EIR-Bericht Nr. 257 EIR-Bericht Nr.257 Eidg. Institut flr Reaktorforschung Wirenlingen Schweiz The possibility of continuous in-core gaseous extraction of volatile fission products in a molten fuel reactor M. Taube = Wirenlingen, Mai 1974 EIR-Bericht Nr. 257 The possibility of continuous in-core gaseous extraction of volatile fission products in a molten fuel reactor M. Taube May 1974 Abstract A system of continuous gas purging of a reactor core for removal of volatile fission products from the molten chloride fuel is discussed and calculations based on a computer pro- gramme are shown. The results indicate: a) the precursors of the delayed neutrons nearly all remain b) d1odine-13%1 in the steady-state core is reduced approx by a flactor 1000 ¢) caesium-137 concentraticn in the core decreases only by a factor 7, but the veolatility is relativ low due to chloride d) caesium isoftopes 135 and 133 can be separated from Cs-137 by a factor of which make casier the Cs-137 management e) xenon isotopes are extensively extracted All this results in a significant improvement in the safety of this reactor type in the case of a core accident. 1. General Remarks "The aim of this paper is to discuss the possibility of de- creasing the concentration of volatile fission products in the steady state core as a counter measure in the event of a core accident. The design philosophy of a safe reactor is guided by the statements of the following type: (WASH 1250, 1973) "The measures agalinst the escape of radiocactivity from nuclear facilities (nuclear power plants, fuel reprocessing waste disposal facilities, shipping, storage etc.) should use design features inherently favourable to safe operation e.g. by se- lection of fuel, coolant and core structural materials which will have inherent stability and safe characteristics.™ In this paper a molten fuel fast breeder is discussed which could realise both these requirements through: - minimising the hazard of the escape of radioactive by substances by continuous extraction of the most volatile fission products from the molten fuel so that the steady state amounts of these are reduced by one or more orders of magnitude compared to the classical case of solid fuel periodically discharged and reprocessed. It is well known that in the case of a reactor accident the hazards are centered around the volatile fission products (F.P.). For example according to Farmer (1973) a 1500 MW(th) 9 reactor contains 4 x 10” curies of volatile and gaseous fission products of which I-131 equals 50 Megacuries. The hypothetical release having a very low probability of causing harm to the general public (unlikely to cause one case of fatal illness within the ensuing ten or more years) is of the order of 5 kilocuries of I-131. In a hypothetical low pro- bablility accident they discussed a release of 5 Megacuries of I-131 and 0.5 Megacuries of Cs-137. 