals [33] Pt [34-38] B | Boron nitride, carbon, Inconel [39-41] Fused MgO [42] — Impurities in electrolyte [43,44] C | Graphite [43,44] TicC, TiBz, CrBz, ZrN, Nsz [45-47] - Corrosion studies in molten salts with NaF as one component (e.g., C1i, COB"") Electrochemical behavior of oxide ions and related species [48-63,70,71] , in molten fluorides [64-66] Electroanalytical studies in molten fluorides [67] Annotated corrosion biblio. [68] Corrosion: molten fluorides(survey) [69] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technologicl aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [27-71] 8. Diffusion No data 9. Heat of Fusion (AH}} No data 635 10. 11, 12, 18. 14, 1s. 16. (130) Na ALF-KF Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Ag) No data Thermal Conductivity (solid) (Xs) No data Cryoscopic Constant (kf) No data References [1] Yoshioka, T. and Kuroda, T., Denki Kagaku 36(10), 727 (1968). [2] Holm, J. L., Thesis, The University of Trondheim, NTH Trondheim, 1963. [3] Baimakov, J. V. and Vetyukov, M. M., The Electrolysis of Molten Salts, Metallurghiya, Moscow, 1966, [4] Belyaev, A, I.,, Rapoport, M. B. and Firsanova, L. A., "Metallurgie des Aluminiums"”, Vol 1, VEB Verlag Technik, Berlin, 1956. [5] Bukhalova, G. A. and Mal'tsev, V. T., Zh. Neorg. Khim. 10 189(1965). [6] Kuvakin, M. A., Volkhina, T. D. and Kuvakina, L. M., Tsvet. Met.44 (7) 33 (1971). [7] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [8] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [9] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [10] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). 636 (130) NagALF-KF [11] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [12] Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No,. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [13] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26, [14] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N, Y. (1975). [15] Voskresenskaya, N. K., ed., "Handbook of Seolid-Liquid Equilibria in Systems of Inorganiec Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [16] Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964, [17] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Vqlgme I1: Binary Systems, Volume 2, Metal-Ozygen Compounds in Silicate Systems", Izdatel'stov "Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [18] Levin, E., et al., "Phase Diagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [19] "Applications of Phase Diagrams in Metallurgy and Ceramics', (2 Vols) NBS Special Pub. 496. U. S. Dept. of Commerce. Nat. Bur. Standards. Ed, Carter G. C. March 1978. [20] Kuvakin, M. A., Pyatintsev, V. A., and Talanova, L. I ., Russ. J. Phys. Chem., 47, 588 (1973). [21] "Dangerous Properties of Materials'", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [22] "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [23] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals'”, National Board Fire Underwriters Research Report No. 2. (1954). [24] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [25] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data'”, ERDA TID-27163-P1, NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [26] Vapor pressure, estimated, this work. [27] Brasunas, A., Metal Prog., 62, 88 (1952). (28] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [29] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). 637 (130) NaSAlFfi-KF [30] Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). [31] Heimann, R., Glastech. Ber., 43, 83 (1970). [32] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [33] Koger, J. W., Corrosion, 30, 125 (1974). 4 Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., [34] J. Electrochem. Soc. 99, 527 (1952). [35] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [36] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. [37] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [38] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [39] Yim, E. W. and Feinleib, M., J, Electrochem. Soc., 104, 622 (1957). [40] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [41] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). [42] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [43] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses', Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [44] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [45] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. [46] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [47] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct. 4, 1973. ' [48] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [49] Kh?n, Ij A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW 1970) . ' [50] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [51] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests”, ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [52] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides", ANP Materials Meeting ORNL-2685, (1958). 638 (130) Na AlF,-KF [53] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [54] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochen. Soc., 102, 42 (1955). [55] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs'", ORNL-3253, Oak Ridge Nat'l Lab., (1962). [56] Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor-- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). [57] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. XK., and Scott, J. L., "Metallurgical Problems tn Molten Fluoride Systems', Proc. 2nd 'y, N Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [58] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [59] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [60] Grimes, W. R., and Cuneo, D. k., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). [61] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [62] Boser, O., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems”, ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [63] Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures'", paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [64] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [65] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [66] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [67] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) [68] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [69] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [70] Kochergen, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). [71] Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 639 10 System 131 Na;AlF -BeF : 6 2 ‘ Melting Temperature (Tm) fl | Pure substance melting points: Na3A1F6: 1010°C ; BeF,: 797°C Eutectic melting point: 760°C, composition: 16 wt % BeF, Na AlF - BeF 1050 |- S c 1000 T{°C) 900 800 7001 600} 1 i i L] ] J [l [l [ 3 2 4 6 8 10 12 14 18 20 Na AlE Sap® Wt % Bef, Figure 131.1. Na3A1F6-BeF2 phase diagram References [1-14] Density (p) No data Surface Tenston (y) No data Viscosity (n) No data 640 (131) NagAlF,-BeF 6 g 5. FElectrical Conductance (k) Measurement method: classical ac technique [15] Equation: Kk = a+ bC (131.1) (C = mol % Ber) precision: in table 131.1 uncertainty: ~ * 10% Table 131.1. Parameters of equation (131.1) and precision o 3 (K) a -b x 10 Precision 1273 2.7716 12.766 0.5% Table 131.2. Specific conductance at 1273 K from equation in table 131.1 K K - . - -1 Mol % BeF2 (ohm 1 cm l) Mol % Ber' (ohm 1 cm ) 20 2.516 40 2.261 30 2.389 50 2.133 References [15] 6. Safety and Hazards A, Hazard rating (1) Toxicity: inorganic fluorides are generally quite irritant and toxic; toxicity of berylium compounds is rated high (i.e. may cause death or permanent injury after very short exposure to small quantities). (1i1) Vapor pressure: Na A1F6, at m.pt. 1000°C, ~ << 0.5mm; Ber, at m.pt. 797°é, v'<< 0,5mm. B, Disaster Hazards (1) Molten salts bath '"explosions'": i.e., explosive geperation of steam due to bulk water '"carry-over'" and/or equipment failure; i.e., explosive expansion of '"trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [16-21] 641 (131) Na3A1F6-BeF2 7. Corrosion Table 131.3. Corrosion studies from primary research literature Studies References Cr [22] Ni-Cr-Mo alloys (INOR-8; Hastelloys W, B, and N) [23,24] A SSNI-12P [25] Quartz [26] Al [27] Various metals [28] Pt [29-33] B |Boron nitride, carbon, Inconel [34-36] Fused MgO [37] I Impurities in electrolyte [38,39] C |{Graphite [38,39] TiC, TiB,, CrB,, ZrN, NbB, [40-42] iy Corrosion studies in molten salts with NaF as one component (e.g., Cl’ CO ’oo.) [43—58’65566] 3 Electrochemical behavior of oxide ions and related species in D molten fluorides [59-61] Electroanalytical studies in molten fluorides [62] Annotated corrosion biblio. [63] Corrosion: molten fluorides(survey) [64] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [22-66] 8. Diffusion No data 9. Heat of Fusion (AH} No data 642 10, 11. 12, X 14, 15. 16. (131) Na;AlF,-BeF, Heat Capacity (Cp) No Data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Az) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Chu, Y. A, and Belyaev, A. I., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met, 2 69 (1959). [2] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data'" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). - [3] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Futectic Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [4] "International Criticecal Tables of Numerical Data, Physics, Chemistry, and Technology”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933), [S] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [6] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1307-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [7] Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [8] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [9] Thoma, R, E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). 643 [10] [11] [12] [13) [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] (131) Na ALF.-BeF, Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SRt Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov '"'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). "Applications of Phase Diagrams in Metallurgy and Ceramics', (2 Vols) NBS Special Pub. 496, U. S. Dept. of Commerce. Nat. Bur. Standards. Ed, Carter G. C., March 1978, vide infra, Ref [1]. "Dangerous Properties of Materials!”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D, C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Vapor pressure, estimated, this work. Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl..Lab., (1956). Oak Ridge National Laboratory, ""The Development Status of Molten Salt Breeder Reactors”, Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). 644 (131) Na;ALF-BeF, [30] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [31] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957, [32] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [33] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [34] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). [35] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [36] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). [37] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [38] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses", Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [39] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [40] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. [41] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [42] Kugler, T. and Rieger, H. W,: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct., 4, 1973, [43] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-KRW, (1969). [44] Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). [45] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [46] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [47] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosiorn by Molten Fluorides", ANP Materials Meeting ORNL-2685, (1958). [48] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [49] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem, Soc., 102, 42 (1955). [50] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs"”, ORNL-3253, Oak Ridge Nat'l Lab., (1962). [51] Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). 645 (131) Na,AlF,-BeF 3 6 2 [52] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 2nd U. N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [53] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [54] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). — [55] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). [56] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). {57] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [58] Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures", paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [59] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [60] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [61] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [62] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) [63] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [64] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Avatlability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [65] Kochergen, V. P., and Ignat'eva, N. I ., Russ. J. Inorg. Chem., 6(9), 1086 (1961). [66] Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (1SSR), 2, 230 (1969). 046 System 132 Na,AlF 3 6-MgF 2 1. Melting Temperatures (Tm) Pure substance melting points: MgF,: 1263°C Na3A1F6: 1010°C Eutectic melting point: 924°C, composition: 57.5 mol % Na3A1F6; [82.0 wt %, Na3A1F6] 1050 T T T T T T T A|F3 Na; AlFg-MgF, 1000 (°C) 950 200 850 40 Wt. % MgF 5 Na,AlF MgF, Wt % Mng Figure 132.1,. N33A1F6—MgF2 phase diagram References [1-23] 2. Denstity (p) Measurement method: Archimedean technique [24] Equation: p = 2.096 + 1.724 x 10°°C (132.1) (C = mol % MgF,) precision: not estimated, uncertainty: ~ * 5.0% graphical data, Table 132.1. Density-composition isotherm at 1273°K from equation (132.1) P 3 Mol % MgF, (g cm 7) 10 2.11 20 2.13 30 2,15 References [24] 647 (132) NazALF,-MgF, Surface Tension (Yy) No data Visecosity (n) Measurement method: oscillating sphere technique [25] ‘Equation: (viscosity-composition isotherm) n=a+ bC + cC? (132.2) (C = mol % Mng) precision: in table 132.3 uncertainty: ~ = 15% Table 132.2. Parameters of equation (132.2) and precisions T(K) a -b x 103 c X 104 Precision 1273 2.7901 4.659 7.930 1.8% 1323 2.3380 7.945 7.209 1.6% Table 132.3. Viscosity (cp) from equations in table 132.2 Mol % MgF, 1273 K 1323 K 0 2.79 2. 34 10 2.82 2.33 20 3.01 2.47 30 3.36 2.75 40 3.87 3.17 50 4.54 3.74 References [25] Electrical Conductance (k) Measurement method: classical ac technique [26] Equation- Kk = a + bT (132.3) precision: in table 132.5 uncertainty: ~ * 10% 648 (132) NazAlF.-MgF 6 2 Table 132.4. Parameters of equation (132.3) and precisions Mol % MgF2 Al b x 10 Precision T range(K) 6.05 0.2176 1.771 0.127% 1270-1420 37.29 0.1725 1.729 0.12% 1270-1420 49.45 0.0206 1.800 0.117% 1270-1420 94.08 -0.4457 2.043 0.037% 1270-1420 Table 132.5. Specific conductance (ohm—1 cm-l) from equations in table 132.4 Mol % MgF, T (K) 6.05 37.29 49.45 94.08 1270 2.47 2.37 2.31 2.15 1290 2.50 2.40 2.34 2.19 1310 2.54 2.44 2.38 2.23 1330 2.57 2.47 2.43 2.27 1350 2.61 2.51 2.45 2.31 1370 2.64 2.54 2.49 2.35 1390 2.68 2.58 2.52 2.39 1410 2.72 2.61 2.56 2.44 References [26] 6. Safety and Hazards A. Hazard rating (1) Toxicity: 1inorganic fluorides are generally quite irritant and toxic. (ii) Vapor pressure: no information for this system; but see Na3A1F6 [29] and MgF2 [29]. B. Disaster hazards (1) Molten salt bath "explosions'": i.e. explosive generation of steam due to bulk water '"carry-over'" and/or equipment failure; i.e., explosive expansion of '"trapped" air. (11) F}uoridgs, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [27-32] 649 7. Corrosion (132) Na AlF-MgF 6 & Table 132.6. Corrosion studies from primary research literature Studies References Cr [33] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [34,35] A SSNI-12P [36] Quartz [37] Al [38] Various metals [39] L — Pt [40-44] B | Boron nitride, carbon, Inconel [45-47] Fused MgO [48] Impurities in electrolyte [49,50] C | Graphite [49,50] TicC, TiBz, CrBz, ZrN, NbB2 [51-53] Corrosion studies in molten salts with NaF as one component (e.g., cl, C03,...) [54-69,76,77] Electrochemical behavior of D oxide ions and related species in molten fluorides [70-72] Electroanalytical studies in molten fluorides [73] Annotated corrosion biblio. [74] Lporrosion: molten fluorides(survey) [75] A: studies principally in molten NaF, KF and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys,. References [33-77] 8. Diffusion No data 9. Heat of Fusion (AHS) No data f 650 (132) Na3A1F6-MgF2 10. Heat Capacity (Cp) 11. Volume Change on Melting (AV No data f) No data 12, Vapor Pressure (p ) 13. Thermal Conductivity (liquid) (X, ) vap No data L No data 14, Thermal Conductivity (solid) (AS) 15. Cryoscopic Constant (k No data f) No data 16. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Chin, D. A., Hollingshead, E. A., J. Electrochem. Soc., 113, 736 (1966). Vatslavik, E. and Belyaev, A. I., Zhur. Neorg. Khim., 3, 1045 (1958). Romanovskii, A. M. and Berent, Ya. K., Legkie Metal., 6, 34 (1935). Kostyukov, A. A. and Karpov, A. B., Elektromet. Tsvet, Metal., Trudy Leningrad. Politekn. Inst. No. 8, 58 (1957). Holm, J.L., Thesis, The University of Trondheim, NTH, Trondheim, (1963). Vakhobov, A. V. and Belyaev, A. I., Fiz. Khim. Rasplav. Solei, Metallurgizdat, Moscow, 1965, p. 99. Vidyaeva, M. K., Belyaev, A. I., Vakhobov, A. V. and Khonkhodzhaev, T., Tsvet. Met. 40(9), 65 (1967). Yoshida, T. and Matsushima, T., Keikin Zoku 19(11), 488 (1969). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectiec Data” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C, B., and Tomkins, R. P, T., "Phystical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectice Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology', 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). 651 [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] (28] [29] [30] [31] (132) NagALF,-MgF, Clark, P. V., "Fused Salt Mixtures: FEutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts', Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials"”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov '"'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Bergman, A. G., and Banachek, E. I., Izv. Sekt. Fiz, Khim. A., 23, 201 (1953) Batslavik, E., and Belyayev, A. 1 ., Zhu. Neorgan. Khim. 3,(4), 1044- 1047, (J. Inorg. Chem., USSR). Matiasovsky, K., Votava, I., Hutnicke Listy. 27, 647 (1972). Abramov, G.,A. and Kostukov, A. A., Trudy Leningradskovo Politekhniches- kovo Instituta, 188, 40 (1957). ' "Dangerous Properties of Materials", Sax, N. I ., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E. and Lubinbyhl, T. T., ed., U. S. Dept. H.E.W., U. S. Gov't Printing Office, Washington, D, C. (1975). vide: this work, Systems 50, Mng, and 100, Na3A1F6, respectively. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals', National Board Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). 652 (132) Na ALF -MgF 6 2 [32] Janz, G. J., Tomkins, R. P, T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in Eutectic Data., ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce , Springfield, Va. (1977). [33] Brasunas, A., Metal Prog., 62, 88 (1952). [34] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [35] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [36] Oak Ridge National Laboratory, "The Development Status of Molten Salt - Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). [37] Heimann, R., Glastech. Ber., 43, 83 (1970). [38] Lukashenko, E. E., and Reutova, G. A,, Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [39] Koger, J. W., Corrosion, 30, 125 (1974). [40] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). [41] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [42] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957, [43] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [44] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [45] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). [46] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [47] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). [48] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1836). [49] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [50] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [51] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. ' [52] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [53] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. [54] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [55] Kh%?, Ij A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW 970). 653 [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] (132) Na,AlF -MgF, 6 Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). . DeVan, J. H., "Ezxaminations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P, A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863, (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gili, C. B., Straumanis, M, E., and Schlechten, W, B., J. Electrochem. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. QNickel Fluorinator after Fourteen Dissolution Runs', ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process'”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems', Proc. 2nd 'y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels'", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature ?hermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Miztures", paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem,, 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978} Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V ., Zashchita Metalov (USSR), 2, 230 (1969). 654 System 133 N33A1F6-C3F2 1. Melting Temperatures (Tm) Pure substance melting points: N33A1F6: 1010°C CaFZ: 1418°C Eutectic melting point: 946°C, composition: 50 mol % Na3A1F6; [72.9 wt % N33A1F6] / - / CaF; -NazAIf Y 1000 / 50% SS-L L+CaF, =/ =7 20%/ 945.5° } Cor /] : [ | s /! : I’ | l 8oof [ : /| SS+CaFeE | ¢aF, +€ / ! 2 ! 2 / 1 | ) ! | / } | - ] | | / [ i / i | / | | / | | j SS+CaF, | } 600F |/ | i 1 563k _L—ss : | | B NagAIF,! 530° ! 5.5+ 8 CRYOLITE + Ed \ Ed+CaF, ' 0 20 60 40 Mol % C:ch2 Figure 133.1. N33A1F6-CaF2 phase diagram References [1-23] 2. Density (p) Measurement method: Archimedean technique [Z24] Equation: p = a+ bT (133.1) precision: in table 133.1 uncertainty: ~ * 1.5% 655 (133) Na,AlF_-CaF 3 6 2 Table 133.1. Parameters of equation (133.1) and precision Mol % CaF2 a -b x 104 Precision T range (K) 0 3.2884 9.373 * 1270-1350 12.4 3.2559 8.906 * 1260-1350 23.0 3.2653 8.705 * 1260-1350 32.18 3.2949 8.702 * 1270-1370 40.2 3.2892 8.398 * 1260-1360 64.19 3.4023 8.406 * 1280-1370 * insufficient data for estimate Table 133.2. Density (g cmhs) from equations in table 133.1 Mol % CaF2 T (K) 12.4 23.0 32.18 40.2 64.19 1260 2.134 2.169 2.231 1270 2.125 2.160 2.190 2.223 1280 2.116 2.151 2.181 2.214 2.326 1290 2.107 2.142 2.172 2.206 2.318 1300 2.098 2.134 2.164 2.197 2.310 1310 2.089 2.125 2.155 2.189 2.301 1320 2.080 2.116 2.146 2.181 2.293 1330 2.071 2.108 2.138 2.172 2.284 1340 2.063 2.099 2.129 2.164 2.276 1350 2.054 2.090 2.120 2.156 2.267 1360 2.111 2.147 2.259 1370 2.103 2.251 References [24] 3. Surface Tension (y! No data 4, Viscosgity (nl Measurement method: oscillating sphere technique [25] Equation: (viscosity - composition isotherm) n=a+bc+ cc+ac® (133.2) (C = mol % CaF,) precision: in table 133.3 uncertainty: ~ * 15% 656 (133) Na AlF,-CaF, Table 133.3. Parameters of equation (133.2) and precisions T 2 4 6 (K) a b x 10 ¢c x 10 d x 10 Precision 1273 2.777 1.327 -2.,230 7.598 1.3% 1323 2.331 0.191 3.492 1.8% Table 133.4., Viscosity (cp) from equations in table 133.3 Mol % CaF2 1273 K 1323 K 0 2.78 2.33 10 2.90 2.39 20 3.01 2.51 30 3.18 2.70 40 3.44 2.97 50 3.83 3.30 60 4.41 3.70 References [25] 5. Electrical Conductance (k) Measurement method: in table 133.5 precision: in tables 133.6 and 133.7 uncertainty: in table 133.5 Table 133.5. Conductance studies, techniques, systems and uncertainties Study Conductance Na,AlF_-CaFy T range Uncertainty technique (mol % Can) (K) (in conductance values) 24 classical ac 0 - 327 1270-1350 n ot 3% 26 classical ac 0 - 507 1273 n o+ 57 27 classical ac 0% 1250-1300 v o+ 5% The underscored studies are the recommended data sets 657 (133) Na3A1F6-CaF2 Equations: (conductance-temperature dependence) [24] Kk =a + bT (133.3) (conductance-composition isotherm) [26] « =a' + b'C+ c'C® (133.4) (C = mol % Can) Table 133.6. Parameters of equation (133.3) and precisions Mol % CaF2 -a b x 102 Precision T range(K) 12.3 0.6854 0.2688 0.09% 1270-1350 23.0 0.7725 0.2712 0.05% 1270-1350 32.3 0.7643 0.2687 0.05% 1270-1350 Table 133.7. Parameters of equation (133.4) and precision T (K) a' b' lO3 c' x 10 Precision 1273 2.8695 6.7638 2538.7 0.30% Table 133.8. Specific conductance (ohm"l cm-l) from equations in table 133.6 Mol % CaF2 T (K) 12.3 23.0 32.3 1270 2.728 2.672 2.649 1280 2.755 2.699 2.676 1290 2.782 2.727 2.703 1300 2.809 2.754 2.731 1310 2.836 2.781 2.757 1320 2.862 2.808 2.783 1330 2.889 2.835 2.810 1340 2.916 2.862 2.837 1350 2.943 2.889 2.864 Table 133.9, Electrical conductance at 1273K from equation (133.4) K CaF2 CaF2 -1 o -1 (mol %) (ohm'1 em—1) (mol %) (ohm cm ) 0 2.87 30 2.69 10 2.80 40 2.64 20 2.74 50 2.60 References [24,26,27] 658 (133) Na_ AlF, -CaF 3 6 2 6. Safety and Hazards (1) (11) (1) (11) A. Hazard rating Toxiclity: 1inorganic fluorides are generally quite irritant and toxic. Vapor pressure: no information for this system; but see Na3A1F6 [30], and CaF, [30]. B. Disaster hazards Molten salt bath "explosions': 1i.e. explosive generation of steam due to bulk water '"carry-over'" and/or equipment failure; i.e., explosive expansion of '"trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [28-33]. 659 (133) NazAlF-CaF 6 2 7. Corrosion Table 133.10. Corrosion studies from primary research literature Studies References (Ccr [34] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [35,36] " SSNI-12P [37] Quartz [38] Al [39] Various metals [40] F}t [41-45] B Boron nitride, carbon, Inconel, Mo [46-48] Fused MgO [49] —impurities in electrolyte [50,51,79] C Graphite {50,51,80] TicC, TiBz, CrBZ, ZrN, NbB2 [52-54] — Corrosion studies in molten salts with NaF as one component (e.g., Cl, C03,....) [55-70,77,78] Electrochemical behavior of oxide D ions and related species in molten fluorides [71-73] Electroanalytical studies in molten fluorides [74] Annotated corrosion biblio. [75] L_(_:orrosion: molten fluorides (survey) [76] A: studies principally in molten NaF, KF and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic Principles and surveys. References [34-80] 660 -CaF (133) Na AlF, 2 8. Diffusion Measurement method: rotating disc electrode [81] List of diffusing species investigated in Na3A1F6—CaF2 as solvent Al,0; precision: insufficient data uncertainty: ~ * 20% for estimate Equation: (diffusion coefficient-composition isotherm) - 2 3 D=a+ bC + cC® + dC (133.5) (C = mol % CaF,) Table 133,12, Parameters of equation (133.5) and precision T 5 7 8 10 (K) a x 10 b x 1Q c x 10 d x 10 Precision 1353 1.342 5.57 -2.68 2.69 * Table 133.11. Diffusion coefficients at 1353°K from equation (133.5) CaF D 105 CaF D lO5 a¥2 a1,0, * &% 2 Al,0, * o 2°3 o 2°3 (mol %) 5 _1 (mol %) o L (cm®™ s ) (ecm™ s 7) 0 1.34 40 1.00 10 1.66 50 0.79 20 1.60 60 0.85 30 1.33 References: A1203, [81]; see systems 66, 139 for diffusion studies of Alzo3 in Na3A1F6. 