2. Continuous gas extraction The continuous in core gas extraction of volatile fission products from the liquid fuel is based on the following data and/or roughly estimated calculations (using the appro- priate "GASEX" programme) a) the reactor is fuelled with molten salt fuel - in this case molten chlorides PuCl3 - UC1l, - NaCl etc. (fig. 1) b) the chemical properties of the fission products in this molten media are characterised by the scheme shown in (fig. 2) ¢) the balance of the fission products - especially for chlorine is given in (fig. 3) d) the thermodynamic stability of all the important irradiated fuel components are given in fig. 3 e) the volatility (partial pressure) of some selected cru- cial fission products: e.g. caesium in the form of ele- ment, oxide and chloride is given in fig. 4 t breeder o wd fa 1 Fig. g =l N B N R TR T _ vn%ooufl SRR, oooooouoofooofioo«ononouomn"ouoonnunnofoi,_ J Wo | ONoo.‘” R 4 S S & 5 5 K< % o (X 5 & 5 X b / W\ o — _ £ o - T \A\wfl W) b o - r B 7% 2 200 P : A | ot B S0 [ T ST ( fl _ % { ! > D 2 . N N 1 —— RS 7 X < //mf/ /Aw N 7 € N N\ R TR, R R o < N ;.;_1;Maw// v N N w , NSO AN AN ANSANNE AN AN Fig., 2 'ission Products in Molten Chlorides Media 36 Kr 54 Xe 35 Br >3 1 34 Se 5 Te 435 As 51 Sb 32 Ge 50 &n 31 Ga hg In 50 Zn hg cda L7 Ag he Pg 45 Rh L Ru bz Te bz Mo 41 Nb 4o Zr 64 Gd 63 Eu 62 Sm 6l Pm 60 Nd b9 Pr 58 Ce 39 Y 57 La 38 Sr {50 Ba 57 Rb |55 Cs fast Gas 1 Extraction slow very slow <:§%latile chlorides Low volatile chlorides Non volatile metals Low volatile chlorides Non volatile chlorides Low volatile chlorides /\ Fig. 3 Free Energy of Formation = n g © 0 0 T g°fl"Noble metals B »| Noble gases 0 & o o Q, o o oo o g H oo n a° MoCl g © X - - NbC1l 5 -100 T — AgCl — SbCl 3 CdCl2 AG = SnCl -1 (KJ mol = InCl - UCl4 -200 = - - 7ZrCl UCl3 3 P 5 E - NdCl3 « - o < PrCl3 e — CeCl, o HoL - LaCl3 —BOO T - NaCl = RbCl = CsC1 - SmCl2 - Sr'Cl2 = BaCl Fission products in form of chloride Fig, & Volatility Pressure of Caesiumemetall (Caesium Oxide) and Caesium Chlorides 1000 = 100 - bar Cs-met __ — — 1 - ‘o . boeiling point 500 ¢ CsCL ! ! I | I | 900 1000 1200 1400 Fig. 5 Scheme of the independent Yield Calculation A = 137 § Extraction rate Sb Te 1 Xe Cs Ba B A . . /’\t B—‘ A Filssioned plutonium o 7 ——t - avom Q“—\‘Q\\> B 100 = 51.77 % 50 20 10 yield % accordingl (Crouch, 1969) 0,1 107 106 time seconds lOLl 10° 102 10 1 Fig. 6 Scheme of Gas-Extraction Liquidjdrop H,O HBO * Separalor \eparatibn ? e,Te Aepaatio o o = o o o ‘ Br,T jeparatign T [ Kr ,Xe deparatipn ! | e— | Cq R 10 f) +the history of each individual fission product is calculated on the basis of the independant yields: see fig. 5 (according to Crouch 1973) g) the in-core molten salt medium is purged by means of heliumhydrogen gas bubbles which greatly influence the chemical behaviour of some fission products (parti- cularly iodine). The assumptions concerning the size of this stream is given in Appendix 1 5., Scheme of gas extraction and possible technology of gas separation In order to give a basis for discussion on the gas extraction systems fig. 6 gives a simplified schematic. It must be stressed that this is a preliminary suggestion only without any basic studies. 4., Scheme of calculation For calculation of the gas extraction system refered to here a computer programme "GASEX" has been prepared (using Fortran IV for the CDC 6500/6700). The principal layout on which the calculation is based is given in fig. 7. 11 Fig. 7 The Scheme of Calculation Independent yield: n A(z—l) Iradiation Irradiation (Al)z (A+1) f (HJ ’Y) Neutron irradiation A A (NA1) (n,y) Neutron irradiation f_l Z (Z-1) (Z) (Z+1) 12 The only assumption arbitrarily made was the gas extraction rate of the volatile fission products. The calculation was made for the follocwing four assumptions, given in table 1. Table 1 Core dwell time - (seconds) Variant 1 2 ) Y Se and Te 10° 10° 10" 10° Br and 1 106 lOLL lO3 102 Kr and Xe 106 10° 10° 10t A1l other elements *) 106 106 106 106 * ) 106 seconds equals 11.57 days which 1s postulated as the reprocessing period of the total liquid fuel 5. Results of the calculations The most important results are: 1. Stable bromine isotopes A-79 and A-87 (fig. 8) are extrac- ted with high efficiency. The short lived isotopes (t 1/2 ~ hours or minutes) (fig. 8) are extracted in rather small quantities (logarithmic ver- tical scale). 5 13 Short lived bromine isotopes A = 88, 89, 90, being also the probable precursors of delayed neutrons are in practice not extractable (no loss of delayed neutrons) (fig. 9 =~ 1linear vertical scale) The very high retention of the heavy bromine isotopes in the molten fuel is almost independant of the rate of gas extraction. For the highest gas 'extraction' only a small extraction of bromine occurs (fig. 9). The main problem for krypton isotopes is the Kr-85 (fig. 10). The gas extraction is successful for the lowest case (2) and results in a reduction of the amount of Xr-85 by approx 1000 times. By increasing the gas extraction rate the amounts of this isotopes decreases by a factor 10 5. The short lived krypton isotopes are very efficiently extracted (fig. 11).: 5. The gas extraction has only a small effect on the two radioactive strontium isotopes (fig. 12). They are de- creased only by a factor of 7. The case of the iodine isotopes (fig. 1% and 14) is cri- tical for two reasons I) the iodine-131 is an important factor in the core acci- dent hazard. 14 The ligures 8-17 are made directly by the CDC 6500/6700 prin- If * appears then at least two ter as output from GASEX; d. - curves are superimpose e D T T B e ) S Bt e atatealed Sl *..