9. Heat of Fusion (AHf) No data 10. Heat Capacity (Cp) No data 661 o dl g 12. 13. 14. 15. 16. (133) N33A1F6—CaF2 Volume Change on Melting (AVf) No data Vapor Pressure (p ) vap No data Thermal Conductivity (liquid) (Al) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data Re ferences j [1] [2] [3] [4] [5] (6] [7] (8] [9] [10] [11] [12] [13] Holm, J. L., Acta Chem. Scand., 22, 1004 (1968). Fenerty, A., Hollingshead, E. A., J. Electrochem. Soc., 107, 993 (1960). Matiasovsky, K., Malinovsky, M., Chem. Zvesti, 14, 551 (1960). Edwards, J. D., J. Electrochem. Soc., 100, 508 (1953). Abramov, G. A., Vetyukov, M. M., Gupalo, I. P., Kostyukov, A. A. and Lozhkin, L. N., "Teoreticheskie osnovy elektrometallurghii alyuminiya (Theoretical Principles of the Electrometallurgy of Aluminium)”, Metallurgizdat, Moscow, 1953. Rolin, M., Bull. Soc. Chim. France, 1120 (1961). Verdan, M. and Monnier, R., Rev. Int. Hautes Temp. Refract., 9(Z), 205 (1972). Pascal, Von P., Z. Elektrochem., 19, 611 (1913). Fedotieff, P. P. and Iljinskii, W. P., Z. anorg. u. allgem. Chem., 12 pp. 106, 107 (1923). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Euteetie Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). ' Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "Imternational Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophystik und Technik!, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). 662 [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] (133) Na,AlF,-CaF 3 3 2 Clark, P. V., "Fused Salt Mixtures: FEutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems"”, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Misecibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di . Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Edwards, J. D, Taylor, C. S. and Cosgrove, L. A., J. Electrochem. Soc. 100, 508 (1953). Votava, I., and Matiasovsky, K., Chem. Zvesti 27, 582 (1973). Taniochi, K., Sci. Rep. Res. Inst. Tokoku Univ., 24, 214 (1973). Feinleib, M and Yim, E. W., J. Electrochem. Soc., 104, 626 (1957). "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N, Y. (1969) "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H., E. W., U. S. Gov't Printing Office, Washington, D. C. (1975) vide: this work, system 51, Can and system 66, Na3A1F6. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals",National Board of Fire Underwriters Research Report No. 2 (1954) "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) 663 [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] (133) Na3A1F6-CaF2 Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data",ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors'", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutové, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F J. Electrochem. Soc. 99, 527 (1952). b ] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines", 128.23:6500 (1964). ‘ Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses'", Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (Olin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). 664 (133) Na3A1F6—CaF 2 [57] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [58] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests', ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [59] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides”, ANP Materials Meeting ORNL-2685, (1958). [60] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [61] Gi1ll, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochen. Soc., 102, 42 (1955). [62] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs', ORNL-3253, (Oak Ridge Nat'l Lab., (1962). [63] Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). [64] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluortide Systems"”, Proc. 2nd 'y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [65] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [66] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [67] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). [68] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [69] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [70] Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (Cctober, 1977). [71] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). . [72] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [73] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [74] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) [75] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [76] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [77] Kochergen, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). 665 [78] [79] [80] [81] (133) Na,AlF-CaF, Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Thompson, M. deK. and Kaye, A. L., Trans. Electrochem. Soc., 67, 169 (1935}. Baak, T., Acta Chem., Scand., 8, 1727 (1954). Shurygin, P. M., Boronenkov, V. N., and Kryuk, V. C., Sbornek Nauchn. Trudov Uralsk. Politekn. Inst. 126, 80 (1963). 666 System 134 Na3A1F6—BaF2 1. Melting Temperature (Tm) Pure substance melting points: . Q Na3A1F6. 1010°C BaF,: 1320°C Eutectic melting point: [) 835°C composition: 62.5 wt % Ban (67 mol % Ban) NO3AI§ - Bc:F:'2 000 T(°C) 900 800¢L 700 40 60 80 Na AIlF BaF 3 s Mol % BaF, Figure 134.1 Na3A1F6-BaF2 phase diagram References [1-17] 2. Density (p) Measurement method: Archimedean technique [18] Equation: p =a + bT (134.1) precision: in table 134.1 uncertainty: ~ * 1.0 667 (134) Na3AlF6-BaF2 Table 134.1. Parameters of equation (134.1) and precisions Mol % Ban a -b x lO4 Precision T range(K) 0 3.0943 8§.046 0.167% 1310-1400 25 3.4250 7.938 0.03% 1280-1370 54 .4 3.9212 7.626 0.19% 1220-1330 66.6 4.5725 10.480 0.08% 1220-1330 75.1 4.7093 7.359 0.03% 1250-1330 Table 134.2., Density (g cm's) from equations in table 134.1 Mol 7% Ban T (K) 25 54.4 66.6 75.1 1220 2.991 3.29¢4 1230 2.983 3.283 1240 2.976 3.273 1250 2.968 3.263 3.789 1260 2.960 3.252 3.782 1270 2.953 3.242 3.775 1280 2.409 2.945 3.231 3.767 1290 2.401 2.937 3.221 3.760 1300 2.393 2.930 3.210 3.753 1310 2.385 2.922 3.200 3.745 1320 2.377 2.915 3.189 3.738 1330 2.369 2.907 3.179 3.731 1340 2.361 1350 2.353 1360 2.345 1370 2.338 1380 1390 1400 References [18,19] 3. Surface Tension (Y) No data 4, Viscosity (n) No data 5. Electrical Conductance (k) No data 668 (134) Na AlF,-BaF 6 2 6. Safety and Hazards A. Hazard rating (1) Toxicity: 1inorganic fluorides are generally irritant and toxic., (ii) Vapor pressure: BaF at m.pt., 1320°C, ~ < 0.5mm; NazAlF,, at m.p.t., £010°C, ~ << 0.S5mn. B. Disaster hazards (1) Molten salt bath "explosions': i.e., explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Fluorides, when heated to decomposition, or contracted with acids, emit highly toxic fumes, References [20-25] 669 (134) NasAlF -BaF 6 2 7. Corrosion Table 134.3. Corrosion studies from primary research literature Studies References [cr [26] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [27,28] A SSNI-12P [29] Quartz [30] Al [31] LYariOus metals [32] Pt [33-37] B |Boron nitride, carbon, Inconel [38-40] Fused MgoO [41] [Impurities in electrolyte [42,43] C |Graphite [42,43] L?iC, TiBZ, CrBz, ZrN, NbB2 [44-46] -Eorrosion studies in molten salts with NaF as one component (e.g., c1, 003,...) [47-62,69,60] Electrochemical behavior of oxide ions and related species in molten fluorides [63-65] D Electroanalytical studies in {molten fluorides [66] Annotated corrosion biblio. [67] L_f)orrosion: molten fluorides(survey) [68] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [26-70] 670 (134) NagAlF,-BaF, 8. Diffustzon No data 9. Heat of Fusion (AH} No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13, Thermal Conductivity (liquid) (Az) No data 14, Thermal Conductivity (solid) (As) No data 15. Cryoscopte Constant~(kf) No data 16. References (1] Belyaev, A, I., Rapoport, M. B. and Firsanova, L. A., Elektrometallurgia Alyuminia, Metallurguzdat, Moscow, 1953. [2] Lewis, E. M., Robbins, C. R. and McMurdie, H. F., "Phase Diagrams for Ceramists'”, ed. by Reser, M. K., Nat. Bur. Standards and Am. Ceram. Soc., Ohio, 1969. [3] Kameyama, N. and Masuda, E., J. Soc. Chem. Ind. Jap. 31, 1134 (1928) (Suppl. Binding 32, 271B (1928)). (4] Guskov, V. M,, Elektrolyticheskoe Rafinirovanie Alyuminia, Metallurgizdat, Moscow, 1945, [5] Janz, G. J. Downey, J. R,, Jr., Allen, C. B., and Tomkins, R. P. T., "Euteetic Data" - 2 Vols; ERDA-TID-27163-P1 & P2; NTIS, Washington, D. C. (1977). [6] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Futeetic Data'”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [7] "Inmternational Critical Tables of Numerical Data, Physics, Chemistry, and Technology'", 8 Vols., McGraw-Hill Book Co., N, Y. (1933). 671 (134) Na,AlF-BaF, [8] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [9] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Btbliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [10] Robertson, W. D., "Binary Phase Diagrams of Halide Salts”, Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [11] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [12] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [13] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [14] Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. [15] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov '"Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [16] Levin, E., et al., "Phase Diagrams for Ceramists", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [17] "Applications of Phase Diagrams in Metallurgy and Ceramics'", (2 Vols) NBS Special Pub. 496. U. S. Dept. of Commerce. Nat. Bur. Standards. Ed. Carter G. C. March 1978. [18] Kameyama, N. and Naka, A., J. Soc. Chem. Ind. Japan, 34, 140 (1931). [19] Abramov, G. A. and Kozunov, P. A., Trans. Leningrad. Inst., 1, 60 (1939). [20] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [21] "Registry of Toxic Effects of Chemical Substances'”, Christensen,_H.'E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [22] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals', National Board Fire Underwriters Research Report No. 2. (1954). [23] "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). [24] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in '"Eutecttic Data', ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [25] Vapor pressure, estimated, Janz, G. J. et al., (MSDC-RPI, 1980). 672 [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] (134) Na AlF-BaF, Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F.. Jr.. and Slaughter G. M., ORNL-1934, Oak Ridge Natl. Lab., (19%6). g ’ Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956, Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, XK., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct. 4, 1973, Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). 673 [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] 70] (134) Na ALF,-BaF, DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). ' Gill, C. B. 0 » Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs', ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- tdation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process', ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems', Proc. 2nd "y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Miztures", paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of MetaZ.FZuoride Thermal Energy Storage Materials: Availability, Cost, Qhemzstry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 674 System 133 Na3A1F6—A1F3 1. Melting Temperature (Tm) Pure substance melting points: Na AlF: 1010°C AlFS: does not melt; sublimes with 1 atm equilm press. at ~ 1255°C. Eutectic melting point: 737°C, composition: 30 wt % AlF, 694°C, composition: 39 wt % AlF3 1020k NaAlF - AlF 3 6 3 980 900 T(°C) 820 780 700} A 2 ] bl ) - L L 10 20 30 40 50 g0 WT % AIE T % 3 Figure 135.1 NasAlFfi-AlF3 phase diagram References [1-25] 2. Density (p) Measurement method: Archimedean technique [26] Equation: p = a + bT [135.1) precision: in table 135.1 uncertainty: ~ * 1.0% 675 (135) Na AlF -AlFq Table 135.1. Parameters of equation (135.1) and precision Mol % AlF3 a -b x 104 Precision T range (K) 0 3.3070 9.515 * 1300-1340 8.31 3.2349 9.008 * 1300-1340 15.69 3.2549 9.253 * 1300-1340 23.52 3.2415 9,265 * 1300-~1340 28.21 3.2294 9.259 * 1300-1340 insufficient data; not estimated Table 135.2. Density (g cm's) from equations in table 135.1 Mol % AlF3 T (K) 0 8§.31 15.69 23.52 28.21 1300 2.070 2.064 2.052 2.037 2.026 1310 2.061 2.055 2.043 2.028 2.017 1320 2,051 2.046 2.034 2.019 2.007 1330 2.042 2.037 2.024 2.0009 1.998 1340 2.032 2.028 2.015 2.000 L, 9EY References [26] 3. Surface Tension (Y) No data 4. Viscosity (n) Measurement method: oscillating sphere technique [27] Equation: 2 n=a+ bT + cT® (135.2) precision: in table 135.3 uncertainty: ~ £ 30% 676 (135) NagAlF,-Alk 3 Table 135.3. Parameters of equation (135.2) and precisions AlF3 ] . (nol %) a -b x 10 c x 10 Precision T range (K) 21.7 20.847 0.604 -4.46 0.6% 1250-1290 30.6 58.889 7.332 24,23 1.3% 1270-1320 Table 135.4. Viscosity (cp) from equation in table 135.3 Mol % AlF3 T (K) 21.7 30.6 1250 6.49 1260 6.32 1270 6.15 4.85 2180 5.98 4.74 1290 5.80 4.63 1300 4.52 1310 4.42 1320 4.33 References [27] 5. Measurement method: Equation: precision: in table 135.5. Table 135.5. Electrical Conductivity (k) K= a + bT (135. 3) classical ac technique [28] uncertainty: ~ + —_ 30% Parameters of equation (135.3) and precisions Mol % ALlF a b x 103 Precision T range(K) 11.6 ~0.1692 2.237 0.14% 1270-1350 17.9 0.0231 2.025 0.06% 1270-1350 677 (135) Na;ALF-AlF 6 3 1 Table 135.6. Specific conductance (ohm ! cm 1) from equations in table 135.5 Mol 7 AlF3 T (K) 11.6 17.9 1270 2.67 2.60 1280 2.70 2.62 1290 2.72 2.64 1300 2.74 2.66 1310 2.76 2.68 1320 2.78 2.70 1330 2.81 2.72 1340 2.83 2.74 1350 2.85 2.76 References [28] 6. Safety and Hazards (i) (i) (1) (ii) A. Hazard rating Toxicity: 1inorganic fluorides are generally irritants and toxic; alumina is classed as a nuisance particulate Vapor pressure: no information on this system; Na at its m.pt. (1010°C), << 0.5mm, AlF; sublimes at v 1260°C, AlF 3 6 B. Disaster hazards Molten salt bath "explosions'": 1i.e. explosive generation of steam due to bulk water '"carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [29-34] 678 (135) NaSA1F6-A1F3 7. Corrosion Table 135.7. Corrosion studies from primary research literature Studies References Cr [35] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [36,37] 4 | SSNI-12P [38] Quartz [39] Al [40] Various metals [41] Pt [42-46] B | Boron nitride, carbon, Inconel [47-49] Fused MgoO K s g [50] — Impurities in electrolyte [51,52] C | Graphite [51,52] TiC, TiB,, CrB,, ZrN, NbB, [53=55] Corrosion studies in molten salts with NaF as one component (eogo Cl’ C03’oo-) [56-71,78,79] Electrochemical behavior of oxide ions and related species D | in molten fluorides [72-74] Electroanalytical studies in molten fluorides [75] Annotated corrosion biblio. [76] Lforrosion: molten fluorides(survey) [77] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [35-79] 8. Diffusion No data 9. Heat of Fusion (AHf) No data 679 10. dhe!l o 1z, 13. 14, 1s5. 16. (135) Na3A1F6-A1F3 Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (p ) vap No data Thermal ‘Conductivity (liquid) (A,) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Grjotheim, K., "Theory of Aluminum Electrolysis”, Kgl. Nor. Vidensk. Selsk. Skr. Z (5) 1-90 (1957). [2] Phillips, N. W. F., Singleton, R. H. and Hollingshead, E. A. '"Liquidus Curves for Aluminum Cell Electrolyte,'" J. Electrochem. Soc. 102 (11) 648-49 (1955). [3] Foster, P, A. Jr., "The Phase Diagram of the Na3A1F -LiF System", Unpublished Data, Aluminum Company of America; ALEOA Center, Pa., (1968) [4] Holm, J. L., "Thermodynamic Properties of Molten Cryolite and Other Fluoride Mixtures”, Inst. of Inorganic Chem., The University of Trondheim, NTH Norway, 1971, [5] Ravez, J. and Hagenmuller, P., '"Les Systemes CaFZ-AlF3 et Ser-A1F3", Bull. Soc. Chim. 7 2545-48 (1967). [6] Ravez, J., Viollet, J., DePape, R., and Hagenmuller, P., '"Les Systemes MF, -FeF,(M=Ba,Sr,Ca). Les Fluoroferrites Alcalino-Terreux'", Bull. Soé. Chim, 4 1325-31 (1967). [7] Fenerty, A., and Hollingshead, E. A., "Liquidus Curves for Aluminum Cell ‘Electrolyte III, Systems Cryolite and Cryolite-Alumina with Aluminum Fluoride and Calcium Fluoride", J. Electrochem. Soc. 107 (12) 993-97 (1960). [8] Foster, P. A, Jr., "Phase Equilibria in the System Na3A1F6-A1F3", J. Am, Cer. Soc. 53 (11) 598-600 (1970). [9] Rolin, M. :Sur la Stucture Ionique de la Cryolithe pure Fondue II- Determination Experimentale du Diagramme Binaire Cryolithe. A1F3", Bull. Soc. Chim. (4) 671-77 (1960). [10] Matiasovsky, K. and Malinovsky, M., Hutn. Listy. 24 515 (1969). 680 [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] (135) Na AlF -ALF 6 3 Fedotiev, P. P. and Iljinskii, W. P., "Uber die Schmelbarkeit des Tenaren Systems: Natriumfluorid, Calciumfluorid, Aluminumfluorid", Z. Anorg. Chem. 129 93-107 (1923). Mesrobian, G., Rolin, M. and Pham, H., "Etude Sous Pression des Melanges Fluorure de Sodium-Fluorure d'Aluminum Riches en Fluorure d'Aluminum", Rev. Int. Hautes Temp. Refract. 9 (1) 139-46 (1972). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectice Data'" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S, Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Phystcs, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933), "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik'", (10th Ed.) Springer-Verlag,(2 Vols) Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts”, Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Matertals', Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluortde Systems”, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov '""Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Dtagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Shaffer, P. T. B., "High Temperature Materials"”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. nApplications of Phase Diagrams in Metallurgy and Ceramics"”, (2 Vols) MBS Special Pub, 496. U. S. Dept. of Commerce. Nat. Bur. Standards. Ed., Carter G, C. March 1978. Nishihara, K., Matsumura, Y., Komatsu, K., and Noguehi, H., Suiyokai-Shi, 15, 311 (1964). Vayna, A., Allumino, 19 133 (1950). 681 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] (| [45] [46] [47] [48] [49] [50] [51] (135) Na,AlF_-AlF 3 6 3 Edwards, J. D., Taylor, C. S., Cosgrove, L. A., and Russell, A. S., J. Electrochem. Soc., 100, 508 (1953). ; "Dangerous Properties of Materzals”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxiec Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L ., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectie Data'", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). vide: this work, System 66, Na3A1F6. Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F J. Electrochem, Soc. 99, 527 (1952). M | Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. # Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). ; Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses"”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). 682 (52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] (135) Na ALF -Alrs Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973, Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970) . Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gili1, €. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). Litman, A, P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs'", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluoro- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process', ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 2nd 'y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- isties of Thermal Energy Storage Eutectic Mixtures’”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). 683 [73] [74] (75] [76] [77] [78] [79] (135) Na AlF,-ALF 6 3 Manning, D. .L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigattions of Metal Fluroide Thermal Energy Storage Materials: Availability, Cost, Chemistry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P., and Ignat'eva, N. I ., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 684 System 136 NasAlF -NaCl 6 1. Melting Temperatures (Tm) Pure substance melting points: Na3A1F6: 1010°C NaCl: 800°C Eutectic melting point: 734°C, composition: 11.3 mol % Na3A1P6 1000 Na,AlF; -NaCl 900 - CCr 800 »800 700 L [ | ! o 20 40 60 80 100 Na; AlF, NaCl Mol% NaCl Figure 136.1. Na3A1F6-NaC1 phase diagram References [1-26]. 685 (136) Na,AlF,-NaCl 3 6 2. Density (p) Measurement method: Archimedean technique [27] Equation: (density-composition isotherm) 2 p = a + bC + ¢C (136.1) precision: in table 136.1 uncertainty: ~ = 1.5% Table 136.1. Parameters of equation (136.1) and precision T (K) a -b x 103 c X 105 Precision 1273 2.1045 6.013 3.712 0.22% Table 136.2. Density of (NaSAlFé-NaCI) composition isotherm at 1273K from equation in table 136.1 p p Mol 7% NaCl | (g cm_3) Mol % NaCl (g cm—3) 0 2.1045 30 1.9575 10 2.0480 40 1.9233 20 1.9990 50 1.8966 References [27] 3. Surface Tension (vy) No data 4. Viscosity (n) Measurement method: oscillational sphere [28] Equation: n=a+bT+cT? (136.2) precision: in table 136.3 uncertainty: ~v = 25% 686 o. Table 136.3. (136) Na AlF 6 -NaCl Parameters of equation (136.2) and precisions NacCl 9 5 (mol %) a -b x 10 c x 10 Precision T range (K) 28.53 -3.699 -1.837 -1.075 0.07% 1220-1320 47 .31 33.025 4.326 1.480 0.67% 1170-1320 60.62 -14.557 -3.107 -1.439 1.50% 1170-1320 70.54 41.713 6.034 2.244 4.717% 1170-1320 78.22 -3.293 -1.019 -0.522 0.30% 1170-1320 84.35 -17.223 -3.352 -1.507 1.02% 1170-1320 89.34 68.911 10.533 4.072 4.50% 1170-1320 93.49 37.285 5.469 2.048 2.237% 1120-1320 97.00 24 .490 3.492 1.278 2.36% 1120-1320 Table 136.4. Viscosity (cp) from equations in table 136.3 Table 136.5. Mol 7% NacCl T (X) 28.53 47 .31 60,62 70.54 84.35 89.34 93.49 1120 2.012 1.713 1140 1.746 | 1.545 1160 1.512 1.393 1180 2.586 2.072 1.757 1.349 1.311 1.258 1200 2.425 2.009 1.619 1.302 1.143 1.138 1220 2.715 2.276 1.934 1.498 1.243 1.007 1.036 1240 2.554 2.139 1.847 1.395 1.172 0.903 0.949 1260 2.384 2.014 1.750 1.311 1.089 0.832 0.879 1280 2.205 1.901 1.640 1.244 0.994 0.794 0.825 1300 2.018 1.799 1.519 1.195 0.887 0.788 0.788 1320 1.822 1.710 1.386 1.164 0.768 0.815 0.767 References [28,29] Electrical Conductance (k) Measurement method: classical ac technique [30] Equation: k = a + bT (136.3) precision: in table 136.5 uncertainty: ~ £ 3,0% Parameters of equation (136.3) and precisions Mol % NacCl a b x 103 Precision T range(K) 15.8 -0.1150 2.3407 0.26% 1250-1360 28.5 -0.3202 2.5343 0.32% 1250-1340 38.8 -0.1254 2.4114 0.24% 1240-1360 47,4 -0.1345 2.4191 0.29% 1240-1350 60.6 0.0943 2.2631 0.347 1200-1330 70.5 0.5431 1.9764 0.237 1200-1320 78.2 0.9560 1.7571 0.22% 1200-1330 84.2 1.4848 1.4381 0.23% 1210-1340 89.3 1.5749 1.4556 0.237% 1200-1330 93.5 1.6617 1.1613 0.31% 1200-1320 97.1 2.1141 1.4300 0.14% 1180-1320 687 (136) Na AlF.-NaCl Table 136.6. Specific conductance (ohm_1 cm_l) from equations in table 136.5 Mol 7% NaCl T (K) 15.8 38.8 60.6 70.5 84,2 93.5 97.1 1200 2.81 1220 2.86 1240 2.87 2.90 2.30 3.27 3.66 3.89 1260 2.83 2.91 2.95 3.03 3.30 3.69 3.93 1280 2.88 2.96 2.99 3.07 3.33 3.73 3.94 1300 2.93 3.01 3.04 3.11 3.35 3.76 3.97 1320 2.98 3.06 3.08 3.15 3.38 4.00 1340 3.02 3.10 3.41 1360 3.07 3.15 References [30] 6. Safety and Hazards (1) (i1) (1) (i1) A. Hazard rating Toxicity: NaCl, very 1low; NazAlFg, inorganic fluorides are generally irritant and toxic Vapor pressure: NaCl, at m.pt. (800°C), ~ 0.34mm; N33A1F6’ B. Disaster hazards Molten salt bath '"explosions': 1i.e. explosive generation of steam due to bulk water "carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. Inorganic halides when heated to decomposition or contacted with acids, highly toxic chloride fumes are evolved. References [31-30] 688 (136) Na,AlF -NaCl 6 Corrosion Table 136.7. Corrosion studies from primary research literature Studies References Cr [37] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [38,39] A |SSNI-12P [40] Quartz [41] Al [42] |Variaus metals [43] Pt [464-48] B|Boron nitride, carbon, Inconel [49-51] | Fused MgoO [52] -Empurities in electrolyte [12,53] C|Graphite [12,53] TiC, TiB,, CrB,, ZIN, NbB, [54-56] r(_Zorrosion Sstudies in molten salts with NaF as one component (e.g., Cl, CO3,...) [57-72,79,80] Electrochemical behavior of oxide ions and related species in molten D{fluorides [23—75] Electroanalytical studies in molten fluorides [76] Annotated corrosion biblio. {77] ;gorrosion: molten fluorides (survey) [78] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys References [12,37-80] 689 (136) Na3A1F6-NaC1 8. Diffusion Measurement method: rotating disc electrode [81] List of diffusing species investigated in Na;AlF.-NaCl as solvent 6 AlZO3 precision: * uncertainty: ~ = 20% *insufficient data for estimate Equation: (isothermal study at 1353K) D =1.30 x 10 ° + 5.72 x 10°'W (136.4) where W is the weight fraction of NaCl in the Na3A1F6—NaC1 mixture Table 136.8. Diffusion coefficients at 1353K from equation (136.4) NacCl D x 105 NacCl D x 105 (wt %) Al,0,4 (wt %) Al,04 leml ol T, 0 1.30 30 3.02 10 1.87 40 3.59 20 2.44 50 4.16 References Al,04, [81]; see Systems 66 and 139 for diffusion studies of AlZO3 and Na:,)AlF6 9. Heat of Fusion (AHf) No data 10. Heat Capacity (Cp) No data 11, Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (Al) No data 14, Thermal Conductivity (solid) (As) No data 90 e ——— . e T (136) Na3A1F6-NaC1 15. Cryoscopic Constant {kf) No data 16. References 1 Phillips, N. W. F., Singleton, P. H., Hollingshead, E. A., J. Electrochemn. [ P : Soc., 102, 690 (1955). [2] Kuvakin, M. A. and Kusakin, P. S., Zh. Neorg. Khim., 4(11), 2577 (1957); Russ. J. Inorg. Chem., 4(11), 1188 (1959). [3] Rolin, M., Bull. Soc. Chim., France, 671 (1960). [4] Rolin, M. and Bernard, M., Bull Soc. Chim., France, 429 (1962). [5] Matiasovsky, K. and Malinovsky, M., Chem. Zvesti 14, 353 (1960). [6] Yaguchi, H., Huu Thanh, P. and Rolin, M., Bull. Soc. Chim., France, 39 (1970). [7] Mal'tsev, V. T. and Bukhalova, G. A., Zh. Neorg. Khim., 10(6), 1464 (1965); Russ. J. Inorg. Chem., 10(6), 797 (1965). [8] Holm, J. L., Dr. techn. Thesis, The University of Trondheim, NTH, Trondheim, 1971. [9] Madhavan, T. P., Matiasovsky, K. and Danek, V., Chem. Zvesti 25(4), 253 (1971). [10] Kostenska, I., Malinovsky, M., Chem. Zvesti., 28, 553 (1974). [11] Bukalova, G. A., Mateiko, Z. A., Berezhnaya, V. T., Zhur. Neorg. Khim., 7, 855 (1962). [12] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J., "Aluminium Electrolyses”, Aluminium-Verlag GmbH.-Dusseldorf (1977). [13] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [14] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectie Data'", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [15] "International Critical Tables of Numerical Data, Physics, Chemistnry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [16] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, ' Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [17] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [18] Robertson, W. D., "Binary Phase Diagrams of Halide Salts"”, Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [19] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. 691 [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] (136) NaSAlFé-NaC1 ' Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. . Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri , C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems'", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov '"'Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Matiasovsky, K. and Malinovsky, M., Electrochim. Acta, 11, 1035 (1966). Votava, I. and Matiasovsky, K., Chem. Zvesti 27, 582 (1973). Fellner, P., Chem. Zvesti 28, 721 (1974). Matiasovsky, K. and Danek, V., Chem. Zvesti, 27, 742 (1973). "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and_Lublnybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). Janz, G. J., et al., "Phystical Properties Data Compilations Relevant to Energy Storage. PartlIlI., Molten Salts: Data on Single and Multi-Component Salt Systems’”, NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl3-48-61, Washington D. C. 20402. "Poteqtial Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards"”, Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectie Data'", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). 692 [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] (136) N33A1F6-N3C1 Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, '"The Development Status of Molten Salt Breeder Reactors"”, Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F ibid., 99, 527 (1952). * Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u,. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc, 104, 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct. 4, 1973, Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests', ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). 693 [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] (136) Na3A1F6-NaC1 Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochemn. Soc., 102, 42 (1955). ~ Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. (Nickel Fluorinator after Fourteen Dissolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process"”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 2Md U. N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). iy Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- isttes of Thermal Energy Storage Eutectic Mixtures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal., Chem., (in press) (1978) Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investiguations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P., and Ignat'eva, N. I ., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Shurygin, P. M., Barmin, L. N., and Boronenkov, V. N., Izvet. Vyseh. Zaved. Tsvet. Met. 5(4), 106 (1962). 694 i System 137 NazAlFg-BaCl, Melting Temperature (Tm) Pure substance melting points: . o NazALF: 1010°C BaClz: 962°C Eutectic 1,melting point: 745°C, composition: ~ 65 mol $% BaCl, Eutectic 2, melting point: 762°C, composition: 91 mol % BaCl2 Compound melting point: 786°C, composition: 80 mol % BaCl2 (i.e., Na3A1F6.4BaC12) 1000 (°C) 800 600} . Figure 137.1. Na3A1F6-BaCl2 phase diagram References [1-15] Density (p) Measurement method: Archimedean technique [16] Equation: p =a + bT (137.1) precision: in table 137.1 uncertainty: ~ £ 10 % 695 (137) NasAlP -BaCl 6 % Table 137.1. Parameters of equation (137.1) and precisions Mol % BaCl2 a -b x 104 Precision T range (K) 25 3.1217 9.043 0.07% 1030-1120 50 3.2910 9.052 0.16% 1030-1110 75 3.5173 8.124 0.12% 1030-1120 Table 137.2. Density (g cm-s) from equations in table 137.1 Mol % BaCl, i (K) 25 50 75 780 2.585 820 2.549 860 2.513 2.819 900 2.476 2.786 940 2.272 2.440 2.754 980 2.236 2.4064 2.721 1020 2.199 2.368 2.689 1060 2.163 2.332 2.656 1100 2.127 2.295 2.624 References [16,17] Surface Tension (Y) No data Viscosity (n) Measurement method: oscillating sphere technique [18] Equation: 2 n=a+ bC+ cT (137.2) precision: in table 137.3 uncertainty: ~ £ 10% 696 (137) Na3A1F6-BaC12 Table 137.3. Parameters of equation (137.2) and precision BaC12 ) 5 (mol %) a b x 10 c x 10 Precision T range (K) 60 45.047 -5.861 1.878 * 1650-1130 *insufficient data for estimation. Table 137.4. Viscosity (cp) at 60 mol % BaCl2 from equation in table 137.3 T n T n (X) (cp) (K) (cp) 1050 4.21 1100 3.30 1060 4.02 1110 3.12 1070 3.83 1120 2.96 1080 3.65 1130 2.79 1090 3.47 References [18] Electrical Conductance (k) Measurement method: (139.4) (conductance-composition isotherm) [35] c =a' +b'C+c'C” (139.5) (C = mol % A1203) precision: in table 139.9 uncertainty: in table 139.8 Table 139.8. Conductance studies, techniques, systems, and uncertainties Uncertainty Studies Conductance Na3AlF6-A1203 T range (in conductance Technique (mol % A1203) (K) values) [34] classical ac 0 - 177 1270-1350 v o2 37 [35] classical ac 0 - 26% 1273 v ot 3% 140] classical ac 0 - 26% 1230-1320 n 2 25% [5] classical ac 0 - 20% 1170-1310 v o2 20% Footnote: The underscored studies are the recommended data sets 716 (139) NaSAlF -A1,0 6 273 Table 139.9. Parameters of equation (139.4) and precisions Mol % Al,04 -a b x lO3 c X lO6 Precision T range(K) 0.0 0.0386 2.0206 0.1670 0.07% 1280-1350 9.7 0.1215 2.100 = 0.662% 1270-1350 17.2 0.2027 1.987 = 0.60% 1270-1350 Table 139.10. Parameters of equation (139.5) and precisions g 2 4 (K) a' b' x 10 c' x 10 Precision 1273 2.8626 -3.308 2.632 * *insufficient data for esctimate Table 139.11. Specific conductance (ohm-1 cm_l) from equations in table 139.9 Mol % A1203 T (K) 0.0 9.7 17.2 1270 2,545 2,322 1280 2.821 2.566 2.341 1290 2.846 2.587 2.361 1300 2.870 2.608 2.381 1310 2.895 2.629 2.401 1320 2.920 2.650 2.421 1330 2.944 2,671 2.441 1340 2,969 2,692 2.461 1350 2.994 2.713 2.481 Table 139.12. Specific conductance at 1373K from equation (139.5) K K Mol % Al.0 (ohm'l cm'l) Mol % Al.0 o cm_l) 273 273 0 2.86 14 2.45 2 2.80 16 2.40 4 2.73 18 2.35 6 2.67 20 2.31 8 2.61 22 2.22 10 2.56 24 2.22 12 2.50 26 P18 References [5,34,35,40] 717 (139) Na3A1F6—A1203 6. Safety and Hazards A. Hazard rating (1) Toxicity: 1inorganic fluorides are generally irritants and toxic; alumina is classed as a nuisance particulate. (ii) Vapor pressure : no information on this system; NaSAlF at its m.pt. (1000°C), << 0.5mm. 6 B. Disaster hazards (1) Molten salt bath "explosions': 1.,e, explosive generation of steam due to bulk water 'carry-over' and/or equipment failure; i.e., explosive expansion of '"trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes, References [41-46], 7. Corrosion Table 139.13. Corrosion studies from primary research literature Studies References (cr [47] Ni-Cr-Mo alloys (INOR-8; Hastelloys L8 .4 B, W, and N) WEGES. SSNI-12P [50] A Quartz [51] Al [52] Various metals [53] Pt [54-58] B |Boron nitride, carbon, Inconel [59-61] Fused MgO0 [62] -impurities in electrolyte [63,64] C |Graphite [63,64] TiC, TiB,, CrB,, ZrN, NbB, [65-67] -Eorrosion studies in molten salts with NaF as one component (e.g., Ccl, COB"") [68-83,90,91] Electrochemical behavior of oxide ions and related species in molten D |fluorides [84-86] Electroénalytical studies in molten fluorides [87] Annotated corrosion biblio. [88] Corrosion: molten fluorides (survey) [89] cont'd 718 (139) NaSAlFfi-Alzo3 footnote to Table 139.13 A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys References [47-91] Diffusion Measurement method: cited in tabulations Diffusing species investigated in Na3A1P6-A1203 as solvent Na ; F ; A1203; dissolved Al metal Equation: D = A exp [-E/RT] (139.6) precision: in table 139.15 uncertainty: in table 139.14 Table 139.14. Diffusion techniques, uncertainties, and species Diffusion technique Uncertainty of recommended study (in value of D) Species + - capillary v+107 22Na and 78F containing species chronopotentiometry v+15% A1203 (diffusion coefficient of oxygen containing ions); Al metal (diffusion coefficient of fluoride containing ions) voltammetry v+207% 002 719 (139) NaSAlF 6 2 -Al1,0 3 Table 139.15. Parameters of diffusion equation (139.6), precisions and recommended studies Species A E Temp. range Precision Recommended - -1 K (cmZ s l) (Cal mol ) ( ) StUdy (a) N33A1F6—A1203 (2.5 wt % A1203) Al,0, 3.111x10 3 12,940 1273-1323 * [94] (b) Na,AlF -Al,0, Al,0, 2.665 30,850 1273-1323 * [94] (c) Na3A1F6—A1203 Al,0, 922.9 46,400 1253-1323 * [94] (d) Na ALF -Al,0, (10 wt % A1203) A1,0, 3.541x10° 80,160 l 1253-1323 % [94] ] - L/ (e) NaBA_F6 A1203 (12.5 wt 7 A1203) ALl,0, 9.893 x 105| 65,220 I 1273-1323 * [94] *#:-equations derived from digitized graphical results; data for estimates of precision of measurements. Table 139.16. Diffusion coefficients, D x 10 5 2 (cm”™ s from equation in table 139.15 -1 insufficient T D x 10° (em? s°1) (K) 2.5 wt % A1203 5 wt % A1203 7.5 wt % A1203 10 wt 7% A1203 12.5 wt,éAlfh 1250 0.71 0.34 1260 0.83 0.44 1270 1.85 1.31 0.96 0.57 0.59 1280 1.92 1.44 1.10 0.73 0.72 1290 2.00 1.58 1.27 0.93 0.88 1300 2.08 1.74 1.46 1.18 «1.07 1310 2.16 1.90 1.68 1.50 1.30 1320 2.24 2.08 1.92 1.89 1.57 Thonstad [95] reported a value of 1.5 x 10"-5 cm2 s_l for DAl o 2t 1293K, and the 23 diffusion coefficient was constant (within limits of experimental error (£15%)) over the investigated concentration range (0.25-12 wt?Z A1203). At 1353K, 5 52 -1 Shurygin et al. 720 [96,100] reported a value of 1.33 x 10 ° cm” s for DAl 2 3 (139) N33A1F6-A1203 Table 139.17. Diffusion coefficients for species not included in tables 139.15 and 139.16 Species Melt composition T D x 1O5 Recommended (wt 7% A1203) (K) (cm2 S—l) study Na 14 1318 7.50 [93] Na+ 14 Na~© 12.9 1326 7.73 [93] F 12.9 1326 3.81 [93] Na~© 12.0 1327 8.09 [93] Al 3.2 1270-1345 t [92] co, sat'd,i.e. Vv12-13.5 1273 0.005* [97,98] ¢: for dissolved Al, the diffusing species probably are sub-fluorides containing ions; the values of D in this study appear unusually high, i.,e. 197" anl s-l(by a factor of 10), *: this value is based on a CO2 solubility of 3.32 x 10—6 mol cm-3 [29]; with the earlier (less reliable) CO solubility (0.8 x 10_7mol cm_3[3l]), Dco2 is v 12 x 10-'5 cm2 s_l. References: Na®, 93; F~, 93; Al, 92; Al,0,, 94-96,99; CO,, 97,98; 100. 2 9. Heat of Fusion (AH} No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) Measurement method: boiling point technique [101] Equation: log p = A + B/T (139.7) precision: in table 139.18 uncertainty: Table 139.18. Parameters of equation (139.7) and precisions Mol % A1203 A -B Precision T range(K) 5.0 8.817 10620 * 1370-1430 9.8 8.712 10513 * 1380-1430 14.3 8.773 10640 * 1385-1430 18.6 8.708 10575 * 1380-1440 34.0 8.794 10847 * 1400-1465 * not estimated; results presented in equation form only 721 -A1,0 (139) Na AlF ,0< 6 Table 139.19. Vapor pressure (mm) from equations in table (139.18) Mol % A1203 T (K) 5.0 9.8 14.3 18.6 34.0 1370 11.6 1380 13.2 12.4 11.1 1390 15.0 14.1 13.1 12.6 1400 17.0 15.9 14.9 14.3 11.1 1410 19.3 18.0 16.9 16.1 12.6 1420 21.8 20.3 19.1 18.2 14.3 1430 24.6 22.9 21.5 20.6 16.2 1440 23.1 18.3 1450 20.6 1460 23.2 References [101] 13. Thermal Conductivity (liquid) (Al) No data 14. Thermal Conductivity (solid) (As) No data 15. Cryoscopic Constant (kf) No data 16. References (1] Foster, P. A., Jr., J. Am. Ceram. Soc., 43, 66 (1960). [2] Phillips, N. W. F., Singleton, R. H., and Hollingshead, E. A., J. Electro- chem. Soc., 102[12], 691 (1955). [3] Foster, P. A., Jr., J. Am. Ceram. Soc., 45[4], 148 (1962). [4] Edwards, J. D., J. Electrochem. Soc., 100, 508 (1953). [5] Arndt, K., Kalass, Z., Z. Elektrochem., 30, 12 (1924). [6] Brynestad, J., Discussions Faraday Soc., 32, 90 (1961). [7] Chin, D. A., Hollingshead, E. A., J. Electrochem. Soc., 113, 736 (1966). [8] Fuseya, G., Sugihara, C., Nagao, N. and Teraska, J., J. Electrochem. Soc., Japan. 18, 65 (1950) [9] Abramov, G. A., Vetyukov, M. M., Gupalo, I. P., Kostyukov, A. A. and Lozhkin, L. N., "Teoreticheskie osnovy elektrometallurghii alyuminiiya (Theoretical Principles of the Electrometallurgy of Aluminum)", Metallurgizdat, Moscow, 1953. [10] Fenerty, A. and Hollingshead, E. A., J. Electrochem. Soc., 107, 993 (1960). 722 (139) NaSAlFé-AIZO3 [11] Mashovets, V. P. and Petrov, V. I., Zh. Prikl. Khim., 30, 1695 (1957); J. Appl. Chem. USSR, 30, 1785 (1957). [12] Vatslavik, E. and Belyaev, A. I., Zh. Neorg. Khim., 3, 1044 (1958). [13] Foster, P. A., J. Am. Ceram. Soc., 53(11), 598 (1970). [14] Matiasovsky, K., and Malinovsky, M., Chem. Zvesti, 14, 551 (1960). [15] Rolin, M., Bull. Soc. Chim., France, 1201 (1960). [16] Brynestad, J., Grjotheim, K., Grgnvold, F., Holm, J. L. and Urnes, S., 32, 90 (1962). [17] Kleber, W., and Fehling, W., Z. anorg. allgm. Chem., 338, 134 (1965). [18] Holm, J. L., Tidsskr. Kjemi, Bergv., Met. 10, 165 (1966). 19 Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J., [19] "gluminium Electrolyses", Aluminium-Verlag GmbH.-Dusseldorf (1977). [20] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Euteectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [21] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). 22 Internationa ritica ables o umerical Data, ysics, emistry, [22] " 3 1 Critical Tabl f W Leal Physt Chemi and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [23] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [24] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [25] Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [26] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Matertals", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [27] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems'”, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [28] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [29] Bratland, D., Grjotheim, K., Khron, C., and Motzfeld, K., J. Metals, October; 13 (1967). [30] Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. [31] Haupin, W. E., J. Electrochem. Soc., 107, 232 (1960). — 723 [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] (139) Na AlF-Al,0, Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Stlicate Systems”, Izdatel'stov ''Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists'", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Edwards, J. D., Taylor, C. S., Cosgrove, L. A., and Russell, A. S., J. Electrochem. Soc., 100, 508 (1953). Matiasovsky, K., and Malinovsky, M., Electrochimica Acta, 11, 1035 (1966). Tgrklep, K. and Pye, H. A., Electrochim. Acta, 25, in press (1980). Nishihara, K., Matsumura, Y., Komatsu, K., and Nogouchi, H., Suiyokai-Shi, 15, 311 (1964). Abramov, G. A., Vetyukov, M. M., Gupalo, I. P., Kostyokov, A. A. and Lozhkin, L. N., Theoretical Basis of Electrometallurgy of Aluminum (1953). Bloom, H., and Burrows, B. W., Proceedings of the First Australian Electrochemistry Conf. 882 1963. Batashev, K. P., Legkie Metally, 5, 48 (1936). "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxtec Effects of Chemtcal Substances'", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). vide: this work, System 100, NasAlFé. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals"”, National Board Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R, P, T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data'", ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, 0Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). 724 [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] 6 Al203 Edwards, J. D., Taylor, C. S., Russell, A. S.,, and Maranville, L. F ibid., 99, 527 (1952). (139) NajALF L Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber., des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956, Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J.y, "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0l1in Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. Kugler, T. .and Rieger, H. W.: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct. 4, 1973, Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem, Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I TNOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process', ORNL-2832, Oak Ridge Nat'l Lab. (1961). 725 [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] f90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] (139) Na3A1F6-A1203 Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems”, Proc. 2Nd U. N, Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels', Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamie Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P., and Ignat'eva, N, I ., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Vetyukov, M. M. and Dyblin, B. S., Sov. Electrochem. 11, 470 (1975). Lantelme, F. and Chemla, M., C. R. Acad. Sci. Paris, Ser C, 267, 281 (1968). Desclaux, P. and Rolin, M., Rev. Int. Hautes Temp. Refract. 8, 227 (1971). Thonstad, J., Electrochim. Acta 14, 127 (1969) Shurygin, P. M., Barmin, L. M., and Boronenkov, V. N., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 5(4), 106 (1962). Vetyukov, M. M. and Akgva, F., Elektrokhimiya SSSR 7, 557 (1971). Vetyukov, M. M. and Akgva, F., Elektrokhimiya SSSR 6, 1886 (1970). Rey, M., Internal Report (1966); cited in [3] above. Shurygin, P. M., Barmin, L. M., and Boronenkov, V. N., Izvet. Vyssh. Ucheb. Zaved. Tsvet. Met. 5(3) 59 (1962). Kvande, H., Electrochim. Acta 25(2), 237 (1980). 726 % System 140 K3A1F6-A1203 Melting Temperature (Tm) Pure substance melting points: K AlF : 990°C Al1,0,: 2040°C Eutectic melting point: 837°C, composition: 55 mol % K;ALF 75.6 wt % K3A1F6 o] N O T KAIF, - ALO, 880 840 L - 0 = 10 15 20 25 30 Mol % Al,0, Figure 140.1. K3A1F References [1-16] Density (p) No data Surface Tension (y) Mo data Viscosity (n) No data 727 6-A1203 phase diagram (140) K A1F6-A1 0 3 273 5. Electrical Conductance (k) Measurement method: classical ac technique [2] Equation: 2 3 K = a + bT + cT™ + dT (140.1) precision: in table 140.1 uncertainty: ~ * 30% Table 140.1. Parameters of equation (140.1) and precisions Mol 7% A1203 a b x 102 -¢ X 106 d x 109 Precision 11.8 7.669 -0.739 1.21 . 2.95 0.197% 22.0 -4.948 1.524 13.05 4.34 0.61% 30.9 9.010 -0.582 6.07 5.02 0.95% Table 140.2. Specific conductance (ohm™! cm™l) from equations in table 140.1 Mol Z A1203 T (K) 11.8 22.0 30.9 1230 2.01 1240 2.03 1250 2.20 2.05 1260 2.23 2.08 1270 2.37 2.26 2.11 1280 2.42 2.29 2.14 1290 2.46 2.32 2.17 1300 2.50 2.35 2.21 13190 2.55 2.39 2.25 1320 2.59 2.42 2.29 References [2] 728 (140) K;ALF -A1,0 6 273 6. Safety and Hazards (1) (i1) (1) (ii) A. Hazard rating Toxicity: inorganic fluorides are generally quite irritant and toxic. Vapor pressure, no data, B. Disaster hazards Molten salt bath '"explosions'": i.e., explosive generation of steam due to bulk water '"carry-over" and/or equipment failure; i.e., explosive expansion of "trapped'" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [17-21] 729 (140) K,AlF_-Al,0 3 6 273 7. Corrosion Table 140.2. Corrosion studies from primary research literature Studies References Cr [22] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [23,24] A | SSNI-12P [25] Quartz [26] Al [27] Various metals [28] Pt [29-33] B | Boron nitride, carbon, Inconel [34-36] F d MgO 37 | Fuse g [37] Impurities in electrolyte [38,39] C | Graphite [38,39] | TiC, TiB,, CrB,, ZrN, NbB, [40-42] Corrosion studies in molten salts with NaF as one component (e.g., Cl, CO,,...) [43-58,65,66] Electrochemical behavior of oxide ions and related speciles D | in molten fluorides [59-61] Electroanalytical studies in molten fluorides [62] Annotated corrosion biblio. [63] Corrosion: molten fluorides(survey) [64] — A: studies principally in molten NaF, KF, and LiF;' B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles and surveys. References [22-66] 730 14 - (140) K3A1F6 AlZO3 8. Diffusion No data 9. Heat of Fusion (AH}) No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (AZ) No data 14. Thermal Conductivity (solid) (A,) No data 15, Cryoscopic Constant (kf) 16. References [1] Mashovets, V. P,, "Electrometallurgy of Aluminium', ONTI, Moscow- Leningrad, 1938. [2] Batashev, K. P. and Zhurin, A. I., Metallurg. No. 12, 67 (1935). [3] - Belyaev, A, I., Rapoport, M. B. and Firsanova, L. A., Elektrometallurgia Alyuminia, Metallurgizdat, Moscow, 1953. [4] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P, T., "Eutectie Data'" - 2 Vols; ERDA-TID-27163-P1 & P2; NTIS, Washington, D. C. (1977). [5] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P, T., "Physical Properties Data Comptlations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). (6] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [7] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). 731 [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] f23] [24] [25] [26] (140) K,AlF_-Al zAlFg-Al,0 3 Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems”, " Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N, Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganice Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov '"'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). "Applications of Phase Diagrams in Metallurgy and Ceramics”, (2 Vols) NBS Special Pub. 496. U. S. Dept. of Commerce. Nat. Bur. Ed. Carter G. C. March 1978. d 4 ur. Standards. "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S, Gov't Printing Office, Washington, D, C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr.,.and Allen, C. B. "Safety and Hazards", Chapter in "Eutectie Data'”, ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, '"The Development Status of Molten Salt Breeder Reactors'", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). 732 (140) K3A1F6-A1203 [27] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [28] Koger, J. W., Corrosion, 30, 125 (1974). [29] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem, Soc. 99, 527 (1952). [30] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [31] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. [32] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [33] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [34] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). [35] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [36] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). [37] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [38] Grjotheim, XK., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses'", Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [39] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [40] Holliday, R. D., (0Olin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. [41] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [42] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. [43] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [44] Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). [45] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [46] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [47] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides", ANP Materials Meeting ORNL-2685, (1958). [48] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [49] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). 733 [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] (62] [63] [64] [65] [66] (140) K, 203 Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Dissolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., Litman, A. P., and Goldman, A. E., Nickel Fluorinator after Fourteen (1962). "Corrosion Associated with Fluor- tdation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process'”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L. in Molten Fluoride Systems', of At. Energy, 7, 223 (1958). , "Metallurgical Problems Proc. 2Nd U, N. Inter. Conf. Peaceful Uses Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., Reactor Handbook 2nd Shimotake, H., and Hesson, J. C., Adv. "Molten Salts as Reactor Fuels”, ed., 1, 425 (1955). Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems"”, ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. Nucl. Chem., 39, 1803 (1977). E., and Mamantov, G., J. Inorg. Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Tnvestigations of Metal Fluoride Thermal Energy Storage Materials: Avatlability, Cost, Chemistry"” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P., and Ignat'eva, N. I. 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Metalov (USSR), 2, 230 (1969). 734 , Russ. J. Inorg. Chem., 6(9), Zashchita System 141 Li AlF -Al1l,0 3 6 273 1. Melting Temperature (Tm) Pure substance melting points: L13A1F6: 785°C . =] A1203. 2040°C Eutectic melting point: 775 * 3°C, composition: ~ 1.5 mol % Al,04 LiAIF - Al O 3 8 2 3 800L (°C) 790F 780 \ 7704 760¢ 730F 1 1 ] L LiLAIFE ! 2 3 4 3 8 Mol % AlaOs Figure 141.1. Li3A1F6—A1203 phase diagram References [1-18] 2. Density (p) Measurement method: Archimedean technique [20] Equation: p = a+ bT (141.1) precision: in table 141.1 uncertainty: ~ = 1.5% 735 Table 141.1. Parameters of equation (141.1) and precision } | Mol 7 A1203 a -b x lO4 Precision T range (K) | X 3 3.0466 8.460 * 1220-1320 ‘ 6 2.9730 7.920 * 1220-1320 1 insufficient data for estimate Table 141.2. Density (g cm"s) from equations in table 141.1 ! Mol % A1203 T (K) 3 6 1220 2.0145 2.0067 1240 1.9975 1.9909 1260 1.9806 1.9750 1280 1.9637 1.9592 1300 1.9468 1.9434 1320 1.9299 1.9275 References [19,20] 3. Surface Tension (y) No data 4. Viscosity (n) No data 6. Electrical Conductance (k) No data 736 (141) Li3A1F6-A1203 6. Safety and Hazards A. Hazard rating (1) Toxicity: inorganic fluorides are generally quite irritant and toxic. (1i) Vapor pressure: no information on this system; Li3A1F6 at its m.pt., ~ 785°C, ~ << 5mm, B. Disaster hazards (1) Molten salt bath "explosions'": i.e., explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [21-26] 737 7. Corrosion Table 141.2. Corrosion studies from primary research literature Studies References —Er [27] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [28,29] A | SSNI-12P [30] Quartaz [31] Al [32] Various metals [33] — B | Boron nitride, carbon, Inconel Fused MgO — Impurities in electrolyte C | Graphite TiC, TiB CrB ZrN, NbLB 2° 2 2 — Corrosion studies in molten salts with NaF as one component (e.g., cl, COB"") Electrochemical behavior of oxide ions and related species in molten fluorides Electroanalytical studies in molten fluorides Annotated corrosion biblio. Corrosion: molten fluorides(survey) L — [34-38,72,73] [39-41] [42] [43,44] [43,44] [45-47] [48-63,70,71] [64-66] [67] [68] [69] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [27-73] 738 10. 12. 13. 14, 15. 16. Diffusion No data Heat of Fusion (AHS) f No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (AR) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Mashovets, V. P. and Petrov, V. I., Zh. Prikl. Khim., 30, 1695(1957); J. Appl. Chem, USSR. 30,1785 (1957). Jenssen, B., Thesis, The University of Trondheim, NTH, Trondheim, 1969. [2] [3] Malinovsky, M. and Matiasovsky, K., Hutnicke Listy 24(7), 515 (1969). [4] Drossbach, P., Z. Electrochem. 42, 65 (1936). [5] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data' - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [6] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [7] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). 739 (141) LigAlF4-Al 6 A1203 [8] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophystk und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [9] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [10] Robertson, W. D., "Binary Phase Diagrams of Halide Salts', Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [11] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [12] Thoma, R. E., "Phase Dzagrams of Binary and Ternary Fluoride Systems'”, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. ' Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [13] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [14] Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964, [15] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems', Izdatel'stov "Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [16] Levin, E., et al., "Phase Diagrams for Ceramists', Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [17] "Applications of Phase Diagrams in Metallurgy and Ceramics”, (2 Vols) NBS Special Pub. 496. U. S. Dept. of Commerce. Nat. Bur. Standards. Ed. Carter G. C. March 1978. [18] Cassidy, R. T., and Brown, J. J., Jr., Unpublished data, Virginia Polytechnic Institute and State University, (1977). [19] Matiasovsky, K., private communication to G. J. Janz (MSDC-RPI) (1968). [20] Mashovets, V. P. and Petrov, V. I., J. Appl. Chem. (USSR) 32, 1561 (1959). [21] "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [22] "Registry of Toxic Effects of Chemical Substances'”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U, S. Gov't Printing Office, Washington, D. C. (1975). [23] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2. (1954). [24] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [25] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards', Chapter in "Eutectic Data", ERDA TID-27163-P1l; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). 