*'Oll.'...l'll.!!l.l*»@ll'm'l"'.:ll..r.+.!'t!l..liN.lo.ll!l.’.Ml.';ll'.dllIll‘l!+!l.l.l.'l.lte'.l|l|+.l¢ l: ..*l...'...ll’.'.l"'.;—- s 4 " . 2 i "x 5 4 . e ‘e x4 4 . 2 3 1 s 6 5 . 2 £ ! IR Y . e £ T . S 4 . Z ¢ - T s & n . z . T PR N e 1 *+ 5 v K € <7 '.*'......l.l.l...'.I'+»D..::.l."l.‘l....+NN'.I-'fl.il.mw....-.—v.fifi.'I'.'I.......‘|.+ P "2 £ 1 x4 z ¢ 1 PR e £ Tt s z " ; To- PR z £ . s om z £ T PR 2 . § 1 . a0y z . 3 1 . "ah 2 . ¢ 1 . ”:'l.....'NN.'...l.-'.'.M;M.I.'.HH'.'....* "a 2 N 111 . s 2 £RC 117 . " ze see T1T . " 2z £ 131 . ‘s 22 £ee TTT" . .22 £eoTTIT 0t . s F2 £FEITT . . bt bd bl el el e e bt e e et bl el e b et bl bl bed e bl b b bt b bt ek e ] *.'+.|I...'.I..l..I..'.ufk-lf.}fl."'....'....I'+.'I"'.....II.'.....‘. e S et B B e Tl ¢ 204300 °1 26+300*1 20+300°7 20+300°7 20+300°7 <0+300°1 c0+300°1 2343007 “a 2 EFaAlT *xd28x17 po+3ArG et cg+300°T nn+3go*y 0a+300°73 ap+30C°7 gg+300°7 po+300°T no+300*1 cu=-300°7 T0+300G6°G S31T-47TVH Ju=30C*T TC+I0CH*G 241T7~4TVH Zn-300°1 ro+3000°¢ A4I-STYH c0~-300°*7 TR+5002°¢ A410-47TUH 2n-3aa*71 nn+30c%*2 A4I3-471YH 20=-300°%7% IC+5086%C 3311-41YH ct=300°7 370yes 20=-370°7% ER RS R [y he-300°7% 29 3431051 Hhe=300°7 98 3d40I6ST H0-306G°T g 34010SI o -300*3 g 3401051 £ 3401081 wo-Jop*t 76 34C1081 hE-300*7 T6 3d010ST ho-=-300°T £/ 3431081 5S¢ T sSss s aNeeT RSO na, .fi - - . - - . - - . - gg-300°7 6% *ON*LV a3 LtHiW3ITI - GL-3006°7 6f TON®*1V 49 ANFWITI3 - IG-300°*1 Gf *CN*Lv o9 INAWITE - Gg-308°7 aY *GHNTLlY 4R INIWITIT - Gu-Jop-t G CON® LY dfi INIWITT - 90=-400°*1 G *ON*LY o INIWAI - G0-3L0°T G¢ *ON*}V 48 LN3IW3ITI - 96-100°T S *ON*LY d8 INIWHITI - HIAWANIIWOLIY 30 S3d010SI .l.‘.'...‘.........AT. l'.'l..l....l......+ [F41 1y * [ L] e L I e B B B e B B e I e B B B I I T I e N e N R ] L o - Pl..lt.!.!..l.ll.!I#'llIIQIQI.II'II"I.*!!&. '.fl e e d e e et | - o | f0-300°1 Hdvy9 g-3006°7% Hdvao 80-300"% Hd¥Ad9 #0-380°1 HdTd9 f0=-3G0°Y Hd¥9 gu-300°1 Hd V9 g0-A00°*"% Ha Va9 g0-200°1 Fdvado GRAPH GRAFH GRAPH *..+'.‘-I-I.‘.I.Q‘l...I.".I--l.‘......t..".".-.......Q'C.‘I...‘+.II...I‘l..‘.‘......"....l.....‘.....'.. ALL ISOTOPES OF ATOMICNUMHEER 39 1 - CLEMENT 8% AT.NO. 35 ISOTIOPE 88 HALF-LIFE 1.6040 2.00&-01 Ga00E-01 b.U0E-31 E+01 ScC 2 - FLEHAENT BRP AT ,.NO., 35 ISaQT2PE 83 HALF-LIFC 4.500&£+00 SEC Za00E~01 4.00E-G1 beUOE- 3 - ELEMENT RR AT.NO. 35 TIS07TOPE 90 HALF-LIFE 1.600E+00 SEC 2.00E-01 4e0bE-01 b. 00E- I - » - I - - L] I . - . I - - » I L ] L] - I - - - I - - L] I - L] - I - - - +‘.+...‘.....l..‘.ll'.l".......II‘I..-'.....‘-......".I-....'... I - - ® I - - . I - - » I - [ ] - I - - - I . - . I - - - I . - . I - - - +.'+....I..I.I'...l‘l--'.+..Q...‘.....I...-I‘*l'.l.'...'.....!... I - - - I - - L] I - - - I L » - I - - - I - - - I - - - I - - - I - L ] - a1 8.00E-01 8.00t-01 - - - - » - - - [ ] - - - - - [ ] » - - ".......‘.I.-‘..t.-- - » - - 1. 00t+00 1« 00E+DQ 1.00E+043 LK I B IR R A ® +.--.l'.'....l...l.‘3.. +-..I-.I.I....I.... ¥4 & (8} =t =t g b et gt el e e e ped Bt b Bt P P ] et b b e P pag ey e e | e punt o i *. GT ALL ISOTOPES OF ATOMIGNUMBEK J5 GRAFPH i - ELLMENT KP AT . NO. 5B I50TCPE 4z STA5LE 1. 30E-01% L. CG0F-06 1.0UE-04 1.40F=-02 1.00E+06G 1. UDE+DZ GRAPH 2 = ELEMENT Ki# AT NUO. 36 ISOTDFEE 53 S5TAuLE 1. 00E-048 1.03F~06 1,30E-04 1.00-12 l.3uc+00 1. 00c+U2 GrRAPH J - ELEMENT K7 ATaNO. 30 ISOTGRE 84 STAasLe 1.0C0E-08 1. 000=-06 1.00e-04 1.80e8-02 1.906+40 i.00E+02 GRAFH &4 - ELEMINT KPP AT.NO. 36 ISOTOPE 85 HALF=LIFE 1.076E+0] YRS 1.03E-0C8 1.338~-16 lad0E~04 1.00t-02 1.00+00 1. 0ut+be GRAPH 5 - ELEMENT KR AT.NO. 36 ISOTCPE 56 STasdLte 1.00E-08 1. 04F-06 1.008-04 led =02 1.J38+0C0 i.00E+02 GRAPH & - ELEMENT K& AT .NO. 36 I50TCPE 87 HALF-LIFZ 7.000%+31 Min 1.00FE-08 1.00F-36 1.20E-04 LedOE-12 i« 00 +0C 1.u0dE+0¢ GRAPH 7 - ELEMENT KF AT4NO. 36 ISOTGPE 88 HALF-LIFE Z2.800E+0U0 HK> 1. 003E~108 1.006-06 lHGE-04 led0E~N2 1.006#00 i.00E+02 GRAPH 8 = ELEMENT ¥FP AT.NO. $b ISOTOPE 83 HALF-LIFE 3.1008+00 Min 1. 008038 1. J0F-06 1.400E-04 i100£-0G2 100 +00 1. 00E¢Q2 -l ——————— e it ~I---————— tomm e -~ fomm - e tommm v L i ey == 1. *..+-..-"O...-...'..‘.+..'....".-'."....+-'-'......'..'.....+,‘."...'.'.-11—.:.:;¥¥+-'.-‘.‘.......-..-.*.-+ I - . . N 111%%%%4 *8, - I I - . - 111111%%%%4 * 8. - 1 I . . . 11111 o ¥#¥¥4 ¥ 8. « 1 1 - . - 11111 . S9FFETLY 75 8. - I 1 » . - 114111 SEIRILY 7o 8 - I I - - » 11111 SERIIL4L4 76 8. . 1 1 . - 111111 SH¥YF Likh. 76 Ba - I I . . 111111 . HEeERE L4 - 7 @ 8. . I I - - 11111 » LL##3¥ Ly . 7 6 8e . I 2% teetaenanrcsnsesssnssvonatenssllcesncssanccanseteaalt ¥ euvliioanoscensatecssacanel/ /bbansnssBotecansescsssnsnsnnrsscntaant I . - 1 « Y F 4 - f b 8 - 1 I . - 1 9 ¥ i . 7 b 8 . . I I - -« 1 5 ¥ & - 7 6 3 - - I 1 . «1 5.7 &4 . /7 b 3 . - I I . 1 5 ¥ 4 . / b 8 . - 1 i1 . la 5 *. 4 « T D 8 . « I I - 1 . S5 F . 4 « 7 b 8 - . 1 T . 1 . 5 ¥ o G of 6 8 . . I I - 1 - 5 % ol 7 6 8 - . I 3e *.-fn-s--n-lctlonallu..*lo!..u.--..-55‘*0.-4“.1--n---0.-------7?66-.-----a-afjs-.---’}.c-...-....-..'..‘.+..+ I 1 - 5 ¥ L o 7 6 8 . . I I - 1 - 5 ¥ L . 7 ba ] - - I I . 1 - 5 ¥ b . 7 6 8 . . I I . 1 - 5 ¥ 4 » 7 b N 3 . . 1 T 1 - LoF 4 - 7 6 ® 8 . » I I . 1 » 5 ¥ 4 - 7 B . 8 . « 1 I . 1 - 5 ® L . 7 b . s} . - 1 1 . i . 5 # 4 . 7 6 . 8 - - I 1 . 1 . 5 =% L . 7 6 - 8 - « I (l. +.I+--l.-1...n-n’-.-I-I+.Ol5.#.'..h!..‘....*I.I-.....?.600l.l.fi+.l..8....-tl...t'.t*.-O.Il-n‘.l.I.I--.-*-.* 9T AlLL ISCYOPEL GRAPH 1 - ELEHMENT KR AY.NO. ZBUGFA"Dl GRAPH 2 = ELEMENT K2 AT.ND. 2. 00r=-01 GRAPH 3 - ELEMENT KR ATaNO. E-Ufif-fil GRAPH 4 - ELEMENT KE AT .NO 2. H0E-01 GRAPH 5 - ELEMENT KR AT.NO. 2.00E-01 GRAPH 6 = ELEMENT KR AT.NO. 2. 