740 (141) LizAlF -Al,0 6 3 [26] vide: this work, System 65, Li3A1F6. [27] Brasunas, A., Metal Prog., 62, 88 (1952). [28] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [29] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [30] Oak Ridge National Laboratory, '"The Development Status of Molten Salt Breeder Reactors”, Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). [31] Heimann, R., Glastech. Ber., 43, 83 (1970). [32] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [33] Koger, J. W., Corrosion, 30, 125 (1974). [34] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). [35] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [36] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. [37] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [38] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [39] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). [40] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [41] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). [42] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [43] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Eleectrolyses'’, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [44] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [45] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972, [46] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [47] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. [48] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [49] Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). [50] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). 741 [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gili, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochenmn. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs'", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associtated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems”, Proc. 2Md U, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels', Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry' ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergen, V. P.,, and Ignat'eva, N. I., Russ. J. Inorg. Chem., Q(Q), 1086 (1961). Ozeryanaya, 1. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 742 (141) L13A1F6-A1203 [72] Ryschkewitsch, E., Z. Elektrochem., 39, 531 (1933). [73] Yaffe, I. S., and Van Artsdalen, E. R., Chemistry Semiannual Progress Report for period ending June 20, 1956, ORNL-2159, p. 77. 743 System 142 LiOH-LiNO, 1. Melting Temperatures (Tm) Pure substance melting points: LiNO,: 253°C LiOH: 462°C Eutectic melting point: E 182°C, composition: 40.5 mol % LiOH 1 Tr: 195°C, composition: 48 mol % LiOH 700 1 LiOH - LiNOs 600 r 3500 ¢ (°C) 400 300 200 100 F N L - - ol o 1 I o O 20 50 I | . | Mol. % LiNOs 3 Figure 142.1. LiOH—LiNO3 phase diagram References [1-16]. 2. Density (p) Measurement method: dilatometric technique [17] Equation: P =a + bT (142.1) precision: in table 142.1 uncertainty: ~ ¢ 1.0% Table 142.1. Parameters of equation (142.1) and precisien Mol % LiOH a -b x 10 Precision T range(K) 7.6 2.3681 8.065 410-440 744 (142) LiOH-LiNO3 Table 142,2, equation in table 142.1 Density (g cm-s) at 7.6 mol % LiOH from b " 3 T " .3 (K) (g cm 7) (K) (g cm 7) 410 2.0374 430 2.021 420 2.029 440 2.013 References [17] Surface Tension (y) No data Visacosity (n) No data Electrical Conductance (k) Measurement method: classical ac technique [17] Equation: € = a+ bT + cT? (142.2) precision: in table 142.3 uncertainty: .~ * 3,0% Table 142.,3, Parameters of equation (142.2.) and precision Mol % LiOH S © isi o 7 Li a b x 10 c x 10 Precision T range(K) 7.6 0.4421 -3.7749 7.265 v 1.0% 410-440 Table 142.4, equation in table 142.3. Specific conductance at 7.6. mol % LiOH from ! 1 a1 T a1 (K) (ohm cm ) (K) (ohm cm ) 410 0.116 430 0.162 420 0.138 440 0.188 References [17] 745 (142) LiOH-LiNO, 6. Safety and Hazards (1) (ii) (1) (1i) (11i1) (iv) A. Hazard rating Toxicity: LiOH, very caustic and toxic; LiNO,, moderate 3 Vapor pressure: LiOH, at m.pt. (460°C), << 0.5mm; LiNOz (m.pt. 253°C) decomposes with heating to the nitrite and oxygen just above its m.pt. B. Disaster hazards Molten salt bath "explosions': violent generation of steam due to bulk water 'carry-over" and/or equipment failure; sudden explosive expansion of "trapped" air. Hydroxides react with water or steam with evolution of heat; the aqueous sclution is very caustic and at- tacks living tissue; dangerous. On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: MNO; —% MNO, + %0, (142.3) ZMNO2 — MZO + NO + NO2 (142.4) The subsequent decomposition reactions are complex; if the gas phase 1is continuously removed, the nitrite conversion (above) to NO and NO2 is dominant. In the temperature range 550-660°C, and under oxygen, the conversion of KNO, to KNO3 goes to completion; be- tween 650-750°C, the two salts interconvert (see above), KNOz becoming increasingly unstable; above 800°C, the nitrite decomposition: 2 KNO, —% K,0 + N, + 3/202 goes to completion, Nitrates are powerful oxidizing agents; violent (ex- plosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., Qils, cgrbon,...); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [18-23] 746 7. 10. 11. 12. 13. (142) LiOH-LiNO, Corrosion Table 142.,5. Corrosion studies from primary research literature Studies References Pfii, Cu, Armco Fe and steel [24-26] A Fe, effects of H20 [27] Pt, Ag, and alloys [28-30] Fe [31] = Cu [32] Thermodynamic approach [33,34] G Electrochemical approach [35,36] Annotated corrosion biblio. [37] L'_Rev:i.ews,corrosion [38=-40] Compatibility studies: A; principally molten LiOH; B: principally molten LiNO C: 33 general survey, reviews and biblios. No compatibility studies specifically for molten LiOH—LiNO3 References [24-40] Diffusion No data Heat of Fusion (AH}) No data Heat Capacity (Gp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap} No data Thermal Conductivity (liquid) (Ay) No data 747 14, 15. 16. (142) LiOH-LiNO, e e Thermal Conductivity (solid) (AS) No data Cryoscopiec Constant (kf) No data References [1] Diogenov, G. G., Doklad. Akad. Nauk, SSSR., 78, 697 (1951). [2] Diogenov, G. G., Doklad. Akad. Nauk, SSSR., 89, 305 (1953). | — 1 [3] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data' - 2 Vols; ERDA-TID-27163-P1 § P2, NTIS, Washington, D. C. (1977). [4] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectie Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [5] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [6] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik'", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [7] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS, [8] Robertson, W. D., "Binary Phase Diagrams of Halide Salts', Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [9] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [10] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vel. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [11] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [12] Sinistri, C,, Franzozini, P., and Rolla, M., "An Atlas of Miscibility E Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). [13] Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, (1964). [14] Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), (1973). [15] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Sc¢ientific Translations, Jerusalem, 1972 (NTIS). 748 [16] [17] (18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] (142)" LiOH-LiNOg Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Campbell, A. N., and Williams, D. F., Canad. J. Chem., 42, 1984 (1964). Stern, K., "High Temperature Properties and Decomposition of Inorgantic Salts. III. Nitrates and Nitrites's J. Phys. Chem. Ref. Data, 1, 747-772 (1972). "Dangerous Properties of Materials”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances”, Christensen, H., E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. w., U. S, Gov't Printing Office, Washington, D. C. (1975). npotential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board of Fire Underwriters Research Report No. 2 (1954). "Handbook of Reaetive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). Janz, G. J., Tomkins, R. P. T.,, Downey, J. R. Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectic Data”, -ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va., (1977) Gurowich, E. I., Zh. Prikl. Khim., 32, 817 (1959). Smith, G. P., Hoffman, E. E., Corrosion, 13, 627t (1957). Smith, G. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957). Tribunskii, V. V., Kalinichenko, I. I., Tr. Ural. Politekh. Inst., 190, 49 (1970). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Notoya, T., Denki Kagaku, 41, 779 (1973). Conte, A., and Ingram, M., D., Electrochim. Acta, 13, 1551 (1968). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts”, '"Proceedings of the European Conference on the Development of Molten Salts Applications'", p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts”, Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, I.,Nauki. Tekh. Korros. Zasch. Korros., 2, 171 (1973). 749 b System 143 NaOH-NaNO 3 Melting Temperatures (Tm) Pure substance melting points: NaNOS: 307°C NaOH: 318°C Eutectic melting point: E1:258°C, composition: 18.5 mol % NaNO3 E2:266°C, composition: 41 mol % NaNO3 E3:246°C, composition: 72 mol % NaNO 3203 e NaNO3-NaOH 307, 300 (°C) 280 272 2715 266 260 N 258 240} 246 220 L | 1 25 50 75 100 NaOH NaNO; Mol % NaNO3 Figure 143.1. NaOH-NaNO3 phase diagram Table 143,1. Additional variant points Composition t(°C) Composition t(°C) ZNaOH-NaNO3 27 2°C NaOH-NaNO3 271.5°C References [1-16] 750 e O Density (p) No data (143) NaOH-NaNO, Surface Tension (Y) No data Viseosity (n) No data Eleetrical Conductance (k) No data Safety and Hazards (1) (11) (1) (11) (iii) (iv) A, Hazard rating Toxicity: NaNOz, permitted as a food additive; NaOH, very caustic and is corrosive to all body tissues. Vapor pressure: no information for this system, but see NaNO3 [23], and NaOH [23]. B, Disaster hazards Molten salt bath "explosions': 1i.e. explosive generation of steam due to bulk water 'carry-over'" and/or equipment failure; i.e., explosive expansion of '"trapped" air. On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: 2MNO, —% 2MNO, + O, (143.1) ZMNO2 ——4+-M20 + NO + NO (143.2) 2 The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO2 is dominant. Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. Dangerous; with water or steam, reacts with evolution of heat; the aqueous solution is very strongly caustic; attacks living tissue. References [17-24] 751 10. 11. 12, 13. (143) NaOH-NaNO, Corrosion Table 143.2. Corrosion studies from primary research literature I Studies References [ Fe [25-27] Fe, Co, Ni (28] A Cu [29] Pt, S, steel [30] L_Oxide species f31] Metals [32] Metals, Ceramics, alloys [32-39] Stainless steel, Fe-Ni-Cr alloys [40] B Ni, Cr, and various Ni based alloys [41-44] Ni-steels [45] Fe (effect of HZO) [46] LPt, Ag, and alloys [47-49] Electrochemical approach [50,51] Thermodynamic redox diagrams [52,53] c Annotated corrosion biblio. [54] ! LReviews/molten salts [55-57] Compatibility studies: A: NaQOH; C: specific to molten NaNO3 References [25-57] Diffuszion No data = Heat of Fusion (AHf No data Heat Capacity (Cp) No data Volume Change un Melting (AVf) No data Vapor Pressure (p ) vap No data Thermal Conductivity (liquid) (AL) No data 752 molten NaNO 3 basic principles and reviews. -NaOH found. B: molten No studies (143) NaOH-NaNO, 14. Thermal Conductivity (solid) (AS) No data 15. Cryoscopic Constant (kf) No data 16. References [1] Bergman, A. G. and Reshetnikov, N. A., Izvest. Sektora Fiz.-Khim. Anal., Inst. Obshchei Neorg. Khim., Akad. Nauk SSSR, 25, 212 (1954). [2] Diogenov, G. G., Akad. Nauk SSSR, 89 305 (1953). [3] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectice Data' - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [4] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R, P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salte: FEutectie Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [5] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology'", 8 Vols.,, McGraw-Hill Book Co., N. Y. (1933). [6] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemte, Astronomie, Geophysik und Technik'", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [7] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [8] Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [9] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials"”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [10] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems’, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [11] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts"”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [12] Sinistri, C., Franzozini, P., and Rolla, M., "dn Atlas of Miscibility Gaps in Molten Salt Systems'”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). [13] Shaffer, P. T. B., "High Temperature Materials'”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. [14] Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions', Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973, [15] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Ozygen Compounds in Silicate Systems", Izdatel'stov 'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). 753 (143) NaOH-NaNO, [16] Levin, E., et al., "Phase Diagrams for Ceramists'", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [17] Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites'", J. Phys. Chem. Ref. Data, 1, 747-772 (1972). [18] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [19] "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinybyhl, T, T., eds., U. S. Dept. H.E.W; U, S. Gov't Printing Office, Washington, D. C. (1975). [20] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2. (1954). [21] "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). [22] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectic Data', ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [23] Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII, Molten Salts: Data on Single and Multi-Component Salt Systems'”, NSRDS-NBS 61, Part II ' (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D, C. 20402. [24] vide: this work, System 69, NaOH. [25] Arvia, A. J.,, Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). [26] Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). [27] Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). [28] Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 ) (1971). [29] Notoya, T., Denki Kagaku, 41, 779 (1973). [30] Johnson, K. E., Electrochim, Acta, 11, (1966). [31] Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). [32] Anon, "Oak Ridge National Laboratory, Proceedings of the Ist Information Meeting on Hydroxide and Metal Interaction", ORNL CF-51-11-204, (1953). [33] Craighead, C. M., Smith, L. A., Phillips, E. C., Jaffee, R. 1., "Continued Studies of Corrosion by Fused Caustie', AECD-3704, Battelle Memorial Institute, (1952). [34] Gregory, J. N., Hodge, N., Iredale, J. V. G., "The Statiec Corrosion of Nickel and Other Materials in Molten Caustic Soda'”, British Report AERE-C/M-272, (1956). [35] Miller, R. R., "The Thermal Properties of Sodium Hydroxide and Lithium Metal”, 4th Progr. Rept. Nov. 1 (1952)-Jan. 31 (1953) NRL-Memo-130: Progr. Rept. No. 1, Naval Research Lab., (1952). [36] Williams, D. D., Ewing, C. T., "Thermal and Related Physical Properties of Molten Materials", Prog. Rept. Feb. 1 - May 1, {1953) NRL-Memo-170, Progress Report 5, Naval Research Lab., (1953). 754 [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] (143) NaOH-NaNO, Smothers, W. J., Prog. Rept., Jan. 1 - March 31, (1953), AECU-2872, Univ. of Ark., (1953). Smith, G. P., "Corrosion of Materials in Fused Hydroxzides'", Am. Inst. Mining Engrs., Inst. Metals Div., Spec. Rept., #2, 71 (19560). Smith, G. P., "Corrosion of Materials inm Fused Hydroxides', ORNL-2048, Oak Ridge National Laboratory, (1956). Smith, G. P., Hoffman, E. E., "Corrosion Products Formed in the Reaction between Fused Sodium Hydroxide and Iron-Rich Alloys of Iron, Chromium and Nicekel”, ORNL-2156, Oak Ridge National Laboratory, (1957). Smith, G. P., Steidlitz, M. E., Hoffman, E. E., Corrosion, 11, 47t (1958). Smith, G. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957). Manly, W. D., "Operation of a Ni-NaOH Thermal Convection Loop", ORNL CF- 51-11-186, Oak Ridge National Laboratory, (1951). Miller, N. E., Simons, E. M., Chem. Eng. Progr. Symp. Ser. No. 19, Amer, Inst. Chem. Eng., 52, 113 (1956). Kolotii, A. A., Vengzhen, G. S., Zashch. Met., 11, 61 (1975). Tribunskii, V. V., Kalinichenko, I. I., Tr. Ural. Politekh. Inst., 190, 49 (1970). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts”, '"Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts”, Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochim.Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M, V. and Ozeryanaya, I., Nauki. Tekh. Korros. Zasch. Korros., 2, 171 (1973). 755 System 144 KNOB-KOH 1. Melting Temperatures (Tm) Pure substance melting points: KNO,: 335°C KOH: 360°C Eutectic melting point: Elz 214°C, composition: 31.5 mol % KOH EZ: 220°C, composition: 68 mol % KOH 400t KOH-KNO, 300 (OC) L 200 128° 100t (o] 50 100 KNO3 KOH Mol % KOH Figure 144.1. KNOS-KOH phase diagram References [1-15]. 2. Density (p) No data 3. Surface Tension (Y) No data 4., Viscosity (n) No data 5., Electrical Conductance (k) No data 756 SRSV 6‘ (144) KNO.-KOH Safety and Hazards (1) (ii) (i) (i) (iii) (iv) A. Hazard rating Toxicity: KNOz, permitied as a food additive; KOH, highly caustic and is very corrosive to all body tissue Vapor pressure: no information for this system, but see KNO; [73], and KOH [68] B. Disaster hazards Molten salt bath "explosions'": violent generation of stean due to bulk water '"carry-over'" and/or equipment failure; sudden exposive expansion of "trapped' air On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: MNO, ——s— MNO, + %0 (144.1) 2MNO, ——== M,0 + NO + NO, (144.2) The subsequent decomposition reactions are complex; if if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO2 is dominant. In the temperature range 550-600°C, and under oxygen, the conversion of KNO, to KNOz goes to completion; be- tween 650-750°C, the two salts interconvert (see above), KNOz becoming increasingly unstable; above 800°C, the nitrite decomposition: 2 KNO, —= K,0 + N, + 3/9_02 goes to completion Nitrates are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,...); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous Hydroxides, dangerous; react with water or steam with evolution of heat; the aqueous solution is very strongly caustic; attacks living tissue References [16-23] 757 (144) KNO,-KOH 7. Corrosion Table 144.1. Corrosion studies from primary research literature Studies References Fe A} Pt, Rh, Ag Oxide species -Ni, Cu, Armco Fe B | Fe (effects of H20) | Pt, Ag, and alloys [ Electrochemical approach Thermodynamic redox diagrams Reviews/corrosion: molten salts _Annotated corrosion biblio. [24] [25] [26] [27-29] [30] [31-33] [34,35] [36,37] [38-40] [a1] Compatibility studies: A: molten KNO 3; B: molten KOH; C: basic principles and survey reviews. No studies with molten KNO,-KOH found. 3 References [24-41]. 8. Diffusion No data ) 9. Heat of Fusion (AHf No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (p ) vap No data 13. Thermal Conductivity (liquid) (Afi) No data 14. Thermal Conductivity (solid) (As) No data 15. Cryoscopic Constant (kf) No data 758 I (144) KNO.-KOH 3 16. References [1] [2] [3] [4] [5] [6] [11] [12] [13] [14] [15] [16] [17] [18] Reshetnikov, N. A. Vilutis, N. I., Zhur. Neorg. Khim., 3, 177 (1958). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data'”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, (1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems"”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, (1964). Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions', Instituto di Chimica Fisica, Universita di Pavia (Italy), (1973). Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov '"'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites', J. Phys. Chem. Ref. Data, 1, 747-772 (1972). - "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). 759 [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] (144) KNO,-KOH "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals"3 National Board of Fire Underwriters Research Report No. 2 (1954). ‘ "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R. Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Futectic Data”, -ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Mclten Salts: Data on Single and Multi-Component Salt Systems'", NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl13-48-61, Washington D. C. 20402. vide: this work, System 70, KOH. Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); tbid, 40, 62 (1972). Johnson, K. E., Electrochim. Acta, 11, 129 (1966). Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts'", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Gurowich, E. I., Zh. Prikl. Khim., 32, 817 (1959). Smith, G. P., Hoffman, E. E., Corrosion, 13, 627t (1957). Smith, 6. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957). Tribunskii, V. V., Kalinichenko, I. I., Tr. Ural. Politekh. Inst., 190, 49 (1970). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts'", Proceedings of the European Conference on the Development of Molten Salts Applications, p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts"”, Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975) Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochim. Acta, 13, 1551 (1968). Smirnov, M. V., and Ozeryanaya, I. N., Nauki Tekh. Korors., Zashch, Korros., 2, 171 (1973). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A,, Chemie Ing. Techn., 45, 667 (1973). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). 760 1. Melting Temperatures (Tm) System 145 NaNO3-NaNO2 Pure substance melting points: NaNO,: 307°C 3 NaNOZ: 282°C Eutectic melting point: El: 233°C, E,: 235°C, composition: ~ 50 mol composition: ~ 40 mol % NaNO % 300 = - | e T T T [ T T T 71 T Nc:NOZ-NclNO3 g 250 , 7 o = I" -y (O ; el I o " ~~\ - H ™ 200 ! . = [ B ~ - Q o a A . 04.‘ 7 b . b Q [ ' 150 ' = - | | | | 0 20 40 €0 a0 100 NaNo, NaNO, Moi % Na NO, Figure 145.1, NaNO -NaNO2 phase diagram References [1-17] 2. Density (p) Measurement method: Equation: precision: in table 145.1 3 Archimedean technique [19] p = a+ bT (145.1) uncertainty: ~ % Table 145.1. Parameters of equation (145.1) and precisions Mol % NaN02 a -b x 104 Precision|{ T range(K) 25 2.2532 6.435 *0.147% 550-770 35 2.2456 6.608 +0.04% 510-770 40 2.2287 6.495 +0.03% 490-770 50 2.1912 6.124 +0.10% 490-770 55 2.1900 6.137 +0.10% 490-770 60 2.1973 6.320 +0.03% 510-770 65 2.1927 6.343 +0.05% 550-770 75 2.1922 6.421 +0.04% 550-770 761 (145) NaNO_-NaNoO, Two-independent-variables equation o a + bT + cC (145.2) (C mol % CaClz) Table 145.2. Parameters of two-independent-variables equation (145.2) and precision a -b x lO4 c X 103 Precision 2.26498 -6.2576 -1.1945 0.02% Table 145.3. Density (g cm_3) from equations in table 145.1 Mol 7% NaNO2 T (K) 25 35 40 50 55 60 65 75 490 1.910 1.891 1.889 510 1.909 1.897 1.879 1.877 1.875 530 1.895 1.884 1.867 1.865 1.862 550 1.899 1.882 1.871 1.854 1.852 1.850 1.844 | 1.839 570 1.886 1.869 1.858 1.842 1.840 1.837 1.831 1 1.826 590 1.874 1.856 1.845 1.830 1.828 1.824 1.818{ 1.813 610 1.861 1.843 1.833 1.818 1.816 1.812 1.806] 1.801 630 1.848 1.829 1.820 1.805 1.803 1.799 1.793 1 1.788 650 1.835 1.816 1.807 1.793 1.791 1.787 1.780 | 1.775 670 1.822 1.803 1.794 1.781 1.779 1.774 1.768 | 1.762 690 1.809 1.790 1.781 1.769 1.767 1.761 1.755| 1.749 710 1.796 1.776 1.768 1.756 1.754 1.749 1.742 ] 1.736 730 1.783 1.763 1.755 1.744 1.742 1.736 1.730] 1.723 750 1.771 1.750 1.742 1.732 1.730 1.723 1.717 ] 1.711 770 1.758 1.737 1.729 1.720 1.717 1.711 1.704 | 1.698 References [18,19] 3. Surface Tension (y) Measurement method: maximum bubble pressure [20] Equation: y = a + bT (145.3) precision: in table 145.4 uncertainty: ~v + 2.5% Table 145.4. Parameters of equation (145.3) and precisions Mol 7% NaNO2 a -b x 103 Precision T range (K) 20 138.6 39.0 * 530-710 40 136.7 35.0 * 520-690 60 139.3 38.0 * 530-710 80 135.0 30.0 * 560-740 * not estimated; insufficient data 762 (145) NaNOS-NaNO2 Two-independent-variables equation vy = a + bT + cT2 + dC3 + eTC (C = mol % NaNOZ) (145.4) Table 145.5. Parameters of two-independent-variables equation (145.4) 2 5 6 5 a b x 10 c x 10 d x 10 e x 10 Precision 142.36398 -4.81341 1.34004 2.76423 -9.2449 0.17% Table 145.6. Surface tension (dyn cm-l) from equations in table 145.4 Mol 7 NaNO2 T (K) 20 40 60 80 520 118.5 540 117.5 117.8 118.8 560 116.8 117.1 118.0 118.2 580 116.0 116.4 117.3 117.6 600 115.2 115.7 116.5 117.0 620 114.4 115.0 115.7 116.4 640 113.6 114.3 115.0 115.8 660 112.9 113.6 114.2 115.2 680 112.1 112.9 113.5 114.6 700 111.3 112.7 114.0 720 113.4 740 112.8 References [20,21]. Viscosity (n) No data Electrical Conductance («x) Measurement method: classical ac technique [22] Equation: < = A exp (-E/RT) (145.5) precision: in table 145.7 uncertainty: ~ % Table 145.7. Parameters of equation (145.5) and precisions E Mol 7% NaNO3 A (cal mol_l) Precision T range(K) 7.5 13.2 2640 * 560-720 15.5 12.6 2630 * 550-720 30.0 12.0 2620 * 520-720 50.0 11.2 2620 * 520-720 75.0 11.7 2750 * 560-720 80.0 12.4 2860 * 570-720 * not estimated; 763 insufficient data Tabhle 145.8. Specific conductance (ohm-1 cm-l) from equations in table (145) NaNOS-NaNO2 145.7 Mol % NaNoO 3 T (K) 7.5 15.0 30.0 50.0 75.0 80.0 520 0.950 0.887 540 1.044 0.974 560 1.242 1.185 1.139 1.063 0.988 580 1.347 1.286 1.236 1.153 1.076 1.037 600 1.454 1.388 1.333 1.244 1.165 1.126 620 1.561 1.490 1.431 1.335 1.255 1.217 640 1.699 1.593 1.529 1.427 1.346 1.308 660 1.777 1.696 1.628 1.519 1.437 1.401 680 1.885 1.799 1.726 1.611 1.529 1.493 700 1.992 1.902 1.824 1.703 1.620 1.586 720 2.100 2.004 1.922 1.794 1.712 1.680 References [22] Safety and Hazards (1) (ii) (1) (ii) (iii) A. Hazard rating Toxicity: NaNO3z, permitted as a food additive; NaNOj, permitted in food; there appears some implication of increased cancer with chronic ingestion of nitrites. Vapor pressure: no information for this system; but see NaNO3 [32], and NaNO2 [33] B. Disaster hazards Molten salt bath "explosions'": 1i.e. explosive generation of steam due to bulk water 'carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. On decomposition, nitrates emit toxic fumes (oxides of nitrogen) viz: 2MNO, —s= 2MNO, + 0, (145.6) ZMNO, —== M,0 + NO + NO, (145.7) The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite de- composition (above) to NO and NO2 is dominant. Nitrates and nitrites are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [23-33] 764 -NaNO (145) NaNoO, , 7. Corrosion Table 145.9. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [34-36] Fe, Co, Ni, Cr, Al,... [37-39] Cu, Pt, Au, W,... [38-40] Zn, Pb, Cu, Ni, Al [41] Pt, S, steel [42] Zr [43] Oxide species [44] Electrochemical approach [45,46] Thermodynamic redox diagrams 147 ,48] Annotated corrosion biblio. [49] Reviews/molten salts [50-52] The compatibility studies in Table 145.9 are largely for NaNOS, KN03, and their molten mixtures. For studies in molten NaNO3-NaN02, and thermodynamic p0 , diagrams, see [37]. References [34-52] 8. Diffusion No data 9. Heat of Fusion (AH} No data 765 10. 11. 12. 13. 14. 1s. (145) NaNOS-NaNO? Heat Capactty (Cp) Measurement method: drop calorimetry [53] Composition: 45.1 mol % NaNO Temp. range: 508-766 K 3 C, = 61.50 - 35.33 x 107°T (145.8) precision: v % 1.5% uncertainty: v % Table 145.10. Heat capacity from equation (145.8) o Cp Cp ! 1 -1 T R | (K) (cal K mol ) (K) (cal K mol 7)) 510 43.5 700 36.8 550 42.1 750 35.0 600 40.3 770 34.3 650 38.5 The heat capacity of this mixture in the crystalline state, for the temperature range 380°-487 K, is given by: c, = ~28.19 + 132.2 x 10°°T [53] (145.8) References [53] Volume Change on Melting (AVf) Measurement method: estimated from densities [54] Table 145.11. Volume change on melting Binary eutectic (AVf/VS) Uncertainty (mol % NaNO3) 40 (a) 10.87% 50 (a) 10.07% v+ 15% (a) binary eutectic mixtures References [54] Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (k£) No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant (kf) No data 766 (145) NaNOS—NaNO2 16. References [1] Bergman, A. G., Beruli, S. I., and Nikonova, I. N., Izv. Sekt. Fiz. Khim., A. 23, 183 (1953). (2] Protsenko, P. I., Medvedev, B. S., Zhur. Neorg. Khim., 8, 1434 (1963). 13] Shisholina, R. P., Protsenko, P. I., Zhur. Neorg. Khim., 8, 1436 (1963). [4] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins,'h. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [5] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Futectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C, (1978). [6] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [7] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Teehnik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [8] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Foints Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. (9] Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. e Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [10] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [11] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [12] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts"”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [13] Sinistri, C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). [14] Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, (1964). [15] Franzozini, P., Ferloni, P., apd Spipolo,.C:, "Molten Salts with Organic Anions', Instituto di Chimica Fisica, Universita di Pavia (Italy), (1973). [16] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'™, Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [17] Levin, E., et al., "Phase Diagrams for Ceramists"”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Bloom, H., Knaggs, I. W., Molloy, J. J., and Welch, D., Trans. Faraday [18] Soc., 49, 1449 (1953). [19] Polyakov, V. D., and Beruli, S. H., Izvest. Siktora Fiz.-Khim., Anal., 26, 164 (1955). 767 [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] . [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] (145) NaNOS-NaNO2 Bloom, H., Davis, F. G. and James, D. W., Trans. Faraday Soc. 56, 1179 (1960). Protsenko, P. I. and Gurvich, Yu. V., Ukr. Khim. Zh. 36, 117 (1970). Bloom, H., Knaggs, I. W., Molloy, J. J., and Welch, D., Trans. Faraday Soc., 49, 1449 (1953). Stern, K., "High Temperature Properties and Decomposition of Inorganic Salts. III. Nitrates and Nitrites', J. Phys. Chem. Ref. Data, 1, 747-772 (1972). "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals', National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data', ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Freeman, E. S., J. Amer. Chem. Soc., 79, 838 (1957). Oza, T. M., J. Indian Chem. Soc., 22, 173 (1945). Oza, T. M., Walawalkar, B. R., J. Indian Chem. Soc., 22, 243 (1945). Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Stngle and Multi-Component Salt Systems'”, NSRDS-NBS 61, Part II (Aptil 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl13-48-61, Washington D. C. 20402. vide: this work, System 74, NaNo,, . Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibzd, 40, 62 (1972). _ Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). Notoya, T., Denki Kagaku, 41, 779 (1973). Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). Johnson, K. E., Electrochim. Acta, 11, 129 (1966). Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). 768 [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] (145) NaNO,-NaNo, Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts'", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). Pizzini, S., ""Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). Johnson, XK. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). Conte, A., and Ingram, M. D., Electrochim. Acta, 13, 1551 (1968). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). Smirnov, M. V. and Ozeryanaya, I., Nauki. Tekh. Korros. Zasch. Korros., 2, 171 (1973). Voskresenskay, N. K., Yekoskaya, G. N., and Amosov, V. Y., Zhur. Prikl. Khim. 21, 18 (1948). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 769 1 * System 146 KNOZ—NaNO3 Melting Temperatures (Tm) Pure substance melting points: KNO, 440°C NaNO: 307°C Minimum melting mixture: ~v 149°C, composition: ~ 48 mol % KNO, T T T T T T T T I 450 = 350 °C 222° 250 KNO, 150 Mol % L1 1 | 1 | ! 1 1 Q 20 40 €0 80 100 NaNO KN 3 Mol % KNO, e (A) NaNOS-KNOZ—NaNOZ-KNO3 (B) Diagonal Pair KNOZ-NaNO3 Figure 146.1 KNOZ-NaNO3 phase diagram This system is a diagonal in the system: NaNOz-NaNos— KNOS-KNOZ; for the ternary system: NaNOZ-NaNOS—KNOS, see system 148. References [1-19] 770 i e e i ——— = 2. Density (p) Measurement method: Equation: precision: Table 146.1. (146) p: in table 146.1 KNO % —NaNO3 a + bT (146.1) Archimedean technique [20] uncertainty: ~ £1.5 Parameters of equation (14€¢.1) and precisions Mol % KNO3 -b x lO4 Precision T range (K) 15 2.3072 6.963 + 0.14% 530-790 25 2.2934 6.903 + 0.25% 510-770 35 2.2577 6.677 + 0.047% 470-770 45 2.2658 6.983 + 0.10% 470-770 50 2.2266 6.539 + 0.13% 470-770 55 2.2234 6.602 + 0.11% 470~770 65 2.2057 6.550 + 0.077% 480-770 75 2.1839 6.402 + 0.02% 550-770 85 2.1638 6.285 + 0.02% 590-770 Two-independent-variable equation: p: (c = a + bT + cC (146.2) mol % KNOZ) Table 146.2. Parameters of two-independent-variable equation (146.2) 4 3 . a -b x 10 -c x 10 Precision 2.30556 6.70079 1.3431 0.22% Table 146.3. Density (g cm-s) from equations in table 146.1 Mol Z KNO3 T (K) 15 25 45 50 55 65 75 85 D 1.944 | 1.938 | 1.919 | 1.913 490 1.931 1.924 1.906 1.900 1.885 510 1.941 1.917 1.910 1.893 1.887 1.872 530 1.938 1.928 1.904 1.896 1.880 1.873 1.859 550 1.924 1.914 1.890 1.882 1.867 1.860 ‘1.845 1.832 570 1.910 1.900 1.877 1.868 1.854 1.847 1.832 1.819 590 1.896 1.886 1.864 1.854 1.841 1.834 1.819 1.806 1.793 610 1.882 1.872 1.850 1.840 1.828 1.821 1.806 1.793 1.780 630 1.869 1.859 1.837 1.826 1.815 1.807 1.793 1.781 1.768 650 1.855 1.845 1.824 1.812 1.802 1.794 1.780 1.768 1.755 670 1.841 1.831 1.810 1.798 1.788 1.781 1.767 1.755 1.743 690 1.827 1.817 1.797 1.784 1.775 1.768 1.754 1.742 1.730 710 1.813 1.803 1.784 1.770 1.762 1.755 1.741 1.729 1.718 730 1.799 1.789 1.770 1.756 1.749 1.741 1.728 1.717 1.705 750 1.785 1.776 1.757 1.742 1.736 1.728 1.714 1.704 1.692 770 1.771 1.762 1.744 1.728 1.723 1.715 1.701 1.691 1.680 References [20] 771 (146) KNO,-NaNO 2 3 Surface Tension (vy) No data Viscostty (n) No data Electrical Conductance (x) No data Safety and Hazards (1) (i1) (1) (11) (iii) A, Hazard rating Toxicity: NaNO,, permitted as a food additive; KNO, toxicity rgting, severe; there appears some implication of increased cancer with chronic in- gestion of nitrates. Vapor pressure: no information for this system,; but see NaNO3 [53] and KNO2 [54]. B. Disaster hazards Molten salt bath "explosions': 1i.e. explosive generation of steam due to bulk water '"carry-over' and/or equipment failure; i.e., explosive expansion of "trapped' air. On decomposition, nitrates and nitrites emit toxic fumes (oxides of nitrogen) viz: 2MNO, —% 2MNO, + 0, (146.3) ZMNO, ——~ M,0 + NO + NO, (146.4) The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO2 is dominant. Nitrates and nitrites are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonaceous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [21-32] 772 (146) KNO,-NaNO, 7. Corrosion Table 146.4. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [33,35,37] Fe, Co, Ni, Cr, Al,... [34,42,43] Cu, Pt, Au, W,... [36,42,43] Zn, Pb, Cu, Ni, Al [40] Pt, S, steel [38] Zr [41] Oxide species [39] Electrochemical approach [44,45] Thermodynamic redox diagrams [46,47] Annotated corrosion biblio. [48] Reviews/molten salts [49-51] References [33-51] 8. Diffusion No data 9. Heat of Fusion (AH}) No data 10. Heat Capacity (Cp) No data 773 (146) KNO 11. Volume Change on Melting (AVf) Z-NaNO3 Measurement method: estimated from densities [5Z] Table 146.5. Volume change on melting Eng., 39, 1044 (1947). (1932). Inst. A., 25, Chem. 218 (1954). B., and Tomkins, R. P. T., Binary eutectic . (mol” % NaNO,) (AVg/V) PR EEEREy 52% 3.6% ~ o+ 10% References [52] 12. Vapor Pressure {pvap) No data 13. Thermal Conductivity (liquid) (AE) No data 14. Thermal Conductivity (solid) (As) No data 15. Cryoscopic Constant (kf) No data 16. References [1] .Alexander, J., Hindin, S. G., Ind. and Chem. [2] Kagan, M., and Kamyshan, N., Zhur. Prikl. Khim., 5, 347 [3] Sakai, K., Bull. Soc. Chem., Japan 27, 463 (1954). [4] Kirst, W. E., Nagle, W. M., Castner, J. B., Trans. Amer. Engrs., 36, 371 (1940). [5] Beruli, S. I. and Bergman, A. G., Izv., Sekt. Fiz. Khim. [6] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [7] Janz, G. J., Downey, J. R., Jr., Allen, C. "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [8] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. 774 (1933). [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] (146) KNO. -NaNO 2 3 "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R, E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., '"Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc, Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperoture Materials', Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973, Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", lzdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translzations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Polyakov, V. D., and Beruli, S. H., Izvest. Siktora Fiz. Khim. Anal., 26, 164 (1955) Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems”, NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D. C. 20402. vide: this work, System 58, KNOZ. Freeman, E. S., J. Amer. Chem. Soc., 79, 838 (1957). Protsenko, P. I., Bordyushkova, E. A., Zhur. Neorg. Khim., 10, 1215 (1965). Oza, T. M., J. Indian Chem. Soc., 22, 173 (1945). Oza. T. M., Walawalkar, B. R., J. Indian Chem. Soc., 22, 243 (1945). 775 -NaNO (146) KNO, . [27] Stern, K., "High Temperature Propert{es and Decomposition of Inorganic Salts. III. WNitrates and Nitrites”, J. Phys. Chem. Ref. Data, 1, 747-772 (1972). [28] "Dangerous Properties of Matertals'’”, Sax, N. I., Van Nostrand Reinhold Co., N. Y, (1969). [29] "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H,E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [30] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2. (1954). [31] "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). [32] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Futectice Data", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [33] Arvia, A. J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). [34] Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). [35] Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). [36] Notoya, T., Denki Kagaku, 41, 779 (1973). [37] Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). [38] Johnson, K. E., Electrochimica Acta, 11, (1966). [39] Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts”, p. 603, The Electrochemical Soc., Princeton, N. J., (1976). [40] Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). [41] Andreev, Y. Y., Fokin, M. N., Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). [42] Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). [43] Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). [44] Pizzini, S., "Materials Problems in the Industrial Applicatiofis of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications'", p. 203; Battelle, Geneva, (1973). [45] Johnson, K. E., "FElectrochemical Approaches to Corrosion in Molten Salts”, Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). [46] Bartlett, H. E., and Johnson, K; E., Canad. J. Chem., 44, 2119 (1966). [47] Conte, A., and Ingram, M. D., Electrochimica Acta, 13, 1551 (1968). [48] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). [49] Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). [50] Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). 776 (146) KNOZ-NaNO 3 [51] Smirnov, M. V. and Ozeryanaya, I., Nauki. Tekh. Korros. Zzasch. Korros., 2, 171 (1973). (521 Janz, G. J., et al. (MSDC-RPI}, unpublished work (1980). 177 System 147 KNOS—NaNO2 1. Melting Temperatures (Tm) Pure substance melting points: KNOS: 335°C NaNOZ: 282°C Minimum melting solid solution: 140.9°C, composition: 46 mol % KNO, N T L 350 — KNO5-NaNO, 250 (OC) - 150 \ ! | ] 1 | ] | i 0 20 40 60 80 100 KNO, NaNO, Mol% NaNQ, Figure 147.1. KNOS-NaNO2 phase diagram References [1-19]. 2. Density (p) Measurement method: Archimedean technique [20] Equation: o = a + bT (la7.1) precision: in table 147.1 uncertainty: ~ = 1. Table 147.1. Parameters of equation (147.1) and precisions T t | | Mol 7 NaNO2 a -b x 10 Precision 1 rangeyn) 15 2.2982 7.233 0.03% 550-770 25 2.2662 6.890 0.05% 490-770 35 2.2433 6.693 0.037% 450-770 45 2.2344 6.674 0.02% 450-770 50 2.2292 6.650 0.027% 450-770 65 2.2106 6.625 0.037% 450-770 75 2.1932 6.507 0.02% 490-770 85 2.1664 6.260 0.037% 510-770 778 (147) KNOS—NaNO2 Two-independent-variables equation 2 o = a + bT + ¢cC + dTC~ (147.2) (C = mol % CaClz) Table 147.2. Parameters of two-independent-variables equation (147.2) and precision a b x 104 c X lO3 d x 109 Precision 2.16190 -6.4965 1.3016 5.1505 0.11% Table 147.3. Density ( g cm_s) from equations in table 147.1 Mol % NaNO2 T (K) 15 25 35 45 50 65 75 85 450 1.942 1.934 1.930 1.912 470 1.929 1.921 1.917 1.899 490 1.929 1.915 1.907 1.903 1.886 1.874 510 1.915 1.902 1.894 1.890 1.873 1.861 1.847 530 1.901 1.889 1.881 1.877 1.859 1.848 1.835 550 1.900 | 1.887 1.875 1.867 1.863 1.846 1.835 1.822 570 1.886 | 1.873 1.862 1.854 1.850 1.833 1.822 1.810 590 1.871 | 1.860 1.848 1.841 1.837 1.820 1.809 1.797 610 1.857 | 1.846 1.835 1.827 1.824 1.806 1.796 1.785 630 1.843 | 1.832 1.822 1.814 1.810 1.793 1.783 1.772 650 1.828 | 1.818 1.808 1.801 1.797 1.780 1.770 1.760 670 1.814 | 1.805 1.795 1.787 1.784 1.767 1.757 1.747 690 1.799 | 1.791 1.781 1.774 1.770 1.753 1.744 1.734 710 1.785 | 1.777 1.768 1.761 1.757 1.740 1.731 1.722 730 1.770 | 1.763 1.755 1.747 1.744 1.727 1.718 1.709 750 1.756 } 1.749 1.741 1.734 1.730 1.714 1.705 1.697 770 1.741 1 1.736 1.728 1.721 1.717 1.700 1.662 1.684 References [20] 3. Surface Tenstion (y) No data 4. Viscosity (n) No data 5 FElectrical Conductance (x) Measurement method: 2MNO, + O 2 (148.4.1) 2 2MNO, —»~ M,0 + NO + NO, (148.4.2) The subsequent decomposition reactions are complex; if the gas phase is continuously removed, the nitrite decomposition (above) to NO and NO, is dominant. Nitrates and nitrites are powerful oxidizing agents; violent (explosive) reactions possible in molten nitrates and carbonacecous materials (organic cpds., oils, carbon,....); aluminum alloys and bath sludges (e.g. iron oxides); magnesium alloys. Dangerous. References [19-29] 7. Corrositon Table 148.7. Corrosion studies from primary research literature Studies in molten nitrates and nitrites References Fe [30,32,34] Fe, Co, Ni, Cr, Al, [31,39,40] Cu, Pt, Au, W, [33,39,40] Zn, Pb, Cu, Ni, Al [37] Pt, S, steel [35] Zr [38] Oxide species [36] Electrochemical approach [41,42] Thermodynamic redox diagrams [43,44] Annotated corrosion biblio. [45] Reviews/molten salts [46-48] For studies specific to molten NaNOZ—NaN03—KNO3, See [37] . References [30-48] 789 (148) NaNO,-NaNO -KNO3 2 3 8. Diffusion No data 9. Heat of Fusion (ALHS I No data 10. Heat Capacity (Cp) Measurement method: drop calorimetry [49] Table 148.8. Compositions and temperature ranges Composition (mol %) Phase T range (K) it KNO3 NaNO3 NaN02 1 53.0 7.0 40 ') 426-776 2 53.5 18.0 28.5 A 447-775 For compositicn no. 1 the heat capacity in the crystalline state, for the temperature range 384 -409 K, is given by: C_, = =-24.20 + 163.5 x 10~3T (148.5) P Similarly for composition no. 2, the heat capacity in the crystalline state, for the temperature range 373-433 K, is given by: C_ = 613.09-312.6 x 107°3T + 4160 x 10-%TZ. (148.6) P Equation: _ 2 CP = a + bT + cT (148.7) precision: in table 148.9 uncertainty: ~ * 5.0% Table 148.9. Parameters of equation (148.7) and precisions Mixture a b x 103 c X 106 Precision no. 1 120.91 -225.,60 150.80 v+ 1.6% no. 2 77.05 -114.05 77.47 A 0% 1 Table 148.10. Heat capacity (cal K~ mol 1) from equations in table 148.9 T Mixture T Mixture (K) #1 i 2 (K) #1 it 2 430 51.8 650 38.0 35.7 450 49.9 41 .4 700 36.9 35.2 500 45.8 39.4 750 36.5 35.1 550 42 .4 37.8 775 36.6 35.2 600 39.8 36.5 References [49] 790 (148) NaNOZ-NaNOS-KNO3 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13. Thermal Conductivity (liquid) (Ag) Measurement method: transient techniques; resistance [50,51] Equation: A =a+ bT (148.8) precision: in table 148.11 uncertainty: ~ * 10% Table 148.11. Parameters of equation (148.8), precision, and temp. range - 3 Composition a x 10 -b x lO6 Precision T range (K) ternary eutectic(a) 1.6639 1.100 AV S I 4 430-670 (a) . . VRV g KNO,:NaNQO, :NaNO,::44:49:7 (mol %) 3 2 3 Table 148.12, Thermal conductivity of molten eutectic from equation in table 148.11 A x lO4 A X lO4 : -1 -1 -1 t 1 of 1 (K) (cal cm s K 7) (K) (cal cm s K ) 430 11.9 570 10.4 450 11.7 590 10.1 470 11.5 610 9.9 490 11.2 630 9.7 510 11.0 650 9.5 530 10.8 670 9.3 550 10.6 The thermal conductivity of two additional mixtures was investigated, (mol %) A (mpt. 140° K): KNO,, 40; NaNo,, 60; and B (mpt. 120° C): KNOg3, 48; NaNOj3, l4; LiNOj, 4%. For the thermal conductivity of the binary system (A) see system 147, present work; for the ternary system (B), the thermal conductivity may be expressed with: 3 6 9,2 A = 2.277 x 10°° - 5.059 x 10 °T + 5.115 x 10 °T (148.9) for the T range: 421-526(K); precision ~ *+ 1%, uncertainty, ~ % 107%. References [2,50-60] 791 (148) NaNO,-NaNO-KNO, 14. Thermal Conductivity (solid) (XS) Measurement method: transient technique; resistance wire [50,51] ternary eutectic mixture: (mol %), KNO 44; NaNO 49; NaNO 7 3’ 2’ 3’ = -2 -6 -9..2 A = 1.2351 x 10 - 51,99 x 10 "T + 60.50 x 10 T (148.10) precision: ~ * 1.0% uncertainty: ~ * 10% Table 148.13. Thermal conductivity of solid from equation (148.10) T » x 10° = A x 10" (K) (cal cm”l 3—1 K_l) (K) (cal cm_l s-_l K_l) 295 22.8 360 14.8 300 22.0 370 14.0 310 20.5 380 13.3 320 19.1 390 12.8 330 17.8 400 12.4 340 16.7 410 12.1 350 15.7 References [50,51,55] 15. C(Cryoscopte Constant (kf) No data 16. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Alexander, J., Hindin, S. G., Ind. and Chem. Eng., 39, 1044 (1947). Kirst, W. E., Nagle, W. M., Castner, J. B., Trans. Amer. Inst. Chem. Engrs., 36, 371 (1940). Beruli, S. I. and Bergman, A.G., Izv. Sekt. Fiz. Khim. A., 25, 218 (1954) Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectie Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols.,, McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstetin Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Miztures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. 792 [11] [12] [13] [14] [15] [16] [17] (18] (19] [20] [21] t22] [23] [24] [25] [26] [27] (148) NaNO,-NaNO -KNO, Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials', Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), (1973). Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'", Izdatel'stov ''Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists'", Amer. Cevamic Soc. (publ.), Columbus, Ohio (1964; 1969). Janz, G. J. and Bansalz N. P., MSDC-RPI, unpublished (1978). Stern, K., "High Temperature Properties and Decomposition of In- organic Salts. III. Nitrates and Nitrites'", J. Phys. Chem. Ref. Data, 1, 747-772 (1972). "Dangerous Properties of Materials'", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H.E.W., U. S. Gov't Printing Office, Washington, D. C. (1975). "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data', ERDA TID-27163-P1; NTIS, U..S. Dept. Commerce, Springfield, Va., (1977). vide: this work, System 74, NaNOZ. Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems'", NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl13-48-61, Washington D. C. 20402. Freeman, E. S., J. Amer. Chem. Soc., 79, 838 (1957). 793 (148) NaNO,-NaNO,-KNO 2 3 3 [28] Oza, T. M., J. Indian Chem. Soc., 22, 173 (1945). [29] Oza, T. M., Walawalkar, B. R., J. Indian Chem. Soc., 22, 243 (1945). [30] Arvia, A, J., Podesta, J. J., and Piatti, R. C. V., Electrochim. Acta, 17, 33 (1972). [31] Marchiano, S. L., and Arvia, A. J., An. Soc. Cient. Argent., 192, 263 (1971). [32] Marchiano, S. L., and Arvia, A. J., Electrochim. Acta, 17, 25 (1972). [33] Notoya, T., Denki Kagaku, 41, 779 (1973). [34] Notoya, T., Ishikawa, T., Midorikawa, R., Denki Kagaku, 39, 930 (1971); ibid, 40, 62 (1972). _ [35] Johnson, K. E., Electrochim. Acta 11, 129 (1966). [36] Johnson, K. E., Zacharias, P. S., and Mathews, J., "Proceedings Intern. Symp. Molten Salts", p. 603, The Electrochemical Soc., Princeton, N. J., (1976). [37] Herquet, M. L. H., Industrie Chim. Belge, 20, 592 (1955). [38] Andreev, Y. Y., Fokin, M. N,, Shitikov, Y. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Tverd. Ekektrolitov, 2, 100 (1973). [39] Brough, B. J., Kerridge, D. H., Inorg. Chem., 4, 1353 (1965). [40] Swofford, H. S., Jr., Laitinen, H. A., J. Electrochem. Soc., 110, 816 (1963). [41] Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", "Proceedings of the European Conference on the Development of Molten Salts Applications', p. 203; Battelle, Geneva, (1973). [42] Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. (1975). [43] Bartlett, H. E., and Johnson, K. E., Canad. J. Chem., 44, 2119 (1966). [44] Conte, A., and Ingram, M. D., Electrochim. Acta, 13, 1551 (1968). [45] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). [46] Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). [47] Ketelaar, J. A. A., Chemie. Ing. Techn., 45, 667 (1973). [48] Smirnov, M. V. and Ozeryanaya, I., Nauki. Tekh. Korros. Zasch. Korros. 2, 171 (1973). [49] Voskresenskay, N. K., Yekoskaya, G. N., and Amosov, V. Y., Zhur. Prikl. Khim. 21, 18 (1948). [50] Turnbull, A. G., Aust. J. Appl. Sci. 12, 30 (1961). [51] Turnbull, A. G., "Thermal Conductivity of Molten Salts and Other Liquids”, Ph.D. thesis Imperial Coll. of Sci. and Technology, London (1959). [52] Cornwell, K., J. Phys. D: Appl. Phys. 4, 441 (1971). [53] Bloom, H., "The Chemistry of Molten Salts'", W. A. Benjamin, Inc. N.Y. (1967). [54] Gambill, W. R., Chemical Eng. 66, 129 (1959). 794 [55] [56] [57] [58] [59] [60] (148) NaNO,-NaNO;-KNO, Jamieson, D. T., Irving, J. B., and Tudhope, J. S., "Liquid Thermal Conductivity Data", HMSO, Edinburgh (1975). Hoffman, H. W., Oak Ridge Nat. Lab. Rept. CF55-7-52. Rottenburg, P. A., Trans. Inst. Chem. Engrs. London 35, 21 (1957). Vargaflich, N. B., Bull. All-Un. Pwr. Engng. Inst. 21, 1 (1952). Lane, J. A., McPherson, H. G., and Maslan, F., "Fluid Fuel Reactors", Addison-Wesley, Mass. (1958). Kirst, W. E., Nagle, W. M., and Castner, J. B., Chem. Met. Eng. 47, 472 (1940). 795 System 149 LiZS-S 1. Melting Temperatures (Tm) Pure substance melting points: Lizs: v 1372°C Sulfur : 118°C Monotectic melting mixture: 364° £ 4°C, composition: 64 * 2 atom % sulfur 1000 |- 800 I T(°C) 600 §- 400 | b Li+ Li,S 200 I LiS+ |, q 9 { 1 Li 20 40 60 80 S atom % sulfur Figure 149.1 Lithium-sulfur phase diagram References [1-15,35,36] 2. Density (o) Measurement method: dilatometric technique [37] Equation p = a + bT (149.1) precision: in table 149.1 uncertainty: ~ £ 1.0% Table 149.1. Parameters of equation (149.1) and precision (Mol % S) a -b x 103 Precision T range (K) 66.0% 2.1307 0.5849 0.12% 637-724 * corresponds to LiyS53 g 796 (149) LiZS-S Table 149.2. Density (g cm_s) from equation in table 149.1 Mol % S Mol % S T 66.0% i 66.0% (X) (K) 640 1.756 690 1.727 650 1.751 700 1.721 660 1.745 710 1.715 670 1.739 % corresponds to Li_.S 2°3.9 References [37,38] Surface Tension (y) No data Viscosity (n) No data Electrical Conductance (k) Measurement method: classical ac technique [37] Equation k = A exp -E/RT (149.2) precision: in table 149.3 uncertainty: ~ * 2.0% Table 149.3. Parameters of equation (149.2) and precision Mol % S A E Precision T range (K) % 66.0 56.146 5350 0.47% 727-802 1 Table 149.4. Specific conductance (ohm’ cmhl) from equations in table 149.3 Mol % S Mol % S T 66.0% T 66.0" (K) (K) 730 1.405 770 | 1.701 740 1.477 780 1.779 750 1.550 790 1.859 760 1.625 corresponds to Li References [37,38] Safety and Hazards A. Hazard rating (i) Toxicity: sulfur, low; Li,S, variable [18]. (ii) Vapor pressure: Li,S, no data; sulfur;at m.pt. (115°C), ~ 0.03mm; at 185°C, ~ lmm;at 444.6°C, v 1 atm (b.pt.). 797 (149) LiZS-S B. Disaster hazards (1) Molten sulfides and polysulfides may react violently (explosively) with strong oxidants: H;S evolved on contact with moisture/water can form explosive mixtures with air; HZS’ highly toxic. (ii) Sulfides and polysulfides when heated to decomposition, or contacted with water, steam, acids, produce highly toxic fumes (oxides of sulfur, H;S). Dangerous. (iii) Sulfur burns with the formation of oxides of sulfur SOZ;SOSJ; toxic and corrosive fumes. References [16-21] 7. Corrosion Table 149.1 Corrosion studies from primary research literature Systems, Studies, [References] Cast iron, mild steel, various stainless steels, A | various metals [22], Fe (23], Ag alloys [24], various Lmetals (survey) [25] Screening studies [26-28], static studies [26-28], Fe, stainless steels (dynamic studies) [26,29-31], B saturation solubilities of Cr, Mn, Ni and Fe sulfides [26-28,32], intrinsically corrosion resistant materials [26-28,33], graphite, niobium, glass, porcelain, Lsilica [35-38] C Annotated molten salts corrosion biblio. {[34] Compatibility studies with: A: molten sulfur; B: with the exception of [35-38] which deal with the Li-sulfur system, the studies are for molten sodium polysulfides; C: general survey; molten salts, References [22-38] 8. Diffusion No data 9. Heat of Fusion (AH}) No data 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 798 & 14. 16. 16. [1] (2] [3] [4] [5] (6] [7] (8] [9] [10] [11] [12] [13] [14] (149) Li_S-S Thermal Conductivity (liquid) (Az) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (k) f‘ No data References Pearson, T. G., Robinson, P. L., J. Chem. Soc., 413 (1931). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data'" - 2 Vols;, ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data', NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Crittcal Tables of Numerical Data, Physics, Chemtstry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik"”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Poitnts Biblrography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts”, Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuelear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorgante Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Mzscibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N, A..et al., "Handbook of Phase Diagrams of the Silicates, Vqlgme 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Stlicate Systems", Izdatel'stov '"Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). 799 [16] [17] (18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] (149) Li.S-S 2 Levin, E., et al., "Phase Diagrams for Ceramists"”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). "Dangerous Properties of Materials', Sax, N, I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U, S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). vide: this work,System 55, Li,S, 2 "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals"”, National Board of Fire Underwriters Research Report No.2 (1954), "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). Janz, G. J., Tomkins, R, P, T., Downey, J. R. Jr., and Allen, C. B., "Safety and Hazards", Chapter in "Eutectie Data’, ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) West, J. R., Chem. Engineering, p. 225 (October, 1946),. Foroulis, Z. A., "Oxidation of Iron in Sulfur Vapor at Electrical Temperaturec', p. 522 in Proceedings Intern. Symp. on Metal-Slag-Gas Reactions and Processes The Electrochemical Soc., Princeton, N. J. (1975). Szawlovska-Wallisch, K., Czas. Tech. (Krakow), M(5), 44 (1970). Stafford, K. N., Metal Rev., 14(138), 153 (1969). Weiner, S. A., (Ford Motor Co.); Annual Report; NSF-RANN Contract No. NSF-C805 (AER-73-07199), (1974). Weiner, S. A., (Ford Motor Co.); Annual Report; NSF-RANN Contract No. NSF-C805 (AER-73-07199), (1975). Weiner, S. A., and Tischer, R. (Ford Motor Co.); Annual Report; NSF-RANN Contract No. NSF-C805 (AER-73-07199), (1976). Bones, R. J., Brook, R. J., and Markin, T. L., Proceedings Ninth Inter- national Power Sources Symposium, Brighton, England (1974}). Dubin, R. R., Abstr. No. 11. Extended Abstracts; 75-1, 27 (1975); 147th Meeting, Electrochemical Society (Toronto), May (1975). Armstrong, R. D., Dickinson, T., and Reid, M., Electrochimica Acta, 21, 1143 (1976)+ Bailey, R. A., and Skeaf, J., J. Ind. Eng. Chem. Data, 24, (2), 126 (1979). Dunn, B., and Breiter, M.W., 30th ISE Meeting, Trondheim, Norway; Extd. Abst. p. 65 (Aug., 1979). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Sharma, R, A., J. Electrochem. Soc., 119, 1439 (1972). Cunningham, P. T., Johnson, S. A., and Cairns, E. J., J. Electrochen. Soc., 119, 1448 (1972). Cleaver, B., and Upton, S. M., (Univ. Southampton, U. XK.}, unpublished work (1980). Cleaver, B., and Rowlands, G. J., (Univ., Southampton, U. K.}, unpublished work (1980). 800 3 Melting Temperatures (Tm) System 150 K.S-S 2 Pure substance melting points KZS: 840°C Sulfur: 115°C Eutectic melting point: E;: 110°C, composition: 72.5 wt % sulfur E,: 183°C, composition: 83.5 wt % sulfur K,S K,S, K,S, K,S,K,S, K, Se Q S Kgs = Sulfur 800F ° - \ \ ] R \ \ \\ \ \ 600} \ \ \ \ (°Q' \ 400 200F 30 40 50 60 70 80 KaS Sulfur Wt % Sulfur Figure 150.1. K2 Table 150.1. S-Sulfur phase diagram Additional invariant points Composition T (°C) Composition T (°C) K252 475 K, S, 206 K253 v250 KZSG 189 KZS4 144 References [1-15]. 801 (150) X.S-S 2 Density (p) No data Surface Tension (vy) No data Viscosity (n) No data Electrical Conductance («) Measurement method: classical ac technique [16] k = 6.260 exp (-1777/R(T-306)) (150.1) precision: ~ t 7.0% uncertainty: ~ t 3.0% Table 150.2. Electrical conductance from equation (150.1) K K T T (K) (ohm L cm l) (R) (ohm_1 cm 1) 490 0.048 590 0.267 500 0.062 600 0.298 510 0.078 610 0.329 520 0.095 620 0.362 530 0.115 630 0.395 540 0.136 640 0.429 550 0.159 650 0.464 560 0.184 660 0.499 570 0.211 670 0.535 580 0.238 References [16] Safety and Hazards A. Hazard rating (1) Toxicity: sulfur, low; KZS’ variable [56]. (i1) Vapor pressure: Kj»S, no data; sulfur; at m.fit (115°C), ~ 0.03mm; at 185°C, ~ 1lmm; at 444.6°C, v 1 atm (b.pt.). B. Disaster hazards (1) Molten sulfides and polysulfides may react violently (explosively) with strong oxidants: H»S evolved on contact with moisture/water can form explosive mixtures with air; HZS’ highly toxic. (ii) Sulfides and polysulfides when heated to decomposition, or contacted with water, steam, acids, produce highly toxic fumes (oxides of sulfur, HZS). Dangerous. (1iii) Sulfur burns with the formation of oxides of sulfur (802;803); toxic and corrosive fumes. References [17-22]. 802 7 O 11. 12. 13. 14. 1s. Corrosion Table 150.3. (150) KZS-S Systems, Studies, [References] C [ Cast iron, mild steel, various stainless steels, various metals [23], Fe [24], Ag alloys [25], various metals (survey) [26] [ Screening studies [27-29], static studies [27-29], Fe, stainless steel (dynamic studies) [27,30-32], saturation solubilities of Cr, Mn, Ni and Fe sulfides [27-29,33], intrinsically corrosion resistant | materials [27-29,34] - Annotated molten salts corrosion biblio. [35] Compatibility studies with: A: molten sulfur, B: molten sodium polysulfides; C: general survey: molten salts. No corrosion studies with KZS—Sulfur found. References [23-35] Diffusion No data Heat of Fusion (AHS) No data 7 Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Azj No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant (kf) No data 803 Corrosion studies from primary research literature 16. [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] (150) K,S-S References Pearson, T. G., Robinson, P. L., J. Chem. Soc., 413 (1931). Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R, P, T., "Eutectice Data” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectic Data", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik'", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts'’, Report No. Yale 2723 (2 Vols.), U, S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materzials"”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems'", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'", Izdatel'stov '"'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Cleaver, B. and Davies, A. J., Electrochim. Acta, 18, 719 (1973) "Dangerous FProperties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975). 804 [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] (150) K,S-S "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board of Fire Underwriters Research Report No.2 (1954). "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975). Janz, G. J., Tomkins, R. P, T., Downey, J. R, Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data', ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) vide: this work, System 58, KZS West, J. R., Chem. Engineering, p. 225 (October, 1946). Foroulis, Z. A., "Oxidation of Iron in Sulfur Vapor at Electrical Temperatures”", p. 522 in Proceedings Intern. Symp. on Metal-Slag-Gas Reactions and Processes The Electrochemical Soc., Princeton, N. J. (1975). Szawlovska-Wallisch, K., Czas. Tech. (Krakow), M(5), 44 (1970). Stafford, K. N., Metal Rev., 14(138), 153 (1969). Weiner, S. A., (Ford Motor Co.); Annual Report; NSF-RANN Contract No. NSF-C805 (AER-73-07199), (1974). Weiner, S. A., (Ford Motor Co.); Annual Report; NSF-RANN Contract No. NSF-C805 (AER-73-07199), (1975). Weiner, S. A., and Tischer, R. (Ford Motor Co.); Annual Report; NSF-RANN Contract No. NSF-C805 (AER-73-07199), (1976). Bones, R, J., Brook, R. J., and Markin, T. L., Proceedings Ninth Inter- national Power Sources Symposium, Brighton, England (1974). Dubin, R. R., Abstr. No. 11. Extended Abstracts; 75-1, 27 (1975); 147th Meeting, Electrochemical Society (Toronto), May (1975). Armstrong, R. D., Dickinson, T., and Reid, M., Electrochimica Acta, 21, 1143 (1976). Bailey, R. A., and Skeaf, J., J. Ind. Eng. Chem. Data, 24, (2), 126 (1979). Dunn, B., and Breiter, M.W., 30th ISE Meeting, ‘Trondheim, Norway; Extd. Abst. p. 65 (Aug., 1979). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). 805 9. 2. System 151 NaZCO Melting Temperatures (Tm) Pure substance melting points: 3 -NaOH-Na(Cl NaCl: 800°C; NaOH: 318°C; NaZCOS: 858°C Eutectics: mpt. Composition(wt %) mpt. Composition(wt %) Eq: 282°C 6.8% NaCl; 78.2% NaOH Bz 298°C 10% NaCl; 75.2% NaOH E,: 291°C 7.7% NaCl; 76.8% NaOH E4 318°C 20% NaCl; 65.2% NaOH 500 wt% . NaCl ( (:) 30 20 {constant) 400 |- 0 4 300 4 K : i ! ! 1 v \/ \/ \/ v 10 20 30 NaoH 90 80 70 60 NaCl wW1% Na,CO, Figure 151.1 NaZCOS—NaOH—NaCI phase diagram References [1-15] Density (p) Measurement method: Archimedean technique [16] Equation: o = a+ bT (151.1) precision: in table 151.1 uncertainty: ~ * 1.5% Table 151.1. Parameters of equation (151.1) and precisions Composition (mol %) a -b x 104 Precision T range (K) NaOH Na2C03 NaCl 95.9 2.1 2.0 2.0986 5.000 0.01% 590-720 92.7 2.1 5.2 2.1065 5.163 0.01% 590-720 87.7 2.2 10.1 2.1212 5.316 0.01% 590-720 806 3- 4. (151) NaZCOZ-NaOH-NaCl Table 151.2. Density (g cm_s) from equations in table 151.1 NaOH 95.9 (mol %) 92.7 {(mol %) 87.7 (mol %) N32C03 2.1 (mol %) 2.1 (mol %) 2.2 (mol %) NaCl 2.0 (mol %) 5.2 (mol %) 10.1 (mol %) -3 -3 -3 T (K) p(g cm ) p(g cm ) p(g cm ) 590 1.80¢4 1.802 1.808 610 1.794 1.792 1.797 630 1.78¢4 1.781 1.786 650 1.774 1.771 1.776 670 1.764 1.761 1.765 690 1.754 1W/5'0 1.754 710 1.744 1.740 1.744 720 1.739 1.735 1.739 References [16] Surface Tension (y) No data Viscosity (n) Measurement method: oscillating sphere technique [17] Equation: (viscosity-composition isotherm, at fixed wt % NaZCOS) n=a+ bC + cC (C = mol % precision: in table 151.3 Table 151.3. NaCl) uncertainty: ~ 2 (151.2) Parameters of equation (151.2) and precisions Wt % Na2C03 " a b x lO2 -c X lOA Precision 10 2.619 3.969 2.953 0.07% 20 3.102 4.174 0.727 0.13% 30(a) 3.680 3.798 -2.307 0.00% (a)Equation derived from three data points. 807 (151) NaZCO -NaOH-NaCl 3 Table 151.4. Viscosity (cp) at 693K from equations in table 151.3 Wt % Na2C03 NaOH-NacCl (Mol % NaCl) 10 20 30 0 2.62 3.10 3.68 2.5 2.72 3.21 3.78 5.0 2.81 3.31 83, 88 7.5 2.90 3.42 3.98 10.0 2.99 3.53 4.08 12.5 3.07 3.64 4.19 15.0 3.15 3.74 4.30 17.5 3.22 3.85 4,42 20.0 3.30 3.97 4.53 22.5 3.36 4.08 25.0 3.43 4,19 27.5 4,30 References [17] Electrical Conductance (k) No data Safety and Hazards A. Hazard rating (1) Toxicity: NaCl, permitted in foods; NaOH, strongly caustic and toxic; NayC0z, moderate, classified as caustic, (ii) Vapor pressure: NaCl, at m.pt. (800°C), ~ 0.34mm; NaOH, at m.pt. (318°C), << 0.5mm; NayCOz (m.pt. 858°C) decomposes on heating to the oxide and CO,; CO, pressure at 950°C, ~ 1lmm, B. Disaster hazards i Molten salt bath "explosions'": 1i.e., explosive generation P P ger of steam due to bulk water ''carry-over: and/or equipment failure;; i.e., explosive expansion of "trapped" air. (1ii) Chlorides, when heated to decomposition or contacted with acids, highly toxic chloride fumes are evolved. (1i1) Hydroxides react with water or steam with evolution of heat; the aqueous solution is very caustic and attacks living tissue; dangerous. (iv) Carbonates, when heated with CO,; pressures less than equilibrium dissociation pressures, decompose to form alkali metal oxides; the toxicology and disaster hazards are the same as those of very caustic solutions, i.e. re- act with water or steam (exothermic) to form solutions that are markedly aggressive to all body tissues (chemical burns). References [18-23] 808 7 Y (151) NaZCOS-NaOH—NaCl Corrosion Table 151.5. Corrosion studies from primary research literature Systems, Studies, [References] Silica [24], Pt [25], Metals [26], Cu-Zn [27], Pt, Au, Ag, MgoO [28-31], Pt, Rh, Pd, Ir (02 environment) [32], Au, Ag, A1203 (02 environment) Na2003-Na20) [33], A1203, Pt, (N2 atmosphere) [34-36], quartz, porcelain, Ag, Pt, Ni (N2 atmosphere; Na2003-N320) [37], boron nitride [31,38], Na-Bf-alumina [31,38], Fe (NaZCOB-Na halides) [39], acid-base relationships [40-43], H20 hydrolysis reactions [33,44,45], molten carbonates: fule cells, thermal energy storage, | coal gasification[39,46-50] —Metals [51], metals ceramics, alloys [51,52-58], stainless steel, Fe-Cr-Ni alloys [59], Ni-Cr-Fe, Ni-S8i-Cu [53,6Q], Ni-Mo, Ni, Cu, Armco Fe [61-63], = A1203, ZrO2 [52], Ni, [52,54-56,64-67], Ni-steels [68], Fe (effects of water) [69], Pt, Ag, alloys [70-72], thermodynamic and electrochemical approach [73-75], reviews [76-78)], annotated corrosion biblio. [79]. (Mo [8Q], Armco Fe [81-83], Ni, Cr, [84], Ti, zr, Hf, ThCl4 [85], Cr [86], Fe-Cr [87], Ni alloys [88], Ni- Cr-Al, Ni-Cr-W, Fe, Ni-Cr, Mg, Ni, Zr, Ti [89], Au, C Pt, A1203, Mg0O, Zirconia (NaCl with Na20) [90], thermodynamic redox potentials [89,91,92], electroch- emical aspects [73,74], annotated corrosionm biblio. [78], reviews[76-78]. Compatibility studies: A: molten carbonates, princ- ipally Na2CO3; B: molten hydroxides, principally NaOH; C: molten chlorides, principally NaCl. No compatibility studies found specifically for molten Na200 -NaOH- 3 NaCl mixtures. References [24-92] 809 10. 11. 13, 13. 14. 15. 16. (151) Na CO3-NaOH-NaC1 2 Diffusion No data Heat of Fusion CAH}) No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) Measurement method: estimated from densities [93] Table 151.6. Volume change on melting Composition (AVf/VS) Uncertainty ternary eutectic (a) 5.3% N+ 107 (a) Na,CO,: NaOH: NaCl:: 7: 86: 7 (mol %) References [93] Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (AR) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Lantratov, M. F., Alabyshev, A. F., Zhur, Priklad. Khim., 32, 65 (1959). [2] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data'" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). ' [3] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectic Data'", NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). 810 [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] (151) Na,CO,-NaOH-NaCl 2773 "International Critical Tables of Numerical Data, Physics, Chemistry, and Teehnology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compostitions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt: 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganiec Salts”, Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). 1Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems'", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials"”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts wtth Organic Anions", Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems”, Izdatel'stov 'Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Arndt, XK. and Ploctz, G., Z. Phys. Chem., 121, 439 (1926). Lasek, J., Coll. Czech. Chem. Comm. 29, 1858 (1964). "Dangerous Properties of Materials'", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). Janz, G. J., et al., "Phystical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Stingle and Multi-Component Salt Systems", NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D. C. 20402. 811 [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] (151) Na,CO.-NaOH-NaCl 2773 "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals", National Board Fire Underwriters Research Report No. 2. (1954). "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B. "Safety and Hazards", Chapter in "Eutectic Data', ERDA TID—27163—Pi; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). Cable, M., and Martlew, D., Glass Technol., 12, 142 (1971). Schneider, Yu. G., Kondrat'ev, Yu. N., and Maksimov, N. N., Zashch. Metal, 9, 199 (1973). Ozeryanaya, I. N., Penyagina, 0. P., Manukhina, T. I., and Smirnov, M. V., Fiz. Khim. Elektrokhim, Rasplav. Solei Tverd. Elektrolit, 2, 96 (1973). Sizintseva, N. F., Stepanov, G. K., and Belyaeva, G. I., Tr. Inst. Elektrokhim., Ural. Nauch. Tsentr; Akad. Nauk, USSR, 19, 92 (1973). Janz, G. J., Conte, A., and Neuvenschwander, E., Corrosion, 19, 292 (1963). Janz, G. J., and Conte, A., Corrosion, 20, 237 (1964). Rodigina, E. N., and Stepanov, G. K., Trudy Inst. Elektrokhim. Ural. Fil. Akad. Nauk, SSSR, 3, 77 (1962). Janz, G. J., and Lorenz, M. R., Rev. Sci. Instruments, 32, 130 (1961). Scheer, J. J., van Arkel, A. E., and Heyding, R. D., Can. J. Chem., 33, 683 (1955). “Andersen, B. K., "Thermodynamic Properties of Molten Carbonates", Ph.D. Thesis, Tech. Univ. Denmark (1975). Bouaziz, R., and Papin, G., Compt. Rend. Acad. Sci., Paris, 266, series C, 1530 (1968). Rolin, M., and Recapet, J. M., Bull. Soc. Chim. Fr., 2110 (1964) Papin, G., Michaud, M., and Bouaziz, R., C. R. Acad. Sc., Paris, 268, Ser, C, 1691 (1969). Cohen-Adad, R., Michaud, M., Said, J., and Rollet, A. F., Bull. Soc. Chim. Fr., 356 (1961). Braunstein, J., et al., "Molten Carbonate Fuel Cell Research at ORNL", Rpt. ORNL/TM-5886; NTIS, U. S. Dept. Commerce, Springfield, Va. (May 1977). Cover, A. E., Schreiner, W. C., and Skaperdas, G. T., "The Kellogg Coal Gasification Process', Extended Abstracts, American Chemical Soc. Meeting, Washington, D. €. (1971). Dubois, J., "Chemical-and Electrochemical Reactions of Molten Alkali Car- bonates as Fuel Cell Electrolytes”, Ph.D. Thesis, Fac. Sci. Univ. Paris, France (1964). Ingram, M. D., and Janz, G. J., Electrochim. Acta. 10 783 (1965) Bousson, N., Palous, S., Buvet, R., and Millet, J.,Compt. Rend., 260 720 6097 (1965) ’ » 812 [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] (151) NaZCOS-NaOH-NaC1 Ingram, M, D., Baron, B., and Janz, G. J., Electrochim. Acta. 11 1629(1966) Janz, G. J., J. Chem. Ed., 44, 581 (1967). Busson, N., Palous, S., Millet, J., and Buvet, R., Electrochim. Acta, 12, 910 (1967). Maru, H. C., et al. (Institute of Gas Technolgy), "Molten Salt Thermal Energy Storage Systems: Salt Selections”, Rpt. CO00-2888-1, ERDA Con- tract NO. E(11-1)-2888; NTIS, U. S. Dept. Commerce, Springfield, Va. (Aug. 1976). Maru, H. C., et al. (Institute of Gas Technology), "Fuel Cell Research on Second Generation Molten Carbonate Systems: II. Characteristics of Carbonate Melts', Quarterly Status Rpt., Project 8984, ERDA Contract No. 31-109-38-3552, (Sept. 1976). Atomics International; "Development of a Molten Carbonate Process for Removal of Sulfur Dioxide from Power Plant Stack Gases", Progress Rpt. No. 2, U. S. Public Health Services, Contract PH 86-67-128, Canoga Park, Ca. (1968). Grantham, L. F., and Ferry, R. B., "Corrosion in Alkali Metal Carbonate- Based Melts", Proc. International Symp. Fused Salts, J. P. Pemsler, ed., Electrochemical Soc., Inc., Princeton, N. J., 270 (1976). Botts, W. V., Kohl, A. L., and Trilling, C. A., "Low BTU Gasification of Coal by Atomics International's Molten Salt Process", Proceedings of the 11th Intersociety Energy Conversion Engineering Conference, 1, 280 (Sept. 1976). Anon, "Oak Ridge National Laboratory, Proceedings of the 1lst Information Meeting on Hydroxide and Metal Interacttion', ORNL CF-51-11-204, (1853). Craighead, C., M., Smith, L. A., Phillips, E. C., Jaffee, R. I., "Continued Studies of Corrosion by Fused Caustie', AECD-3704, Battelle Memorial Institute, (1952). Gregory, J. N., Hodge, N., Iredale, J. V. Gf, "The Statiq qOrrosion of Niekel and Other Materials in Molten Caustic Soda”, British Report AERE-C/M-272, (1956). Miller, R. R., "The Thermal Properties of Sodium Hydroxide and Lithium Metal”, 4th Progr. Rept. Nov. 1 (1952)-Jan. 31 (1953) NRL-Memo-130: Progr. Rept. No. 1, Naval Research Lab., (1952). Williams, D. D., Ewing, C. T., "Thermal and Related Physical Properties of Molten Materials", Prog. Rept. Feb. 1 - May 1, (1953) NRL-Memo-170, Progress Report 5, Naval Research Lab., (1953). Smith, G. P., "Corrosion of Matertals in Fused Hydroxides”", Am. Inst. Mining at Engrs., Inst. Metals Div., Spec. Rept, #2, 71 (1956). Smith, G. P., "Corrosion of Materials in Fused Hydroxides", ORNL-2048, Oak Ridge National Laboratory, (1956). Smothers, W. J., Prog. Rept., Jan. 1 - March 31, (1953), AECU-2872, Univ. of Ark., (1953). Smith, G. P., Hoffman, E. E., "Corrosion Products Formed in the Reac?ion between Fused Sodium Hydroxzide and Iron-Rich Alloys of Iron, Chromium and Nickel", ORNL-2156, Oak Ridge National Laboratory, (1957). Smith, G. P., Steidlitz, M. E., Hoffman, E. E., Corrosion, 11, 47t (1958). 813 [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] (151) Na,CO,-NaOH-NaCl 2773 Smith, G. P.,, Hoffman, E. E., Corrosion, 13, 627t (1957). Smith, G. P., Hoffman, E. E., Steidlitz, M. E., Corrosion, 13, 561t (1957). Gurowich, E. I., Zh. Prikl. Khim., 32, 817 (1959). Manly, W. D., "Operation of a Ni-NaOH Thermal Convection Loop", ORNL CF- 51-11-186, Oak Ridge National Laboratory, (1951). Miller, N. E., Simons, E. M., Chem. Eng. Progr. Symp. Ser. No. 19, Amer, Inst. Chem. Eng., 52, 113 (1956). Gregory, J. N., Hodge, N., Iredale, J. V. G., "The State Corrosion and Erosion of Nickel by Molten Caustic Soda and Sodium Uranate Suspensions under Dymamie Conditions", British Report AERE/C/M-273, (1956). Simmons, E. M., Miller, N, E., Stang, J. H., Weaver, C. V., "Corrosion and Component Studies on Systems Containing Fused NaOH", BMI-1118, Battelle Memorial Institute, (1956). Kolotii, A. A., Vengzhen, G. S., Zashch. Met., 11, 61 (1975). Tribunskii, V. V., Kalinichenko, I. I., Tr. Ural. Politekh. Inst., 190, 49 (1970). Rahmel, A., Kruger, H., Werkst. Korros., 18, 193 (1967). Kruger, H., Rahmel, A., Schwenk, W., Electrochim. Acta, 13, 625 (1968). Afanas'yev, A. S., Gamazov, V. P., Zh. Fiz. Khim., 38, 2823 (1964). Pizzini, S., "Materials Problems in the Industrial Applications of Molten Salts", Proceedings of the European Conference on the Development of Molten Salts Applications, p. 203 (1973); Battelle, Geneva. Johnson, K. E., "Electrochemical Approaches to Corrosion in Molten Salts", Proceedings International Symposium on Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, N. J. p. 581 (1975). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Smirnov, M. V., and Ozeryanaya, I. N,, Nauki Tekh. Korors., Zashch, Korros., 2, 171 (1973). Inman, D., and Wrench, N. S., Brit. Corr. J., 1, 246 (1966). Ketelaar, J. A. A., Chemie Ing. Techn., 45, 667 (1973). Janz, G. J., and Tomkins, R. P. T., Corrosion, 35, 485 (1979). Ozeryanaya, 1. N., Zalazinskii, G. G., Smirnov, M. V., Finkel'shtein, S. D., and Shamanova, N, D., Zashch. Metal., 11, 66 (1975). Kochergin, V. P., and Ignat'eva, N. I ., Russ., J. Inorg. Chem., 6(9), 1085 (1961). Kochergin, V. P., and Shevrina, Z., Uch. Zap. Ural. Gos. Univ., 92, 3 (1969). Kochergin, V. P., et al., Zhur. Priklad. Khim., 34(6), 1258 (1961); ibid., 37(8), 1837 (1964). Seybolt, A, U., Oxid. Metals, 2, 119 (1970). 814 [85] [86] [87] [88] [89] [90] [91] [92] [93] (151) NaZCOS-NaOH—NaCI Smirnov, M. V., Kudyakov, V. Ya., Loginov, Ya. A., Rossokhin, E. G., Posokhin, Yu. V., and Puzanova, T. A., Fiz. Khim. Elektrokhim. Rasplav. Solei Shlakov, 1, 115 (1969). Krasil'nikova, N. A., Ozeryanaya, I. N., and Smirnov, M. V., Zashch. Metal., 17, 446 (1974). Krasil'nikova, N. A., Ozeryanayd, I. N., Smirnov, M. V., and Shamanova, N. D., Zashch. Metal., 10, 446 (1974). Bogdanov, N. I., Varganov, B. Ya., and Kholomonova, N. D., Zh. Prikl. Khim. (Leningrad), 46, 1698 (1973). Littlewood, R., J. Electrochem. Soc., 109, 525 (1962). Stern, K. H., Panayappan, R., and Flinn, D. R., "Proceedings Intern. Symp. Molten Salts", The Electrochem. Soc., Princeton, N. J., p. 64 (1976). Edeleanu, C., and Littlewood, R., Electrochimica Acta, 3, 195 (1960). Littlewood, R., and Argent, E. A., Electrochimica Acta, 4, 114 (1961). Janz, G. J., et al. (MSDC-RPI), unpublished work (1980). 815 System 152 Na3A1F6—A1203-LiF 1. Melting Temperatures (Tm) Pure substance melting points: LiF: 848°C Na AlF : 1010°C A1,0,: 2040°C Eutectic melting point: 697°C, composition 59.8 mol % Na AlF 3T 56.5 wt % Na3 6> 4.5 mol % Al,0 5025 35.7 mol % LiF 2.0 wt % Al,0 2035 41.5 wt % LiF Na,AIF, - ALLO, - LiF NaAIF, i0 20 30 40 Wt % LiF Figure 152.1 Na3A1F6-A1203-LiP phase diagram References [1-21] 2. Density (p) No data 3. Surface Tension (Y) No data 4, Viscosity (n) No data 5. Eleetrical Conductance (k) No data 6. Safety and Hazards A. Hazard rating (1) Toxicity : inorganic fluorides are generally quite irritant and toxic. (ii) Vapor pressure: no information for this system; but see Na3A1F6 [24] and NaF {28]. 816 7. (1) (ii) (152) NaSAlP -A1,0,-LiF §) 2 B, Disaster hazards Molten salt bath "explosion': 3 i.e., explosive generation of steam due to bulk water "carry-over'" and/or equipment failure; 1i.e., explosive expansion of '"trapped" air. Fluorides, when heated to decomposition, Oor contacted with acids,emit highly toxic fumes. References [22-28] Corrosion Table 152.1. Corrosion studies from primary research literature Studies References —br Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) SSNI-12P Quartz Al Various metals Pt Boron nitride, Inconel Fused MgO L carbon, F&mpurities in electrolyte Graphite L?iC, TiBz, CrB ZrN, NbB 2’ 2 f— Cl, CO3,...) Electrochemical behavior of oxide ions and related species in molten fluorides Electroanalytical studies in molten fluorides Annotated corrosion biblio. Corrosion studies in molten salts with NaF as one component (e.g., Corrosion: molten fluorides (survey) [29] {30,31] (32 [33] [34] [35] [36-40,74,75] [41-43] [44] [45,46] [45,46] [47-49] [50-65,72,73] [66-68] [69] [70] [71] A: studies principally in molten NaF, KF and LiF; B: used largely in fluorides physical properties measurements; C: reduction cells; D: principles, and surveys, References [29-75] 817 technological aspects, more general studies, in a2aluminum basic 10. 33 12. 13. 14. 15. 16. (152) NaSAlFé-AIZOS-LiF Diffusion No data Heat of Fusion (AH}) No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (AR) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data References [1] Rolin, M. and Muhlethaler, R., Bull. Soc. Chim. France, 2593 (1964). [2] Chin, D. A. and Hollingshead, E. A., J. Electrochem. Soc., 113, 736 (1966). [3] Malinovsky, M. and Matiasovsky, K., Hutnicke Listy, 24(7), 515 (1969). [4] Mashovets, V. P. and Petrov, V. I., Zh. Prikl. Khim., 30, 1695 (1957); J. Appl. Chem., USSR, 30, 1785 (1957). [5] Kostenska, I., Corba, J. and Malinovsky, M., Chemicke Zvesti, 28, 546 (1974). [6] Chu, Y. A. and Belyaev, A. I., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., Z, 69 (1959). [7] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data'" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). (8] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectie Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [9] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). 818 [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] (152) Na3A1F6-A1 O.-LiF 273 "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968'", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS, Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials”, Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems', Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts', Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri,, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems"”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials'”, Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, (1964). Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions'", Instituto di Chimica Fisica, Universita di Pavia (Italy), (1973). Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silticates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'", Izdatel'stov '"Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists", Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Bergman, A. G., and Banachek, E. I., Izv. Sekt. Fiz. Khim. A., 23, 201 (1953). "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). "Registry of Toxic Effects of Chemical Substances", Christensen, H. E. and Lubinbyhl, T. T., eds., U. S. Dept. H.E.W., U. S. Gov't Printing Office, Washington, D. C. (1975). vide: this work, System 100, Na AlF.. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals”, National Board Fire Underwriters Research Report No. 2 (1954). "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworths Co., London (1975). Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, €. B. b "Safety and Hazards'", Chapter in Eutectic Data., ERDA TID-27163-P1l; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). 819 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] = A O WE (152) Na;ALF,-Al,0, Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. Part II, Molten Salts: Data and Multi- Component Salt Systems”, NSRDS-NBS 61, Part II (April, 1979), U. S. Gov't Printing Office, Supt. of Doc. No. C13-48-61; Washington, D, C. 20402, Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors”, Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). FEdwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956, Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'', 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Cerp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. ' Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). 820 (152) Na3A1F6—A1203-LiF [51] Khan, I. A., Inst, Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). [52] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [53] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [54] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). [55] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [56] Gill, C. B., Straumanis, M. E., and Schlechten, W. B. Soc., 102, 42 (1955). , J. Electrochem. [57] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nieckel Fluorinator after Fourteen Dissolution Runs'", ORNL-3253, Oak Ridge Nat'l Lab., (1962). [58] Litman, A. P., and Goldman, A. E., '"Corrosion Associated with Fluoro- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process”, ORNL-2832, Oak Ridge Nat'l Lab. (1961). [59] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems'", Proc. 2nd 'y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [60] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [61] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [62] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels"”, Reactor Handbook 2nd ed., 1, 425 (1955). [63] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [64] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [65] Venkatasetty, H. W., "Thermodynamic Properties and Corrosion Character- istias of Thermal Energy Storage Eutectic Mixtures"”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [66] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [67] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [68] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [69] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978" [70] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [71] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluroide Thermal Energy Storage Materials: Availability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). 821 [72] [73] [74] [75] (152) N33A1F6-A1203-L1F Kochergen, V. P., and Ignat'eva, N. I.;, Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, [. N., Volodin, V. P., and Smirnov, M. V ., Zashchita Metalov (USSR), 2, 230 (1969). Ryschkewitsch, E., Z. Elektrochem., 39, 531 (1933). Yaffe, I. S. and E. R. Van Artsdalen, Chemistry Division Semiannual Progress Report for period ending June 20, 1956, ORNL-2159, p. 77. 822 System 153 Na3A1F6—A1203-CaF2 1. Melting Temperatures (T ) Pure substance melting points: Na Al1F,: 1010°C 3 6 CaFZ: 1418°C A1203: 2040°C Eutectic melting point: 58.4 mol % NazAlF.; 7.4 mol % Al,0;; 34.2 mol 3% CaF, 2737 78.0 wt % Na3A1F6; 5.0 wt % A1,0,; 17 wt % CaF 273 927°C, composition 2 WEIGHT % AlLQ, Figure 153.1. Na,AlF 3 6-A1 2OS-CaF2 phase diagram References [1-19]. 2. Density (p) No data 3. Surface Tension (y) No data 4, Viscosity (n) No data 5. Electrical Conductance (k) No data 823 (153) NaSAlFfi-AIZOS-CaF2 6. Safety and Hazards (1) (11) (1) (ii) A. Hazard rating Toxicity: 1inorganic fluorides are generally quite irritant and toxic. Vapor pressure: no information for this system; but see Na3A1F6 [22] and CaF2 [22]. B, Disaster hazards Molten salt bath "explosions': 1i.e. explosive generation of steam due to bulk water '"'carry-over" and/or equipment failure; 1.e., explosive expansion of '"trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [20-25] . 824 (153) N33A1F6—A120 -CaF 3 2 7. Corrosion Table 153.1. Corrosion studies from primary research literature Studies References (cr [26] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [27,28] A | SSNI-12P [29] Quartz [30] Al [31] L_}Iarious metals [32] Pt [33-37,71] B |Boron nitride, carbon, Inconel, Mo [38-40,72] Fused MgO [41] —impurities in electrolyte [42,43] C |Graphite [42,43] |Tic, TiB,, CrB,, ZrN, NbB, [44-46] Corrosion studies in molten salts with NaF as one component (e.g., Ccl, CO3,...) [47-62,69,70] Electrochemical behavior of D |oxide ions and related species in molten fluorides [63-65] Electroanalytical studies in molten fluorides [66] Annotated corrosion biblio. [67] L_(_lorrosion: molten fluorides(survey) [68] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [26-72] 8. Diffusion No data 9. Heat of Fuszion (AH; No data 825 10. 11. 12. 13. 14, 15, 1¢6. (153) N33A1F6-A1203-CaF2 Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (AR) No data Thermal Conductivity (solid) (As) No data Cryoscopic Constant (kf) No data Re ferences [1] Rolin, M., Bull. Soc. Chim., France, 1120 (1961). [2] Fenerty, A. and Hollingshead, E. A., J. Electrochem. Soc., 107, 993 (1960). [3] Abramov, G. A., Vetyukov, M. M., Gupalo, I. P., Kostyukov, A. A. and Lozhkin, L. N., "Teoreticheskie osnovy elektrometallurghii alyuminiya (TheoreticalPrinciples of the Electrometallurgy of Aluminium)”, Metallurgizdat, Moscow, 1953. [4] Pascal, P. and Jouniaux, A., Bull. Soc. Chim. France, 13, 439 (1913); Z. Elektrochem., 19, 610 (1913). [5] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectie Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [6] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectie Data", NSRDS-NBS-61; U, S. Gov't Printing Office, Washington, D. C. (1978). [7] "International Critical Tables of Numertical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [8] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [9] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. [10] Robertson, W. D., "Binary Phase Diagrams of Halide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. 826 [11] [12] {13] [14] [15] [16] [17] (18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] (153) Na3A1F6-A1203-CaF2 Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganiec Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems'", Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov '""Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., '"Phase Diagrams for Ceramists”, Amer, Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Bergman, A.G. and Banacheck, E.I., Izv. Sekt. Fiz. Khim. A., 23, 201 (1953). e "Dangerous Properties of Materials", Sax, N. I Reinhold Co., N. Y. (1969) ., Van Nostrand "Registry of Toxie Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T, T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975) vide: this work, System 51, CaP2 and System 66, Na3A1P6. "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals'",National Board of Fire Underwriters Research Report No. 2 (1954) "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworth Co., London (1975) Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectie Data”,ERDA TID-27163-Pl; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). 827 [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] (153) Na,AlF, -Al.0,-CaF 3 6 273 2 Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines', 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). " Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses', Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Helliday, R. D., (Olin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick,.P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corroston by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). 828 [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] (153) NaSAlF -A1,0,-CaF 6 273 2 Gili, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor-. idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process", ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems', Proc. 2nd 'y, N, Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels™, Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtiures'", paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Avatlability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). ' Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR),. 2, 230 (1969). Thompson, M. deK. and Kaye, A. L., Trans. Electrochem. Soc., 67, 169 (1935). Baak, T., Acta Chem. Scand., 8, 1727 (1954). 829 — System 154 Na3A1F6—A1F3—A1203 elting Temperature (Tm) Pure substance melting points: Na3A1F6: 1010°C A1203: 2040°C A1F3: does not melt; sublimes with 1 atm equilm press, at wv Eutectic melting point: Elz 684°C, composition: 67.3 wt % Na3A1F6, 4.4 wt % Alzo3 37.4 mol % Na3A1F6, 4.1 mol % AlZO3 P1: 723°C, composition: 59.5 wt $% Na3A1F6, 3.2 wt % Alzo3 o 5 45,6 mol % Na3A1F6, 5.8 mol % A1203 A & ) S° S & Q v ) Figure 154.1. References [1-21] Y 15 \v4 20 Nag Al Fla WEIGHT % AIF3 830 Na,AlF_-Al1F_.-A1,0 3 6 5 2 3 1255°C Denstity (p) No data Surface Tenston (y) No data Viscosity (n) (154) Na, A1F6—A1F3-A1 0 3 Measurement method: oscillation technique [22] Equation: no=a+bT + cT? + (154.1) precision: in table 154.2 uncertainty: ~ = 2% Table 154.1. Compositions and temperature ranges Composition (mol %) it Na3AlF6 A1203 AlF3 T range (K) 1 85.06 2.31 12.64 1192-1313 2 86.99 6.80 6.21 1263-1367 N 3 89.19 4.45 6.37 1243-1355 4 91.78 2.22 6.00 1253-1358 5 92.97 4.70 12.33 1173-1314 Table 154.2. Parameters of equation (154.1) and precisions . 3 9 .. Mixture a b x 10 -¢ x 10 d x 10 Precision No. 1 12.907 - 1.743 13.76 6.440 0.30% No. 2 23.546 -24.41 - 6.345 - 1.037% No. 3 6.778 16.46 27.83 9.565 0.847% No. 4 17.060 0.933 23.18 10.40 0.53% No. 5 24.058 -12.41 17.45 10.59 0.70% Table 154.3, Viscosity (cp) from equations in tables 154.1 and 154.2 T Mixture (K) #1 2 #3 #4 i#5 1180 2.517 1200 2.129 2.338 1220 1.994 2.175 1240 1.867 2.634 2.030 1260 1.748 2.863 2.468 2.239 1.902 1280 1.637 2.697 2.309 2.087 1.792 1300 1.535 2.536 2.158 1.948 1.701 1320 2.380 2.013 1.822 1340 2.230 1.877 1.712 1360 2.084 1.750 1.616 References [22] 831 S, 6. (154) NazALF -AlF;-A1,0 3 4 8 Electrical Conductance (K) No data Safety and Hazards (1) (i1) (1) (ii) A. Hazard rating Toxicity: 1norgan1c fluorides are generally irritants and toxic; alumina is classed as a nuisance particulate. Vapor pressure: azAlFg at m.pt. (1000°C), << 0.5mm; AlF< at 1ts m.pt. (1291 8 ), no data; sublimes at ~ 1240°C. B. Disaster hazards Molten salt bath "explosions'": i.e. explosive generation of steam due to bulk water "carry-over'" and/or equipment failure; i.e., explosive expansion of '"'trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. References [23-28] 832 (154) NagALF -AlF;-Al1,0, 7. Corrosion Table 154.4., Corrosion studies from primary research literature Studies References [ Cr [29] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [30,31] A |ssNi-12p [32] Quartz [33] Al 134] | Various metals [35] (Pt [36-40] B Boron nitride, carbon, Inconel [41-43] | Fused MgO [44] Impurities in electrolyte [7,45] C Graphite [7,45] Tic, TiB,, CrB,, ZIN, NbB, [46-48] raorrosion studies in molten salts with NaF as one component (e.g., cl, co3,...) [49-64,71,72] Electrochemical behavior of oxide ions and related species in molten fluorides [65-67] D Electroanalytical studies in molten fluorides [68] Annotated corrosion biblio. [69] LEorrosion: molten fluorides (survey) [70] A: studies principally in molten NaF, KF, and LiF; B: wused largely in fluoride physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [29-72,7] 833 10. T 12. 13. 14, 1o, 16. 15 - R (154) Na3A1P6 AlF3 AlZO3 Diffusion No data Heat of Fusion (AHf) No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Al) No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant (kf) No data Re ferences [1] Foster, P. A., J. Am. Ceram. Soc., 58, 288 (1975). [2] Abramov, G. A,, Vetyukov, M, M., Gupalo, I. P., Kostyukov, A. A. and Lozhkin, L. N., "Teoreticheskie osnovy elektrometallurghii alyuminiya (Theoretical Principles of the Electrometallurgy of Aluminium) ', Metallurgizdat, Moscow, 1953. [3] Phillips, N. W. F., Singleton, R. H. and Hollingshead, E. A., J. Electro- chem. Soc., 102(12), 690 (1955). ' [4] Fuseya, G. and Takeda, B., J. Electrochem. Soc., Japan, 27, 339 (1959). [5] Fenerty, A. and Hollingshead, E. A., J. Electrochem. Soc., 107, 993 (1960). [6] Rolin, M., Bull. Soc. Chim. France, 1112 (1961). [7] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J., "Aluminium Blectrolyses”, Aluminium-Verlag GmbH.-Dusseldorf (1977). (8] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). 834 [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] (154) Na,AlF, -AlF_-Al1.0 3 6 3 2 3 Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: Eutectic Data, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophystik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganie Salts', Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems”, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials'", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinoclo, C., "Molten Salts with Organic Anions"”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Stlicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems'", Izdatel'stov ''Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., "Phase Diagrams for Ceramists”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). Térklep, K. and Pye, H.A., Electrochim. Acta 25(2), 229 (1980) "Dangerous Properties of Matertals", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) "Registry of Toxic Effects of Chemical Substances'", Christensen, H. E., and Lubinbyhl, T. T., eds., U, S, Dept. H, E. W., U, S, Gov't Printing Office, Washington, D. C. (1975) Janz, G, J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems', NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. C13-48-61, Washington D. C. 20402, 835 [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] (154) Na,AlF_-AlF_ -Al 3 6 3 273 "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals",National Board of Fire Underwriters Research Report No. 2 (1954) 0 "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data”,ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Brasunas, A,, Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors", Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., PHYd 9.9 512 781 915 2 Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May'9, 1972, Thompson, R.: (Borax Consclidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.), Ger. Offen. 2,312,439, Oct. 4, 1973, 836 [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] (154) Na AlF-A1F,-A1,0 273 Khan, I. A., Ber. Kernforschungsaniage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P, A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs', ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process’, ORNL-2832, Oak Ridge Nat'l Lab. (1961). Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems™, Proc. 21'% U. N Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels”, Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems'", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures'”, paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978" Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investtigations of MetaZ.FZuoride Thermal Energy Storage Materials: Availability, Cost, Chemistry” ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). 837 (154) Na,AlF,-AlF_-Al,0 3 6 3 273 [71] Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). ‘ [72] Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 838 System 155 Na3A1F6—A1203-NaCl 1. Melting Temperatures (Tm) Pure substance melting points: NaCl: 800°C Na3A1F6: 1010°C AlZOS: 2040°C Eutectic melting point: ~ 31.5 wt % Na.AlF ~ 68.5 wt % NaCl 735°C, composition: < 1 wt % AIZOS’ 3 6 ) W1 % NaCl Figure 155.1. Na3A1F6-A1203-NaC1 phase diagram References [1-22] 2. Density (p) No data 3. Surface Tension (Y) No data 4. Viscosity (n) No data 5. FEleetrical Conductance (k) No data 839 (155) N33A1F6-Al 0,-NaCl 273 6. Safety and Hazards (1) (i1) (1) (i1) References A. Hazard rating Toxicity: 1inorganic fluorides are generally quite irritant and toxic. Vapor pressure: no information for this system; but see Na3A1F6 [25] and NaCl [29]. B. Disaster hazards Molten salt bath "explosions": 1i.e., explosive generation of steam due to bulk water '"'carry-over' and/or equipment failure; 1.e., explosive expansion -of '"trapped' air. Fluorides and chlorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. [23-29] 840 7 8. 9. (155) Na,AlF_-Al,0,-NaCl 3 6 273 Corrosion Table 155.1. Corrosion studies from primary research literature Studies References cr [30] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [31,32] A SSNI-12P [33] Quartz [34] Al [35] L_}Tarious metals [36] -}t [37-41] B [{Boron nitride, carbon, Inconel [42-44]) |Fused MgO [45] —lmpurities in electrolyte [46,47] C |{Graphite [46,47] EiC, TiB,, CrB,, ZrN, NbB, [48-50] rEorrosion studies in molten salts with NaF as one component (e.g., Cl, C03,...) [51-66,73,74] Electrochemical behavior of oxide D |ions and related species in molten fluorides [67-69] Electroanalytical studies in molten fluorides [70] Annotated corrosion biblio. [71] forrosion: molten fluorides (survey) [72]) A: studies principally in molten NaF, KF and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [30-74] Diffusion No data Heat of Fusion (AH} No data 841 (155) NasAlFfi—Alzos-NaCl 10, Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (Liquid) (Az) No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant (kf) No data References [1] Phillips, N. W. F., Singleton, R. H. and Hollingshead, E. A., J. Electro- chem. Soc., 102(12), 690 (1955). [2] Yaguchi, H., Huu Thanh, P. and Rolin, M., Bull. Soc. Chim., France 39 (1970). [3] Matiasovsky, K. and Malinovsky, M., Chem. Zvesti, 14, 551 (1960). [4] Henry, J. L. and Lafky, W. M., Paper presented at the Americal Chemical Society Meeting, New York (1954). [5] Vajna, A., Met. Ital., 2, 124 (1957). [6] Matiasovsky, K. and Malinovsky, M., Izv. Vyssh. Ucheb. Zaved., Tsvet. Met., 7(3), 87 (1964) [7] Matiasovsky, K. and Malinovsky, M., Electrochim. Acta., 11, 1035 (1966) [8] Bergman, A. G., and Banachek, E. I., Izv. Sekt. Fiz. Khim. A., 23,201 (1953) [9] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 & P2; NTIS, Washington, b. C. (1977). [10] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Comptilations Relevant to Energy Storage. I. Molten Salts: Eutectice Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [11] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933). 842 [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] (155) Na3A1F -A120 -NaCl 6 3 "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibliography 1907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. Robertson, W. D., "Binary Phase Diagrams of Halide Salts", Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", 0Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G, Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "4n Atlas of Miscibility Gaps in Molten Salt Systems’, Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Materials', Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964, Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Anions”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Silicate Systems", Izdatel'stov ''Nauka" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E.,. et al., "Phase Diagrams for Ceramists"”, Amer., Ceramic Soc. (publ.), Columbus, Ohio (19643 1969). "Dangerous Properties of Materials'”, Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969) "Registry of Toxic Effects of Chemical Substances", Christensen, H. E., and Lubinbyhl, T. T., eds., U, S, Dept. H. E. W., U, S, Gov't Printing Office, Washington, D. C. (1975) Janz, G. J., et al., "Physical Properties Data Compilations Relevant to Energy Storage. PartII. Molten Salts: Data on Single and Multi-Component Salt Systems", NSRDS-NBS 61, Part II (April 1979), U. S. Gov't Printing Office, Supt of Doc. No. Cl3-48-61, Washington D. C. 20402. "Potential Hazards in Molten Salt Baths for Heat Treatment of gefials”,National Board of Fire Underwriters Research Report No. 1954) "Handbook of Reactive Chemical Hazards'", Bretherwick, L., Butterworth Co., London (1975) Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Eutectic Data",ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) 843 (155) Na,AlF,-Al.0.-NaCl 3 6 273 [29] vide: this work, System 66, Na3A1F6. [30] Brasunas, A., Metal Prog., 62, 88 (1952). [31] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [32] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [33] Oak Ridge National Laboratory, '"The Development Status of Molten Salt Breeder Reactors', .Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). [34] Heimann, R., Glastech. Ber., 43, 83 (1970). [35] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [36] Koger, J. W., Corrosion, 30, 125 (1974). [37] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F., J. Electrochem. Soc. 99, 527 (1952). ‘ [38] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). [39] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. [40] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [41] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [42] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). [43] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [44] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). [45] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [46] Grjotheim, K., XKrohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”", Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [47] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [48] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972, [49] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [50] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973. [51] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [52] Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). 844 (155) NaSA1F6-A1203-NaC1 [53] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [54] DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests'", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [55] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides”, ANP Materials Meeting ORNL-2685, (1958). [56] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). [57] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). t58] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). [59] Litman, A, P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatiltty Process’, ORNL-2832, Oak Ridge Nat'l Lab. (1961). [60] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems"”, Proc. 2nd 'y, N. Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [61] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [62] Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). [63] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels”, Reactor Handbook 2nd ed., 1, 425 (1955). [64] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [65] Boser, O., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems'”, ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [66] Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Miztures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [67] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [68] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [69] Ting, G., Baes, F., Bamberger, C. E., and Mamantov, G., J. Inorg. C. Nucl. Chem., 39, 1803 (1977). [70] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978; [71] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [72] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Avatlability, Cost, Qhemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [73] Kochergin, v. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). [74] Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 845 1. 2. 3. 4' System 156 NaSAlF6-A1203—LiSA1F6 Melting Temperature (Tm) Pure substance melting points: Na3A1F6: A1203: L13A1F6: 1010°C 2040°C 785°C Eutectic melting point: 760°C ) composition: ~ 27 mol % NaSAlFfi; A~ 65 mol N 0 Li3A1F6; Reaction point: 693°C N composition: ~ 33 mol % NagAlF, ~ 63 mol % L13A1F6 Peritectic melting point: 683°C composition: 33 mol e NS N33A1F6 N 61 mol % LiSAlF6 Al,O4 Ooo CR YOLI\TE NaAIF, Na,LiAIE, NaLi,ALF, Li; A (643d) (6934d) Mol % Figure 156.1. Na3A1F6-A1203—LiSA1F6 phase diagram References [1-15] Density (p) No data Surface Tension (y) No data Viscosity (n) No data 846 ~v 8 mol ~v 4 mol ~v 6 mol oL e (156) Na3A1F6-A1203—Li3A1F6 5. Electrical Conductance (K) No data 6. Safety and Hazards A, Hazard rating (1) Toxicity: inorganic fluorides are generally quite irritant and toxic. (1i1) Vapor pressure: no information for this system; but see Na3A1F6 [18] and Li3A1F6 [18]. B. Disaster hazards (1) Molten salt bath '"explosions': 1i,e, explosive generation of steam due to bulk water "carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. (ii) Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes, References [16-21] 847 7 8. 9. Corrosion Table 156.1. (156) Na AlF -Al,0,-Li 3 273 3 AlF6 “ Corrosion studies from primary research literature Studies References [ Ccr [22] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [23,24] SSNI-12P [25] Quartz [26] Al [27] [28] Various metals | — Pt, Pt-Rh Boron nitride, carbon, Inconel Fused MgO e Impurities in electrolyte Graphite TiCc, TiB CrB ZrN, NbB 2° 2° 2 Corrosion studies in molten salts with NaF as one component (e.g., Cl, CO3,...) Electrochemical behavior of oxide ions and related species - [29-33,67,68] [34-36] [37] [38,39] [38,39] [40-42] [43-58,65,66] in molten fluorides [59-61] Electroanalytical studies in molten fluorides [62] Annotated corrosion biblio. [63] Corrosion: molten fluorides(survey) [64] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general principles, and surveys. References [22-68] Diffusion No data Heat of Fusion (AH%) No data 848 studies, basic (156) NaSAlF -Al1,0 ~L13A1F 6 273 6 10. Heat Capacity (Cp) No data 11. Volume Change on Melting (AVf) No data 12. Vapor Pressure (pvap) No data 13, Thermal Conductivity (liquid) (Ag) No data 14, Thermal Conductivity (solid) (AS) No data 15, C(Cryoscopic Constant (kf) No data 16. References [1] Cassidy, R. T., and Brown, J. J. Jr., Unpub. work, Virginia Polytechnic and State University (1977); cited in Spec. Public. 