00E-01 + 4+ % s & 5 8 ¢ & & & HP*F4HO*P{HP%P4* Poi b et b e e ped bl ] e e et Maf ped e R b b e e - L] -» - L J - - - - + 4% 2 9 9% 0% 892U TES RS IS 4+ 8 8 8 4 8 4 v o2 @ 4 9 % 9S00SS0 S0 "n s 111111 111111 OF AYTOMICHUMDER "o e 0 sasthdadeesIes 111111 o 3y 22222 . 2222 - s e T et CEEE L L ey I 33 33. 33 445506 44556 4 5 b +‘.+........I-I.....1'.*....'....‘.'.......+.I-I2.-I.I.I-......+.......'.I.'...‘.‘3-f....h.s.&..-...‘...*.. I IS0Y0PE G0 HALF-LIFL 2.200B+01 SEC 4o BHE~GY BeJ0E~G1 8.00£~-01 1.00E+00D ISOTOPE 91 HALF-LIFE 8.400E+00 S5tC 4. Q0E-01 5.508-01 8,00E-01 1. 00E+0Y ISOUTOPE 92 HALF-LIFE 1.900E+00 SEC 4.0JE-G1 G J0E~-01 8.00E-01 1. 00E+0D ISOTGPE 93 HALF~-LIFE 1.200E+400 SEC L.30E-DtL 6«00E~-01 8.00E~-01 1. 00E+0GE ISOTOPE 94 HALF-LIFE 1.000E+400 SEC L.00E&~01 B.d0E~-01 8.00E~-01 1. 00kE+00 ISOTCPE 9% HALF-LIFE B.080E-01 SEC 4.D0E-D1 6.00E-01 8.00E~01 1. 00E+0D e P m e —— [-emem o — [romm————— tomm [-=~ I.‘O‘.-.l’.t-‘t..ll’..*i.l.l..l..l'.'.I..I+.l.‘.fll'l..‘..'l'..+‘.‘I...Cflfloflu.ictti*.l.-....l.III.Itflil;fl.* L - - 1‘ I - - - 1 = I - - 1 * I - - - 1 = I - - » 1 & I . . . 1 A § - - - 1 * I . - . i =1 . - . 1 R | +.-...--..----.-a...+...........-....---+-..--.-o---1111.22“*..* . - 11 2 F. 1 - - 111 2 ;- i . - . 111 2 3*. I - . » 11 2 3%. 1 . . 111 2 Fre 1 . . 1i1 . 2 . 1 N . 111 - 2 3a4%. 1 . - 11 . 2 34*e I . . 111 - 2 4%, 1 +.o.¢--.-c-.c.oo.-.-+..111111..0.---.-0.+e0022222201-.l3¥¥’.*..* - 11111 2222 334%6 o 1 . 11111 . 22222 33 4L¥6 « I - 11111 - 22222 - 33 456 « 1 - 11111 N 2eze . 33 4¥56 » 1 11111 » 22222 - 3 4¥56 - I 111111 . 2eze . 33 4556 1 . 1 . I H + "3Td 1T LT GRAPH 1.00E-038 GRAPH GRAPH ———Jw———————— - e e 1. +.‘+. 2. ..*I 3. C‘*l e P oo i d pd o P Pl e e bl bt b b e Pl et ] b e bed P P P et P b e bt - . ALL ISOVYOPES OF 1 - ELEMENT 3SR .1- UUE— 2 - ELEMENT SP 1- OUF" 3 - ELEMENT SR 1- UUE— " e aSSs SN SRS e PSS ERCSE I BN O BN B N BB A B B BT 0O S ST sn 9 sEas ATOMICNUMBFER 38 AT.NO. 38 ISOQTOPE 838 STagLe 06 1.00E-04 1.90&E- AT.NO. 38 ISOTOPE 89 HALF-LIFE 5.050 g2 E+31 DAY No 1.00E-04 1.00E-02 AT.NO. 38 ISOTOPE 90 HALF-LIFE 2.810 E+01 YKS 06 1.00E-04 1.00E-02 1.00E+0D 1.00E+0Q0 1.00E+00 1. 00E+02 1.00E+02 1. 00E+D2 f..................."’.'....I‘-I.lll‘....i..fl.-II..I...'I..'l#*..-................*..+ - - - L - - - - - - - - - - - - teosnncecnssnssescestosssvsnscnssaasasnsns - - - - - Ll » L] L] - - - - - * - +...‘...I.........-'*...-.--..“t-.-.... - - L) - - - - - -» -» - - -» - - - - - -1 i 11# 3 -+~ B L] ] [ ] - L] [ ] [ ] 4w« & & & & 4 & & & » H ¢ » 2 " ° e " s 2 I I I I I I I I I et 1 I 1 I I 1 I I I ..* 1 1 I I I 1 I 1 I +.....II..-..---.-..+‘-0II.-..0...-.-.ll+1--.l'llllJE..l..I."...I....OG........’-O* 8T GRAPH 1§ ISG TOPES OF CLEMEHNT O AT .NG. ATOMICNUMBER 53 1.00E~08 1.00E~00 Paddaeurz 1100400 Q2402 GRAPH 7« ELEMENT J AT.NO. 53 ALY -LIFY 1. 0UE®BT Yka 1.08F-03 1. 08F-ib 1-00E-0¢ 1.30E+50 1. 00402 GRAPH 3 - ELEMENY J AT .NDe 53 IS0T0PE 135 #HAF-ulvy 1.230E+31 Hes 1,006-08 1= G0~ 1ib 1.00%~04 Ls00E-82 1.038+00 1. 