496 Vol I, p. 272 (March 1978); U. S. Gov't Printing Office, Washington. [2] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R, P, T., "Eutectie Data” - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C. (1977). [3] Janz, G. J., Downey, J. R.,, Jr., Allen, C. B., and Tomkins, R. P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectie Data”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C. (1978). [4] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology"”, 8 Vols., McGraw-Hill Book Co., N. Y. (1933). [5] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik'”, (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [6] Clark, P. V., "Fused Salt Mixtures: FEutectic Compositions and Melting Points Bibliography 13907-1968", Report No. SC-R-68-1680; Sandia Laboratories (1968), NTIS. (7] Robertson, W. D., "Binary Phase Diagrams of Halide Salts”, Report No. Yale 2723 (2 Vols.), U. S. AEC Contract AT (30-1)-2723 (1966), NTIS. [8] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials'", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [9] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems’, Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). 849 [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] (156) Na,AlF,-Al.0,-Li,AlF 3 6 273 3 6 Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 4, 2, Izc. Akad. Nauk SSSR, Moscow .(1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). Sinistri, C., Franzozini, P., and Rolla, M., "An Atlas of Miscibility Gaps in Molten Salt Systems', Institute of Physical Chemistry, University of Pavia (Italy) (1968). Shaffer, P. T. B., "High Temperature Matertzals", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. Franzozini, P., Ferloni, P., and Spinolo, C., "Molten Salts with Organic Antons”, Instituto di Chimica Fisica, Universita di Pavia (Italy), 1973. Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Ozxygen Compounds in Silicate Systems'", Izdatel'stov "Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). Levin, E., et al., '"Phase Diagrams for Ceramists”, Amer. Ceramic Soc. {(publ.), Columbus, Ohio (1964; 1969). "Dangerous Properties of Matertials”, Sax, N. I.,, Van Nostrand Reinhold Co., N. Y. (1969) "Registry of Toxic Effects of Chemical Substances”, Christensen, H. E., and Lubinbyhl, T. T., eds., U. S. Dept. H. E. W., U. S. Gov't Printing Office, Washington, D. C. (1975) and System 65, Li,AlF_. vide: this work, System 66, NasAlF 3 6 6 "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals'",National Board of Fire Underwriters Research Report No. 2 (1954) "Handbook of Reactive Chemical Hazards", Bretherwick, L., Butterworth Co., London (1975) Janz, G, J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards, Chapter in "Futectic Data”",ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977) Brasunas, A., Metal Prog., 62, 88 (1952). Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors', Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). Heimann, R., Glastech. Ber., 43, 83 (1970). Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). Koger, J. W., Corrosion, 30, 125 (1974). 850 [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] (156) Na3A1F6-A1203—Li3A1F6 Edwards, J. D., Taylor, C. J. Electrochem. Soc. 99, S., Russell, A. S., and Maranville, L. F., 527 (1952). Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., A240, 160 (1957). Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957. Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u, Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 622 (1957). Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). Brown, E. A, and Porter, B., "U. S. Department of Interior, Bureau of Mines'', 128.23:6500 (1964). Cuthbertson, J.W. and Wadding%on, J., Trans Faraday Soc., 32, 745 (1936). Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended.Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973, Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen, 2,312,439, Oct. 4, 1973, Khan, T. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). Khan, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW (1970). Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). DeVan, J. H., "Examinations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests", ORNL CF-61-4-77, Oak Ridge National Lab., (1961). Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides'", ANP Materials Meeting ORNL-2685, (1958). Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863. (1973); Nucl. Sci. Abstr., 27, 12446 (1973). Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochem. Soc., 102, 42 (1955). Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. Nickel Fluorinator after Fourteen Dissolution Runs™, ORNL-3253, Oak Ridge Nat'l Lab., (1962). Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor- idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process", ORNL-2832, Oak Ridge Nat'l Lab. (1961). 851 [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] (156) NaSA1F6-A1203-LiSA1F6 Manly,_w. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 204 U, N, Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). Ogak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). Vreeland, D. C., Hoffman, E. E., and Manly, W. D., Nucleonics, 11, 36 (1953). - Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems', ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Miztures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978) Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Availability, Cost, Chemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). Ryschkewitsch, E., Z. Elektrochem., 39, 531 (1933). Yaffe, I. S. and E. R. Van Artsdalen, Chemistry Division Semiannual Progress Report for period ending June 20, 1956, ORNL-2159, p. 77. 852 System 157 Na,AlF, -A1,0.-Si0 3 6 273 2 Melting Temperature (T ) Pure substance melting points: NaSAlPG: 1010°C . (=] AIZOS' 2040°C §i0,: quartz: 1610°C tridymite:1680°C cristobalite: 1728°C Invariant points: The large solubility of sio, and Alzo3 at the invariant points (69 wt % $i0,, 14 wt % Al,0; at 1010°C, and 50 wt % SiOz, 17 wt % Al,0; at 800°C) imply substantial solubilities of the aluminum silicates in this system. The restricted field of liquid at 800°C indicates that the liquidus does not extend much below this temperature [2]. SIOa ] wt % 273 Figure 157.1. Phase diagram of isothermal section at 1010°C for NaSAlPG—Alzos—Slo2 (C: corundum; T: tridymite; L: liquid) References [1-15] 853 (157) Na3A1F6-A1203-8102 Density (p) Measurement method: Archimedean technique [16] Equation: p =a+ bC (157.1) (C = mol % AlZOS) . . o precision: in table 157.1 uncertainty: ~ %t 2% Table 157.1. Parameters of equation (157.1) and precisions T Wt % 8102 (K) a -b x lO3 Precision 2 1273 2.0981 2.2279 0.0995% 4 1273 2.0983 1.8884 0.03867% 6 1273 2.0973 1.4937 0.05207% Table 157.2. Density (g cm-s) from equations in table 157.1 Wt % Sio2 Na3A1F6—A1203 4 6 7 2 (mol % A1203) 0 2.098 2.098 2.097 5 2.087 2,089 2,090 10 2.076 2.079 2.082 15 2.065 2.070 2.075 20 2.054 2.061 References [16] 3. Surface Tension (y) No data 4. Viscosity (n) No data 854 (157) Na3A1F6-A1203-SiO2 5. Electrical Conductance (k) Measurement method: classical ac technique [16] Equation: (conductance-composition isotherm) 2 3 Kk = a+ bC + cC” + dC (157.2) (C = mol % A1203) precision: in table 157.3 uncertainty: ~ = 3% Table 157.3. Parameters of equation (157.2) and precisions Wt % SiO2 a b x 103 - ¢ X 103 d x 106 Precision 0 2,802 | -19.167 0.3381 0.1207% 2 2.631 0.879 2.6304 74,718 0.3718% 4 2.573 -9.015 2.03927 72,228 1.02187% 6 2.503 | -10.596 1.77613 65.011 0.83967% Table 157.4. Specific conductance (ohm-1 cm-l) from equations in table 157.3 Ca ALz We % S0, a341F . -Al,0, (mol % A1203) 0 2 4 6 0 2.80 2.63 2.57 2.50 5 2.70 2.58 2.49 2.41 10 2.58 2.45 2.35 2.28 15 2 .44 2.30 2.22 2.16 20 2.28 2.19 2.15 2.10 References [16] 855 6. Safety and Hazards (1) (ii) (1) (ii) References A. Hazard rating Toxicity: inorganic fluorides are generally quite irritant and toxic. Vapor pressure: no information on this system; NaSAlF at its m.,pt. (1010°C), ~ << 0.5mm, B. Disaster hazard Molten salt bath "explosions': i.e., explosive generation of steam due to bulk water '"carry-over" and/or equipment failure; i.e., explosive expansion of "trapped" air. Fluorides, when heated to decomposition, or contacted with acids, emit highly toxic fumes. [17-22] 856 -A1,0,-510 (157) NagAlF -Al,0, ; 7. Corrosion Table 157.5. Corrosion studies from primary research literature Studies References Cr [23] Ni-Cr-Mo alloys (INOR-8; Hastelloys B, W, and N) [24,25] SSNI-12P A NI-1 [26] Quartz [27] Al f28] LYarious metals [29] Pt [30-34] B | Boron nitride, carbon, Inconel [35-37] Fused MgO [38] Impurities in electrolyte [39,40] C { Graphite [39,40] TiC, TiBz, CrBz, ZrN, NbB2 [41-43] Corrosion studies in molten salts with NaF as one component (e.g., Ccl, CO3,...) [44-59,66,67] Electrochemical behavior of D | oxide ions and related species in molten fluorides [60-62] Electroanalytical studies in molten fluorides [63] Annotated corrosion biblio, [64] Corrosion: molten fluorides(survey) [65] A: studies principally in molten NaF, KF, and LiF; B: used largely in fluorides physical properties measurements; C: technological aspects, in aluminum reduction cells; D: more general studies, basic principles, and surveys. References [23-67] 857 10. I11. 12, 13. 14, 15. 16. (157) NaSAlFG—AIZOS-SiO2 Diffusion No data Heat of Fusion (AHf) No data Heat Capacity (Cp) No data Volume Change on Melting (AVf) No data Vapor Pressure (pvap) No data Thermal Conductivity (liquid) (Az) No data Thermal Conductivity (solid) (AS) No data Cryoscopic Constant (kf) No data References [1] Belyaev, A. I., Rapoport, M. B. and Firsanova, L. A., Elektrometallurgia Alyuminia, Metallurguzdat, Moscow, 1953. [2] Weill, D. F. and Fyfe, W. J., J. Electrochem. Soc. 111, 582 (1964). [3] Janz, G. J. Downey, J. R., Jr., Allen, C. B., and Tomkins, R. P. T., "Eutectic Data" - 2 Vols; ERDA-TID-27163-P1 § P2; NTIS, Washington, D. C.w(#l977). (4] Janz, G. J., Downey, J. R., Jr., Allen, C. B., and Tomkins, R, P. T., "Physical Properties Data Compilations Relevant to Energy Storage. I. Molten Salts: FEutectic Data"”, NSRDS-NBS-61; U. S. Gov't Printing Office, Washington, D. C., (1978). £5] "International Critical Tables of Numerical Data, Physics, Chemistry, and Technology", 8 Vols., McGraw-Hill Book Co., N. Y. (1933), [6l] "Landolt-Bornstein Zahlenwert und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik!", (10th Ed.) Springer-Verlag, Berlin, Heidelberg, N. Y. (1961). [7] Clark, P. V., "Fused Salt Mixtures: Eutectic Compositions and Melting Points Bibltography 1907-1968", Report No., SC-R-68-1680; Sandia Laboratories (1968), NTIS. 858 (157) Na ALF,-Al,0:-Si0, [8] Robertson, W. D., "Binary Phase Dicgrams of Ha'ide Salts'", Report No. Yale 2723 (2 Vols.), U. S. AEC Ccntract AT (32-1)-2723 (1966), NTIS. [9] Thoma, R. E., "Phase Diagrams of Nuclear Reactor Materials", Oak Ridge National Laboratory, ORNL-2548, Contract No. W-7405-eng-26. [10] Thoma, R. E., "Phase Diagrams of Binary and Ternary Fluoride Systems", Chapt. 6; Adv. Molten Salts Chemistry, Vol. 3 (J. Braunstein, G. Mamantov, and G. P. Smith, eds.), Plenum Press, N. Y. (1975). [11] Voskresenskaya, N. K., ed., "Handbook of Solid-Liquid Equilibria in Systems of Inorganic Salts'", Volumes 1, 2, Izc. Akad. Nauk SSSR, Moscow (1961). Israel Program for Scientific Translations, Jerusalem, 1970 (NTIS). [12] Shaffer, P. T. B., "High Temperature Materials", Plenum Press Handbooks of High Temperature Materials, No. 1, Materials Index, Plenum Press, New York, 1964. [13] Toropov, N. A. et al., "Handbook of Phase Diagrams of the Silicates, Volume 1: Binary Systems, Volume 2, Metal-Oxygen Compounds in Stlicate Systems", ITzdatel'stov '"Nauka'" Leningradskoe Otdelenie, Leningrad, 1969, Israel Program for Scientific Translations, Jerusalem, 1972 (NTIS). [14] Levin, E., et al., "Phase Diagrams for Ceramists'”, Amer. Ceramic Soc. (publ.), Columbus, Ohio (1964; 1969). [15] "Applications of Phase Diagrams in Metallurgy and Ceramics'", (2 Vols) NBS Special Pub. 496. U. S. Dept. of Commerce. Nat. Bur. Standards. Ed. Carter G. C. March 1978, [16] Grjotheim, X., Matiasovsky, K., Fellner, P., and Silny, A., Can. Met. Quart., 10, 79 (1971). [17] "Dangerous Properties of Materials", Sax, N. I., Van Nostrand Reinhold Co., N. Y. (1969). [18] "Registry of Toxic Effects of Chemical Substances"”, Christensen, H. E., and Lubinybyhl, T. T., eds., U. S. Dept. H.E.W; U. S. Gov't Printing Office, Washington, D. C. (1975). [19] "Potential Hazards in Molten Salt Baths for Heat Treatment of Metals', National Board Fire Underwriters Research Report No. 2. (1954). [20] "Handbook of Reactive Chemical Hazards', Bretherwick, L., Butterworths Co., London (1975). [21] Janz, G. J., Tomkins, R. P. T., Downey, J. R., Jr., and Allen, C. B., "Safety and Hazards'", Chapter in "Eutectic Data'", ERDA TID-27163-P1; NTIS, U. S. Dept. Commerce, Springfield, Va. (1977). [22] vide: this work, System 66, NazAlF.. [23] Brasunas, A., Métal Prog., 62, 88 (1952). [24] Bettes, E. S., Nucl. Sci. Eng., 2, 804 (1957). [25] Hoffman, E. E., Patriarca, P., Leitten, C. F., Jr., and Slaughter, G. M., ORNL-1934, Oak Ridge Natl. Lab., (1956). [26] Oak Ridge National Laboratory, "The Development Status of Molten Salt Breeder Reactors'", -Rpt. ORNL-4812-UC-80; NTIS, U. S. Dept. Commerce, Springfield, Va., (Aug. 1972). 859 (157) Na3A1F6:A1203-SiO2 [27] Heimann, R., Glastech. Ber., 43, 83 (1970). [28] Lukashenko, E. E., and Reutova, G. A., Nov. Teor. Tekhnol. Metall. Protsessov., 119 (1973). [29] Koger, J. W., Corrosion, 30, 125 (1974). [30] Edwards, J. D., Taylor, C. S., Russell, A. S., and Maranville, L. F. J. Electrochem, Soc. 99, 527 (1952). ? [31] Landon, G. J., and Ubbelohde, A. R., Proc. Royal Soc., AZ40, 160 (1957). [32] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 438, 1957, [33] Winterhager, H. and Werner, L., Forschungsber. des Witschafts-u. Verkehrsministeriums Nordrhein-Westfalen, No. 341, 1956. [34] Bajcsy, J., Malinovsky, M., and Matiasovsky, K., Electrochim. Acta, 7, 543 (1962). [35] Yim, E. W. and Feinleib, M., J. Electrochem, Soc., 104, 622 (1957), [36] Yim, E. W. and Feinleib, M., J. Electrochem. Soc., 104, 626 (1957). [37] Brown, E. A. and Porter, B., "U. S. Department of Interior, Bureau of Mines'", 128.23:6500 (1964). [38] Cuthbertson, J.W. and Waddington, J., Trans Faraday Soc., 32, 745 (1936). [39] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., "Aluminum Electrolyses”, Chapt. 10; Aluminum-Verlag, G.mbH; Dusseldorf (1977). [40] Brun, J., Tunold, R., Vatland, A., 30th ISE Meeting, Extended Abstracts, pp. 118-119; Trondheim, Norway (Aug. 1979); NTH, Dept. Ind. Electro- chem., Trondheim, Norway. [41] Holliday, R. D., (0lin Mathieson Chemical Corp.), U. S. 3,661,736, May 9, 1972. [42] Thompson, R.: (Borax Consolidated Ltd.), Ger. Offen. 2,305,281, Aug. 9, 1973. [43] Kugler, T. and Rieger, H. W.: (Swiss Aluminium Ltd.) Ger. Offen. 2,312,439, Oct. 4, 1973, [44] Khan, I. A., Ber. Kernforschungsanlage Juelich, Juel-608-RW, (1969). [45] Kh%n, I. A., Inst. Reaktorwerkst., Kernforschungsanlage, Juel-718-RW 1970). [46] Bowles, P. J., and Newdick, P. C., Electroplating and Metal Finishing, 24, 6 (1971). [47] DeVan, J. H., "Ezxaminations of Pump Impellers from Sodium and Fused Salt Pump Endurance Tests', ORNL CF-61-4-77, Oak Ridge National Lab., (1961). [48] Adamson, G. M., Manly, W. D., and Crouse, S. R., "Corrosion by Molten Fluorides"”, ANP Materials Meeting ORNL-2685, (1958). [49] Huntley, W. R., and Gnadt, P. A., Oak Ridge Nat'l Lab., Report ORNL-TM-3863., (1973); Nucl. Sci. Abstr., 27, 12446 (1973). 860 (157) NagAlF,-Al,0-Si0 6 273 2 [50] Gill, C. B., Straumanis, M. E., and Schlechten, W. B., J. Electrochen. Soc., 102, 42 (1955). [51] Litman, A. P., "Corrosion of Volatility Pilot Plant Mark I INOR-S Hydrofluorinator and Mark III. QNickel Fluorinator after Fourteen Dissolution Runs", ORNL-3253, Oak Ridge Nat'l Lab., (1962). [52] Litman, A. P., and Goldman, A. E., "Corrosion Associated with Fluor-. idation in the Oak Ridge Nat'l Lab., Fluoride Volatility Process', ORNL-2832, Oak Ridge Nat'l Lab. (1961). [53] Manly, W. D., Coobs, J. H., DeVan, J. H., Douglas D. A., Inouye, H., Patriarca, P., Roche, T. K., and Scott, J. L., "Metallurgical Problems in Molten Fluoride Systems", Proc. 2Md U. N Inter. Conf. Peaceful Uses of At. Energy, 7, 223 (1958). [54] Oak Ridge Nat'l Lab., Molten Salt Reactor Program Semiannual Progress Report for Period Ending July 31, 1964, ORNL-3708, (1964). [55] Vreeland, D. C., Hoffman, E. E.,, and Manly, W. D., Nucleonics, 11, 36 (1953). [56] Grimes, W. R., and Cuneo, D. R., "Molten Salts as Reactor Fuels", Reactor Handbook 2nd ed., 1, 425 (1955). [57] Shimotake, H., and Hesson, J. C., Adv. Chem. Series, No. 64, 149 (1967). [58] Boser, 0., "Study of Safety Aspects of High Temperature Thermal Energy Storage Systems", ERDA Thermal Energy Storage Information Exchange Mtg., Cleveland, NSF-AER 75-20605 (Sept. 1976). [59] Venkatasetty, H. V., "Thermodynamic Properties and Corrosion Character- istics of Thermal Energy Storage Eutectic Mixtures', paper presented at 152nd Meeting of the Electrochemical Society, Atlanta, Ga., (October, 1977). [60] Mathews, A. L., and Baes, C. F., Inorg. Chem., 7, 373 (1968). [61] Manning, D. L. and Mamantov, G., J. Electrochem. Soc., 124, 480 (1977). [62] Ting, G., Baes, C. F., Bamberger, C. E., and Mamantov, G., J. Inorg. Nucl. Chem., 39, 1803 (1977). [63] Manning, D. L., and Mamantov, G., J. Electroanal. Chem., (in press) (1978" [64] Janz, G. J., and Tomkins, R. P. T., Corrosion, 35(11) 485 (1979). [65] Eichelberger, J. L., (Penwalt Corp.) "Investigations of Metal Fluoride Thermal Energy Storage Materials: Avatlability, Cost, ?hemistry" ERDA Rpt C002990-6; NTIS, U. S. Dept. Commerce, Springfield, Va., (Dec. 1976). [66] Kochergin, V. P., and Ignat'eva, N. I., Russ. J. Inorg. Chem., 6(9), 1086 (1961). [67] Ozeryanaya, I. N., Volodin, V. P., and Smirnov, M. V., Zashchita Metalov (USSR), 2, 230 (1969). 861 % U. S. GOVERNMENT PRINTING OFFICE : 1981 350-050/8565 NBS-114A (REV. 2-8G) U.S. DEPT. OF COMM. 1, PU BLICATIOON OR 2. Performing Organ. Report NoJ 3. Publication Date REPORT NO. BIBLIOGRAPHIC DATA NSRDS-NBS 61, July 1981 SHEET (See instructions) Po ot \ 4. TITLE AND SUBTITLE Physical Properties Data Compilations Relevant to Energy Storage. IV, Molten Salts: Data on Additional Single and Multi-Component Salt Systems 5. AUTHOR(S) G. J. Janz and R. P, T. Tomkins 6. PERFORMING ORGANIZATION (!If joint or other than NBS, see instructions) 7. Contract/Grant No. NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered WASHINGTON, D.C. 20234 N/A 9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP) Same as Item 6. 10. SUPPLEMENTARY NOTES Library of CGongress Gatalog Card Number: 77-10824 [[] Document describes a computer program; SF-185, FIPS Software Summary, is attached, 11. ABSTRACT (A 200-word or less factual summary of most significant information, If document includes a significant bibliography or literature survey, mention it here) The present work provides selected data with value judgements for an additional set of 107 salt systems of interest as candidate materials for thermal energy storage Fub-systems, for electrochemical energy storage systems, and in electrochemical aluminum production. The physical properties assessed are: melting points; phase diagrams; eutectic compositions; density; surface tension; viscosity; electrical conductivity; diffusion constants for ions; heat of fusion; heat capacity; volume change on fusion; vapor pressure; thermal conductivity (liquid and solid); and cryoscopic constant. The status of corrosion studies in the form of annotated bibliographic summaries, and salient observations on safety and hazards are also reported. A summarizing series of tables is provided as index to the data-gaps status for this set of candidate materials. 12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) Corrosion; data compilations; electrochemical aluminum production; electrochemical energy storage materials; molten salts; physical properties; safety and hazards; thermal enexgy storage materials; thermal properties; thermodynamic properties; transport properties. 13. AVAILABILITY 14. NO. OF PRINTED PAGES £X] Unlimited 870 [] For Official Distribution, Do Not Release to NTIS [x] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C, . 20402. 15. Price [[] Order From National Technical Information Service (NTIS), Springfield, VA. 2216 $1 1.00 USCOMM-DC 6043-P80 OF RESEARCEL ofz‘/Jefl\@zom/ Burean gf Standands § S & & . LS OEPAHTMERY OF .CDL‘JM(RCE S e e — o e— e — ——— — — — — — — — i — — — — — — — —— — Subseribe now— The new | National Bureau of Standards Journal The expanded Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineer- ing, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology, and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent NBS publicafions in NBS and non- NBS media. Issued six times a year. Annual sub- scriptions: domestic $13.; foreign $16.25. Single copy, $3. domestic; $3.75 foreign. e Note: The Journal was formerly published in two sections: Section A ““Physics and Chem- istry”” and Section B “Mathematical Sciences.” NBS Board of Editors Churchill Eisenhart, Executive Editor (Mathematics) John W. Cooper (Physics) Donald D. Wagman (Chemistry) Andrew J. Fowell (Engineering) Joseph O. Harrison (Computer Science) Howard J. M. Hanley (Boulder Labs.) Subscription Order Form Credit Card Orders Only Total charges $ . ... . . . Fill in the boxes below. Znter my subscription to NBS Journal of Research Credit [ | | | ‘ | | | | ' | | | | | | | I at $13. Add $3.25 for foreign mailing. No additional postage is SIS ‘equired for mailing within the United States or its possessions. SJRA—File Code 2N) A e ) Mont[;n/Year l | | | J Send Subscription to: Name-First. Last D Remittance Enclosed. Domestic: ' Check der. Foreign: RN imermational monoy order, i s . - - draft on an American or Canadian Company Name or Additional Address Line 31'(‘;; g;y%:;”tsstfig coupons, 5| | ‘ | I | i | | | | | | | | | | | | | ‘ ! | | | | | | Superintendent of Documents. 3 Street Address ] i“afge "L"‘V Cepos ount No. I 1 T 1 O e e e e I o O O O City State Zip Code | MAIL ORDER FORM TO: Superintendent of Documents (or) COUNTRY [:::IIII[IIIIII Government Printing Office ’LEASE PRINT Washington, D.C. 20402 . . . the monthly magazine of the Nation- al Bureau of Standards. Still featured are special ar- ticles of general interest on current topics such as consum- er product safety and building technology. In addition, new sec- tions are designed to . . . PROVIDE SCIENTISTS with illustrated discussions of recent technical developments and work in progress . . . INFORM INDUSTRIAL MANAGERS of technology transfer activities in Federal and private labs. . . DESCRIBE TO MAN- UFACTURERS advances in the field of voluntary and mandatory standards. The new DIMENSIONS/NBS also carries complete listings of upcoming conferences to be held at NBS and reports on all the latest NBS publications, with information on how to order. Finally, each issue carries a page of News Briefs, aimed at keeping scientist and consum- er alike up to date on major developments at the Nation’s physi- cal sciences and measurement laboratory. P e e e—m e e s e e e e e e e e e e e EEs ey e e e D S S DGR ememin G evmn GEmmS emm—m S e S S e {please delach here) SUBSCRIPTION ORDER FORM nter my Subscription To DIMENSIONS/NBS at $11.00. Add $2.75 for foreign mailing. No additional 0 Remittance Enclosed ostage is required for mailing within the United States or its possessions. Domestic remittances (Make checks payable hould be made either by postal money order, express money order, or check. Foreign remittances to Superintendent of hould be made either by international money order, draft on an American bank, or by UNESCO Documents) oupons. . . O Charge to my Deposit end Subscription to: Account No. NAME-FIRST, LAST Ay eyt - COMPANY NAME OR ADDITIONAL ADDRESS LINE ;{IjllllJl'illlllllllllIllllll MAILORDERFORMTO: STREET ADDRESS Superintendent of Documents AL el Government Printing Office Washington, D.C. 20402 CITy STATE ZIP CODE | I I | 111 'LEASE PRINT Announcement of New Publications in National Standard Reference Data Series Superintendent of Documents, Government Printing Office, Washington, D.C. 20402 Dear Sir: Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series —National Bureau of Standards. Name Company Address City State Zip Code (Notification Key N-519) als NBS TECHNICAL PUBLICATIONS PERIODICALS JOURNAL OF RESEARCH-—The Journal of Research of the National Bureau of Standards reports NBS research and develop- ment in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization, Also included from time to time are survey articles on topics closely related to the Bureau’s technical and scientific programs. As a special service to subscribers each issue contains complete citations to all recent Bureau publications in both NBS and non- NBS media. Issued six times a year. Annual subscription: domestic $13; foreign $16.25. Single copy, $3 domestic; $3.75 foreign. NOTE: The Journal was formerly published in two sections: Sec- tion A “Physics and Chemistry’’ and Section B ‘“Mathematical Sciences.” DIMENSIONS/NBS—This monthly magazine is published to in- form scientists, engineers, business and industry leaders, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on work at NBS. The magazine highlights and reviews such issues as energy research, fire protec- tion, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addi- tion, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, Instrumentation, and automatic data processing. Annual subscription: domestic $11; foreign $13.75. NONPERIODICALS Monographs—Major contributions to the technical literature on various subjects related to the Bureau’s scientific and technical ac- tivities. Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with in- terested industries, professional organizations, and regulatory bodies. Special Publications—Include proceedings of conferences spon- sored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies. Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work. National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, com- piled from the world’s literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The principal publication outlet for the foregoing data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056. Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety charac- teristics of building elements and systems. Technical Notes—Studies or reports which are complete in them- selves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area, Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies. : Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations. Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the con- sumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today’s tech- nological marketplace. Order the above NBS publications from: Superintendent of Docu- ments, Government Printing Office, Washington, DC 20402. Order the following NBS publications—FIPS and NBSIR s—from the National Technical Information Services, Springfield, VA 22161. Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Govern- ment regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Ex- ecutive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations). NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial dis- tribution is handled by the sponsor; public distribution is by the National Technical Information Services, Springfield, VA 22161, in paper copy or microfiche form. U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, D.C. 20234 OFFICIAL BUSINESS Penalty for Private Use, $300 POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM=215 SPECIAL FOURTH-CLASS RATE BOOK