008402 GRAFH % o~ ELEMENT o TaNDO. 53 ISoT70PE 131 HALF-LT70 8, 090E+00 DAY 1.00E-D8 1007 ~d6 1. 00E=-04 10002 100U+ 40 Le JQE®DZ GRAPH & - CLEMENTY ¢ AT 100 times lower than in the unextracted core. 5. The gas extraction rate influences also the oxygen ex- traction from the molten fuel which considerably improves the corrosion behaviour of metallic molybdenum and also the stability of the uranium and plutonium chlorides (Taube 1974). Acknowledgements The author thanks Mr. S. Padiyath for help in the writing and computation of the programme 'GASEX' and Mr. R. Stratton for polishing the English. 33 Appendix I Calculation of the gas stream rates. The 2000 MW(th) reactor has a fission rate of about 2 X 109 Wx 3.1 X lOlO fiss/s = 1 = 100 uM Pu/g4 W 6£.02 x 1023 (UM = micro Mol = 6.02 x 102 % 107 = 6.02 x 10%7 atoms) The relative amounts of volatile nuclides is estimated very roughly here as 0.2, that is 2 x 20 uM/ of gaseous volatile elements. The volume of these elements at ~950 °C and ~10 bars pressure 1is 40 x 10—6 mol/S X 22.2 X% 103 cm3 x 12563 K x 1 = 0.4 cmB/S mol 275 K 10 This amount of 0.4 cmB/S must be removed from the core by means of continuous gas extraction. If we postulate a helium stream 5 (with probably 1 mol % of hydrogen) of 4 ecm /S then it seems the volatile elements can be removed. The assumed dwelling time of the gas bubbles in the core is 10 to 1000 s. The 5 volume of the gaseous phase in the core is from 40 to 4000 cm The total volume of fuel 1n the core equals m3 2 8.75 x 0.3%386 fuel fraction = 3.377 m core The volume of gas bubbles given above equals from 10—5 to 10_3 of the fuel volume. This should not give rise to problems of criticality particularly in the steady state. References 1) 2) 3) 4) 5) 6) 7) 8) 9) Beattie J.R. Beattie J.R., Bryant P.M. Crouch E.A.C. Crouch E.A.C, Farmer F.R. Flengas S.N., Block-Bolten A Taube M., Ligou J. Taube M, WASH-1250 Radiological significance of Cs-137 releases from gas-cooled reactors Riley, SRD R 11 (1972) Assesment of environmental hazards from reactor fission product release AH SB (S) R 135 (1970) Calculated independent yields AERE-R-6056 (1969) Harwell Fission product chain yieilds AERE-R-7394 (1973) Development of adequate rist standards Procced. of symposium "Principles and standards of reactor safety" I.A.E.A, Julich, February 1973 Solubilities of reactive gases 1in molten salt. In "Advances in Molten Salt Chemistry" Vol. 2 Ed. J. Braunstein, G. Mamantov, G.P. Smith; Plenum Press, N. York 1973 The molten plutonium chlorides fas?® breeder cooled by molten uranium chlio- rides Ann.Nucl.Engin. (in press) 1974 A molten salt fast thermal reactor system with no waste EIR-Report No. 249 January 1974 - The safety of nuclear power reactors and related facilities U.S. Atomic Energy Commission, Washington 1973